质谱仪原理

合集下载

质谱仪工作原理

质谱仪工作原理
质量分析器
*
质谱过程
撞击 得到 高速电子 气态分子 阳离子 顺序谱图 质量分析器 定性结构 定量分析
导入
按质荷比m/e
峰强度
峰位置
1
2
3
4
5
6
*
真空系统 进样系统:直接进样和色谱进样 离子源: 电子轰击离子源EI,化学电离源CI, 快原子轰击源FAB,电喷雾源ESI, 大气压化学电离源APCI,激光解吸源LD 质量分析器: 磁式单聚焦和双聚焦、四级杆、飞行时间、离子阱、傅里叶变换离子回旋共振分析器 检测器:光电倍增管 数据处理系统
直流电压Vdc 交流电压Vrf
*
+
+
*
结构: 四根棒状电极,形成四极场 1,3棒: (Vdc +Vrf) 2,4棒:- (Vdc+ Vrf ) 原理: 在一定的Vdc Vrf 下 , 只有一定质量 的离子可通过四极场,到达检测器。 在一定的(Vdc/Vrf)下,改变Vrf 可实 现扫描。 特点: 扫描速度快,灵敏度高 适用于GC-MS
丁酮的质谱图
质谱表 元素图表
*
四、质谱仪的性能指标
质量范围 指所能检测的m/z范围 四极杆质谱 m/z小于或等于2000 磁式质谱 m/z可达到几千 飞行时间质谱 m/z可达到几十万
*
分辨率R 例如:CO+ 27.9949,N2+,28.0061 四极质谱恰好能将此分开. 但是: ArCl+ 74.9312,As+,74.9216 质谱仪把相邻两质量 组分分开的能力
+
+
+
+
+
+
+
-

质谱仪的原理应用

质谱仪的原理应用

质谱仪的原理应用1. 质谱仪的基本原理质谱仪是一种用于分析物质的仪器,利用原子或分子的质量-电荷比(m/z)进行测量。

其基本原理包括以下几个步骤:•样品进样:样品通过进样系统进入质谱仪,通常采用气相、液相或固相进样方式。

不同样品介质需要选择对应的接口方式。

•样品离子化:样品进入离子源后,通过电子冲击、电离辐射或化学反应等方法将其转化为离子形式。

•质量分析:离子经过加速器加速后,进入质量分析器。

在质量分析器中,离子按照其质量-电荷比(m/z)被分离和分析。

•离子检测:分离后的离子通过离子检测器进行检测和计数,并得到相应的信号。

2. 质谱仪的应用领域质谱仪在许多领域都有广泛的应用。

下面列举几个常见的应用领域:•环境分析:质谱仪可以用于环境中有机物或无机物的检测与分析,例如空气中的污染物、水中的有害物质等。

通过对样品的离子化和质量分析,可以快速准确地检测出目标物。

•食品安全:质谱仪可以用于食品中农药残留、重金属等有害物质的检测。

通过对食品样品进行离子化和质量分析,可以确定食品中各种成分的含量,保证食品的安全性。

•药物研发:质谱仪在药物研发过程中起到重要作用,可以用于药物的结构鉴定、药代动力学研究、药物代谢等方面。

通过对药物样品进行质量分析,可以确定药物的分子结构和特性。

•生物医学:质谱仪在生物医学研究中也有广泛应用,可以用于蛋白质分析、基因组学研究、代谢组学研究等。

通过对生物样品进行质量分析,可以获取各种生物分子的信息,有助于疾病的诊断和治疗。

3. 质谱仪的发展趋势近年来,质谱仪技术不断发展,出现了许多新的应用和改进。

以下是质谱仪的发展趋势:•高灵敏度:质谱仪的灵敏度逐渐提高,可以检测到更低浓度的物质。

•高分辨率:质谱仪的分辨率也在不断提高,可以更准确地区分不同的离子。

•多种离子源:质谱仪中出现了许多新的离子源,适用于不同类型的样品。

•数据处理:质谱仪软件的发展也非常重要,可以对大量的质谱数据进行处理和分析,提高工作效率。

质谱仪原理公式推导

质谱仪原理公式推导

质谱仪原理公式推导质谱仪这玩意儿,在科学研究和分析化学里可太重要啦!咱们今天就来好好唠唠它的原理公式推导。

要说质谱仪,咱们得先搞清楚它到底是干啥的。

简单来说,质谱仪就像是一个超级厉害的“质量侦探”,能把不同质量的粒子分得清清楚楚,然后告诉我们它们的质量是多少。

质谱仪的工作原理呢,基于一个关键的概念——带电粒子在电场和磁场中的运动。

想象一下,有一群带电的小粒子,它们在电场里会受到电场力的作用,就像被人推了一把似的加速跑起来。

这个加速的过程,就可以用一个公式来描述:qE = ma,其中 q 是粒子的电荷量,E 是电场强度,m 是粒子的质量,a 是加速度。

当这些粒子从电场出来,进入磁场的时候,情况又不一样啦。

磁场会对它们施加一个洛伦兹力,让它们拐弯。

这个拐弯的半径 r 跟粒子的速度 v、电荷量 q、磁场强度 B 以及质量 m 都有关系,公式就是 qvB = mv²/r 。

咱把这两个公式结合起来,就能推导出质谱仪中非常重要的一个公式。

就拿我之前在实验室里的一次经历来说吧。

那天我和同事们正在用质谱仪分析一种新的化合物。

我们把样品放进仪器里,眼睛紧紧盯着屏幕上显示的数据。

一开始,数据跳动得让人心里有点没底,可当我们根据原理公式慢慢调整参数,一点点接近我们想要的结果时,那种兴奋和成就感简直无法形容。

当时,我们为了得到更精确的质量数据,不断地尝试改变电场强度和磁场强度,计算着不同条件下粒子的运动轨迹。

每一次调整,都像是在黑暗中摸索,期待着那一丝光亮。

经过无数次的尝试和计算,我们终于成功地推导出了目标化合物中各个离子的准确质量。

那一刻,我深深地感受到,这些看似枯燥的公式,其实是打开科学奥秘之门的钥匙。

回到质谱仪的原理公式推导,通过一番运算,我们可以得到 m =qB²r²/2V 。

这个公式告诉我们,只要知道了磁场强度 B、粒子运动的半径 r、电场的电压 V 以及粒子的电荷量 q,就能算出粒子的质量 m 。

质谱的原理

质谱的原理

质谱的原理
质谱是一种物理学测量技术,它通过把物质分解成离子和分子,通过测量它们的质量和电荷来研究物质的结构和组成。

质谱是主要应用于生物化学、药物分析和材料科学研究的测量技术,它也被广泛用于定量分析、痕量分析和实验样品的完整性测试。

质谱的原理是,物质会被分解成离子和分子,每个离子和分子都有其特定的质量和电荷数值,因此,可以通过质谱来测定每个离子的质量和电荷数值。

质谱仪是一种用于将所测样品的离子和分子分解的装置,通常采用压缩的气体或者离子发生器对物质进行电离,将其分解成各种离子和分子。

然后,离子会被加速通过一个电场场管,然后被重力或吸引力在电屏或磁控离子枪中分离,然后将分离的离子在其质量分解面上运动,并最终在质谱仪的屏幕上显示分解的果。

质谱是一种应用比较广泛的技术,它可以用来测试材料的成分,检查药物的纯度,甚至可以检测污染物。

与其他分析方法相比,质谱具有更高精度和稳定性,并且可以检测极少量的物质。

此外,质谱测试本身也比较简单,只需要一台质谱仪就可以完成分析任务。

质谱测试不仅用于分析物质的组成,而且也可以用于研究物质的反应机理,从而帮助科学家了解物质的结构。

质谱也可以帮助科学家更有效地搜索和设计新的化合物,为药物研发提供更好的研究基础。

质谱还可以用来定性有机物,分析多种类型的样品,从而有
效地测定和解决复杂问题。

质谱是一项重要的技术,它为科学家和研究人员提供了一种有效的工具来深入研究物质的结构和组成。

质谱是一种生物化学、药物分析和材料科学研究的基础技术,它的发展也极大地促进了其他领域的发展,提高了科研水平,为社会提供了大量有价值的信息。

质谱仪的原理及应用

质谱仪的原理及应用

质谱仪的原理及应用
质谱仪是一种高科技仪器,用于分析化合物的结构、组成和含量等信息。

其基本原理是将待分析的化合物分子通过不同的方式转化为离子,并根据这些离子的质量/电荷比(m/z)进行分析和检测。

质谱仪的应用非常广泛,包括但不限于以下几个方面:
1.结构鉴定:质谱仪可通过测定待分析样品中的离子质量来确定其分子式、结构和碎片情况,帮助科学家快速准确地鉴定化合物的结构。

2.定量分析:质谱仪可根据待测样品中的目标化合物的特征离子峰的强度进行定量分析,可以对药物、环境污染物、食品添加剂等进行精确的定量测定。

3.代谢组学:质谱仪在代谢组学研究中具有重要作用,可以通过分析生物体内的代谢产物,揭示生物体内的代谢途径、代谢产物的变化规律等,为疾病诊断、药物研发等提供重要信息。

4.蛋白质组学:质谱仪在蛋白质组学研究中也有广泛的应用,可用于分析蛋白质的氨基酸序列、翻译后修饰等,帮助研究人员了解蛋白质的结构和功能。

5.环境监测:质谱仪可用于分析环境中的有机污染物、重金属、农药残留等,帮助监测环境质量和保护生态环境。

6.食品安全:质谱仪可用于检测食品中的添加剂、农药残留、重金属等有害物质,保障食品安全。

综上所述,质谱仪在化学、生物学、环境科学等领域都有着重要的应用价值,为科学研究、工业生产和环境保护提供了强大的技术支持。

1 / 1。

质谱工作原理

质谱工作原理

质谱工作原理
质谱(MS)是通过检测化合物中某种特定的元素而将化合物
中所有可能存在的原子(分子)以一定的顺序排列起来,从而对
化合物进行定性和定量分析。

质谱工作原理如下:
电离源是质谱的核心部件,它将离子从样品溶液中分离出来,再经加速和电离而得到高质量的离子束(离子源)。

常用的有分
子离子化源和化学离子化源。

分子离子化源有电喷雾质谱仪和喷雾质谱仪两种。

电喷雾质
谱的工作原理是用高压气体使样品溶液雾化,形成无数细小的液滴,在飞行时间质谱仪中被加速到一定速度后,使液滴撞击基质
中的离子发生碰撞而使样品离子与离子相碰撞而产生碎片离子。

这些碎片离子在进入质谱检测器前,会被扫描器滤除。

因此,分
子离子化源又称为滤去离子化源或滤除(filter)离子源。

这类
质谱仪以液体为工作介质。

化学离子化源是利用有机化合物分子在离子化过程中所发生
的化学反应而产生电离产物(主要是氢化物)。

这种质谱仪称为
化学电离质谱仪(CID)。

—— 1 —1 —。

质谱检测的原理和用途

质谱检测的原理和用途

质谱检测的原理和用途
质谱检测的原理是基于质量-电荷比(m/z)的分析,通过将样品中的化学物质离子化,并根据它们在磁场中的运动轨迹和离子荷质比的大小进行分析和检测。

质谱仪通常包括离子化源、质量选择器和检测器。

在质谱检测中,样品经过离子化源后,产生带电离子。

这些离子会被加速器加速,并通过磁场进行分离,根据它们的质量和电荷比进行排序。

质谱检测具有广泛的应用领域。

以下是质谱检测的一些常见用途:
1. 化学分析:质谱检测可以用于确认和定量分析化学物质,包括有机和无机化合物。

它可以识别和测量化合物的分子结构和组成。

2. 生物分析:质谱检测在生物科学和医药领域中被广泛应用,用于分析蛋白质、核酸、代谢产物等生物大分子。

它可以揭示生物体中的代谢途径、蛋白质组学和蛋白质-蛋白质相互作用等。

3. 环境监测:质谱检测可以用于检测和分析环境中的有机和无机污染物,如水体、大气、土壤等样品中的有害物质。

4. 药物研究:质谱检测在药物研究中发挥重要作用。

它可以用于药物的定量分析、代谢产物的分析和药物的合成等。

5. 食品安全:质谱检测可以用于检测食品中的添加剂、农药残留、重金属等有害物质,保障食品的安全与质量。

质谱检测具有高灵敏度、高分辨率和广泛的应用范围,因此被广泛应用于科学研究、工业生产和环境监测等领域。

质谱的应用原理

质谱的应用原理

质谱的应用原理什么是质谱质谱(Mass Spectrometry,简称MS)是一种在化学、生物学、物理学等领域中广泛应用的分析技术。

它通过将样品中的分子离子化,并通过磁场和电场的作用将离子按质量分离,然后测量离子的质量和丰度,从而获取有关样品组成、结构和性质的信息。

质谱的基本原理质谱的基本原理是利用质谱仪将样品中的分子离子化,并通过磁场和电场的作用将离子按质量分离,最后进行检测。

下面将详细介绍质谱的应用原理。

1.离子化:质谱分析的第一步是将样品中的分子离子化。

常见的离子化方法包括电子轰击离子化(Electron Impact,简称EI)、化学电离(Chemical Ionization,简称CI)和电喷雾离子化(Electrospray Ionization,简称ESI)等。

2.分子分离:离子化之后,离子进入质谱仪中的磁场和电场区域。

磁场作用下,离子按质量-电荷比(m/z)比例受到偏转力的作用,并因此沿轨道进行弯曲。

电场作用下,离子在质谱仪的不同区域获得不同的动能,进一步加快离子的轨道弯曲。

通过调节磁场和电场的参数,可以实现离子按质量分离的目的。

3.检测和记录:分离之后,离子到达质谱仪的检测器。

检测器通常使用电流计或光子探测器来测量离子的质量和丰度。

质谱仪会将这些数据转化为质谱图,并进行电子处理、解析和储存。

质谱的应用领域质谱作为一种高分辨率、高灵敏度的分析技术,在许多领域中有广泛的应用。

以下是质谱的几个主要应用领域:1.药物分析:质谱可以用于药物的结构鉴定、纯度检测和代谢产物分析,帮助药物研发和品质控制,为新药的开发提供重要的支持。

2.环境分析:质谱可以用于环境中有害物质的检测和定量分析,如空气中的污染物、水中的有机物和重金属等。

通过质谱分析,可以快速、准确地确定有害物质的种类和浓度,为环境保护工作提供科学依据。

3.食品安全:质谱可以用于食品中残留农药、重金属、添加剂等物质的检测和分析。

通过质谱技术,可以有效地监测食品安全问题,保障公众的饮食安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

王俊朋6 我的主页帐号设置退出儒生一级|消息私信通知|我的百科我的贡献草稿箱我的任务为我推荐|百度首页新闻网页贴吧知道音乐图片视频地图百科文库
帮助首页自然文化地理历史生活社会艺术人物经济科技体育图片数字博物馆核心用户百科商城秦始皇兵马俑博物馆
质谱仪
求助编辑百科名片
CHY-2质谱仪质谱仪又称质谱计。

分离和检测不同同位素的仪器。

即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。

目录
质谱仪原理
质谱仪简介
用法
有机质谱仪
无机质谱仪
同位素质谱仪
离子探针
编辑本段质谱仪原理质谱仪能用高能电子流等轰击样品分子,使该分子失去电子变为带正电荷的分子离子和碎片离子。

这些不同离子具有不同的质量,质量不同的离子在磁场的作用下到达检测器的时间不同,其结果为质谱图。

原理公式:q/m=2v/B2r2
编辑本段质谱仪简介
质谱仪以离子源、质量分析器和离子检测器为核心。

离子源是使试样分子在高真空条件下离子化的装置。

电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。

它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。

质量分析器是将同时进入其中的不同质量的离子,按质荷比m/e大小分离的装置。

分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。

离子源、质量分析器和离子检测器都各有多种类型。

质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。

编辑本段用法分离和检测不同同位素的仪器。

仪器的主要装置放在真空中。

将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。

质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等人改进完善。

现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。

质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。

现代质谱仪的分辨率达105 ~106 量级,可测量原子质量精确到小数点后7位数字。

质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。

测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。

由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。

对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。

质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。


于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。

固体火花源质谱:对高纯材料进行杂质分析。

可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar 测定,可应用于地质石油、医学、环保、农业等部门
编辑本段有机质谱仪有机质谱仪基本工作原理:以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,然后利用电磁学原理使离子按不同的质荷比分离并测量各种离子的强度,从而确定被测物质的分子量和结构。

离子阱质谱生物质谱有机质谱
有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。

分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。

有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。

它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。

可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。

编辑本段无机质谱仪无机质谱仪与有机质谱仪工作原理不同的是物质离子化的方式不一样,无机质谱仪是以电感耦合高频放电(ICP)或其他的方式使被测物质离子化。

无机质谱仪主要用于无机元素微量分析和同位素分析等方面。

分为火花源质谱仪、离子探针质谱仪、激光探针质谱仪、辉光放电质谱仪、电感耦合等离子体质谱仪。

火花源质谱仪不仅可以进行固体样品的整体分析,而且可以进行表面和逐层分析甚至液体分析;激光探针质谱仪可进行表面和纵深分析;辉光放电质谱仪分辨率高,可进行高灵敏度,高精度分析,适用范围包括元素周期表中绝大多数元素,分析速度快,便于进行固体分析;电感耦合等离子体质谱,谱线简单易认,灵敏度与测量精度很高。

质谱分析法的特点是测试速度快,结果精确。

广泛用于地质学、矿物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。

编辑本段同位素质谱仪同位素质谱分析法的特点是测试速度快,结果精确,样品用量少(微克量级)。

能精确测定元素的同位素比值。

广泛用于核科学,地质年代测定,同位素稀释质谱分析,同位素示踪分析。

编辑本段离子探针离子探针是用聚焦的一次离子束作为微探针轰击样品表面,测射出原子及分子的二次离子,在磁场中按质荷比(m/e)分开,可获得材料微区质谱图谱及离子图像,再通过分析计算求得元素的定性和定量信息。

测试前对不同种类的样品须作不同制备,离子探针兼有电子探针、火花型质谱仪的特点。

可以探测电子探针显微分析方法检测极限以下的微量元素,研究其局部分布和偏析。

可以作为同位素分析。

可以分析极薄表面层和表面吸附物,表面分析时可以进行纵向的浓度分析。

成像离子探针适用于许多不同类型的样品分析,包括金属样品、半导体器件、非导体样品,如高聚物和玻璃产品等。

广泛应用于金属、半导体、催化剂、表面、薄膜等领域中以及环保科学、空间科学和生物化学等研究部门。

分析化学
扩展阅读:
1
化工词典
2
3
质谱仪使用过程中的质量数校正
开放分类:
仪器仪表机械物理化学分析化学定义化学理论地震学术语基本物理概念应用物理物理理论理论物理生物化学品科学自然科学
我来完善“质谱仪”相关词条:
扫描探针显微镜核磁共振仪流变仪原子吸收光谱红外光谱仪原子吸收分光光度计元素分析仪能谱仪气相色谱仪气相色谱加速器色谱仪旋光仪原子荧光光谱仪原子吸收光谱仪离子色谱仪透射电子显微镜液相色谱色谱柱扫描电镜透射电镜光谱仪液相色谱仪电子探针核磁共振波谱仪荧光分光光度计高效液相色谱仪
百度百科中的词条正文与判断内容均由用户提供,不代表百度百科立场。

如果您需要解决具体问题(如法律、医学等领域),建议您咨询相关领域专业人士。

本词条对我有帮助添加到搜藏分享到:更多
合作编辑者
悠云箫,莔rz商rz冏rz ,Bendith_WD ,monodchen ,百科ROBOT ,jok011 ,xipan1991 ,北京汇海科仪,我就是蕊蕊,zhuokefeng0578 更多
如果您认为本词条还需进一步完善,百科欢迎您也来参与编辑词条在开始编辑前,您还可以先学习如何编辑词条
如想投诉,请到百度百科投诉中心;如想提出意见、建议,请到百度百科吧。

百度百科内容方针
提倡有可靠依据、权威可信的内容鼓励客观、中立、严谨的表达观点不欢迎恶意破坏、自我或商业宣传在这里你可以
编辑
质疑
投诉
全方位的质量监督
学术委员会:为亿万网友提供权威意见质量委员会:把控质量,做更好的知识王俊朋6
00
去兑换>>您尚无道具可使用
成长任务日常任务本月累计点亮0天。

今日笑脸还没点亮哦。

名符图实:参加任务,拿点亮任务日历获得财富值热词推送编辑热词可获得额外经验值
词条动态进入我的百科您目前的等级是1级
您目前的经验值是22点
您还需78点经验值即可升为2级
词条统计
浏览次数:约130057次
编辑次数:17次历史版本
最近更新:2012-12-05
创建者:小松博客
最新动态
图解H7N9,让知识消除恐慌:
百科消息:
专题:没有退路的灵魂才会呐喊
百科校园热力招募这里你是主角
玩拼图游戏,赢iPad mini啦!
app女神评选,赢千元大奖
网易云阅读APP 百万好书随心阅
推广链接
质谱仪--天瑞仪器--质谱仪..
质谱仪天瑞(中国)仪器为世界各行业客户提供质谱仪,质量保证!提..
质谱仪
高效宽范围质谱分析仪.压力范围10mPa到1Pa,高分辨率超过1amu,响..
你知道质谱仪多少钱?
答:上海齐羿提供的质谱仪极具竞争力,且保证完善的售后技术支持...
© 2013 Baidu 使用百度前必读| 百科协议| 百度百科合作平台
质谱仪质谱仪原理质谱仪简介用法有机质谱仪无机质谱仪同位素质谱仪离子探针参考资料
×。

相关文档
最新文档