多电平逆变器与SVPWM
多电平逆变器的简化SVPWM方法

电 力 系 统 及 其 自 动 化 学 报
P o e d n so e CS E S rc e i g ft U— P A h
Vo _ 0 No 6 l2 . Dc e. 2o o8
多 电平 逆变器 的简化 S WM 方 法 VP
t e m eh d i o r c a d ha o p ia e v le n fe d o ih v la e v ra l  ̄e u n y a d p we y tm . h t o sc re t, n s s me a plc bl au s i il fhg o tg ai e b q e c n o rs se
Ke r s c mmo - d v l g ;H— r g iv re ; o u e s lai n p c v c o p s w dh y wo d : o n mo e o t e a b d e n e r c mp tr i i t mu t ;s a e e tr u e i t mo d lt o l n u ai n
Fisl v la e s a e v co sa e d c m p s d i o lx pln .Mo e v r d c mp s d a s is n r n t e n r l rty, ot p c e tr r e o o e n c mpe a e g r o e , e o o e b c sa a d o dia ea o ma— r
T i meh d h sma y sr n p it ,u h a e l ain b e n s n e tru ie s i moe v r t i t o s a hs to a n t g on s s c s r ai t r f e s a d b t nv ra t o z o i e l y, r o e ,h s meh d a o h s l b t r efc f s p r si g mu ilv liv  ̄e o et f to u p e sn h — e n e r S c mmo — d o a e Malb S mu i k smu ain rs l r v h t e e e n mo e v h g . t / i ln i l t e ut p o e t a a o s
三电平逆变器SVPWM控制策略的研究

三电平逆变器SVPWM控制策略的研究一、本文概述随着电力电子技术的快速发展,逆变器作为高效、可靠的电力转换装置,在新能源发电、电机驱动、无功补偿等领域得到了广泛应用。
其中,三电平逆变器因其输出电压波形质量好、开关损耗小、动态响应快等优点,受到了研究者的广泛关注。
空间矢量脉宽调制(Space Vector Pulse Width Modulation, SVPWM)作为一种先进的调制策略,通过合理分配三相桥臂的开关状态,可以实现对输出电压波形的精确控制,进一步提高逆变器的性能。
本文旨在深入研究三电平逆变器的SVPWM控制策略,通过理论分析和实验验证,探索其在实际应用中的优化方法和潜在问题。
文章首先介绍了三电平逆变器的基本结构和工作原理,为后续的控制策略分析奠定基础。
随后,详细阐述了SVPWM的基本原理和实现方法,包括空间矢量的定义、合成和分配等关键步骤。
在此基础上,本文重点分析了三电平逆变器SVPWM控制策略的优化方法,包括减小开关损耗、提高直流电压利用率、改善输出电压波形质量等方面。
本文还通过实验验证了三电平逆变器SVPWM控制策略的有效性。
通过搭建实验平台,测试了不同控制策略下的逆变器性能,包括输出电压波形、开关损耗、动态响应等指标。
实验结果表明,采用SVPWM控制策略的三电平逆变器在各方面性能上均表现出明显的优势,验证了本文研究的有效性和实用性。
本文总结了三电平逆变器SVPWM控制策略的研究现状和未来发展趋势,为相关领域的进一步研究提供了有益的参考。
二、三电平逆变器的基本原理三电平逆变器是一种在电力电子领域中广泛应用的电能转换装置,其基本原理在于利用开关管的导通与关断,实现直流电源到交流电源的高效转换。
与传统的两电平逆变器相比,三电平逆变器在输出电压波形上拥有更高的精度和更低的谐波含量,因此在大规模电力系统和电机驱动等领域具有显著优势。
三电平逆变器的基本结构通常包括三个直流电源、六个开关管以及相应的控制电路。
级联型H桥多电平逆变器SVPWM控制研究

S VPW M n r l Al o ihm f H - r dg s a e ulie e n e t r Co t o g rt o b i e Ca c d d M tl v lI v r e
第4 6卷 第 1 0期
2 2年 1 月 01 0
电 力 电 子 技 术
Po rEl cr n c we e to i s
Vo. 6,N .0 1 4 o1
Oc o e 01 t b r2 2
级联型 H桥 多电平逆变器 S P V WM 控制研究
卢 峥 ,阎德 健 ,朱 思 国 。
sibemou ̄ o h s— ie p c et us wdhmoua o ( V WM )i it d cd f C yuig ut l a d l i o p aes fd saevc rp l it nf ht o e dltn S P i s nr u e rHB MIb s o o n
C s d d c d whc s t e d f r n e v l e b t e n t o l v l i v r r g o p’ u p tv h g o me y l f b d e MI i e u e ih i h i e e c au e w e w — e n e t r u S o tu o a e fr d b e r g f e e t i a ms o l H— r g a d t o lv l i v r r g o p’ u p t v h g o e y i h r g ams o l H— r g . r f al b i e n w e e n e e r u S o t u o a e f r d b r t b d e i f al d t m g i b d eA i
NPC三电平逆变器VSVPWM的研究

NPC三电平逆变器VSVPWM的研究NPC三电平逆变器(Neutral-Point- Clamped Three-LevelInverter)和SVPWM(Space Vector Pulse Width Modulation)是现代电力转换系统中两种常见的拓扑和控制方法。
它们在不同应用场景中具有各自的优势和适用性。
NPC三电平逆变器是一种多电平逆变器,由具有多个电源和单个中性点连接的功率开关组成。
它的控制方式可以实现高质量的电压波形和较低的谐波畸变。
其中,中性点电压的控制是该拓扑独特的特点之一、它可以通过三电平逆变器输出不同电平的电压,以产生尽可能接近理想波形的输出电压。
在低功率应用中,NPC三电平逆变器具有高效率和较低的失真。
而SVPWM是一种基于空间矢量模型的脉宽调制方法。
它通过对逆变器开关的开合进行控制,实现输出电压波形的调制。
它可以产生接近理想正弦波形的输出电压,并且可以减少谐波畸变。
相较于传统的脉宽调制方法,SVPWM的控制精度更高,使得电力转换效率更高,并且可以减少尺寸和重量。
在比较NPC三电平逆变器和SVPWM时,可以考虑以下几个方面:1.转换效率:SVPWM方法控制的逆变器可以实现更高的转换效率,因为其输出电压波形接近理想正弦波,减少了谐波畸变和功率损耗。
相较之下,NPC三电平逆变器在高功率应用中的效率可能会较低,因为其电路结构复杂,电压开关频率较高。
2.复杂性和成本:SVPWM相对于NPC三电平逆变器的控制策略较简单,且在设计和实现上较为常见。
然而,NPC三电平逆变器较复杂,需要多个功率开关和电源,并且需要特殊的控制策略。
在一些低成本和低功率应用中,SVPWM可能是更经济和实用的选择。
3.谐波畸变:由于SVPWM可以接近理想正弦波输出,所以其谐波畸变较低。
而NPC三电平逆变器也可以通过输出不同电平的电压来减少谐波畸变,并且在低功率应用中通常具有较低的失真。
因此,在高要求的工业应用中,两者都可能是合适的选择。
一种多电平逆变器简化SVPWM算法

一种多电平逆变器简化SVPWM算法崔楠楠;吴斌;徐欢庆【摘要】为解决传统空间矢量脉宽调制(SVPWM)算法应用于多电平逆变器时,参考电压矢量定位计算复杂、繁琐的问题,以中点钳位H桥5电平逆变器为例,介绍其拓扑结构及工作原理并提出一种基于αβ坐标系的简化SVPwM算法.该算法利用旋转归一化将其他5个扇区转化到第Ⅰ扇区,使计算量减少了5/6,通过使用一组公式可以快速判断参考电压矢量的准确位置,克服了传统SVPWM算法计算复杂的缺点.同时,该算法可以适用于更高电平.实验结果验证了所提算法的正确性与可行性.【期刊名称】《电气传动》【年(卷),期】2015(045)003【总页数】4页(P45-47,80)【关键词】中点钳位H桥5电平逆变器;空间矢量脉宽调制;参考电压矢量;旋转归一化;通用性【作者】崔楠楠;吴斌;徐欢庆【作者单位】河南能源化工集团永煤公司新桥煤矿,河南永城476600;中国矿业大学信息与电气工程学院,江苏徐州221008;中国矿业大学信息与电气工程学院,江苏徐州221008【正文语种】中文【中图分类】TM464控制策略是多电平逆变器十分重要的研究方向,空间矢量脉宽调制(SVPWM)因其三相同时控制,直流电压利用率高,输出波形谐波小,转矩脉动小,易于数字化实现等优点受到了国内外学者们的广泛关注。
SVPWM的关键是判断参考电压矢量的准确位置,进而确定合成它的3个基本电压矢量。
然而,随着逆变器电平数的增多,组成其空间矢量图的小三角形个数成平方级数递增,这时传统SVPWM算法[1]应用于多电平时,对于参考电压矢量所处位置的判断将变得十分复杂、繁琐。
为解决此问题,文献[2]将αβ坐标系变换为gh坐标系,使得所有矢量的坐标变为整数,大大简化了参考电压矢量的定位,但物理意义不明确;文献[3]建立了xyz坐标系,避免了三角函数运算和参考电压矢量幅角求取,但随着电平数的增多,各矢量坐标的求取变得复杂,且含有大量分式和根号;文献[4]建立了KL坐标系,与gh坐标系一样,物理意义不明确;文献[5]通过建立线电压坐标系,判断小三角形的类型,从而快速定位了参考电压矢量;文献[6]针对中点钳位H桥5电平逆变器提出一种基于αβ坐标系的SVPWM算法,其缺点是对于参考电压矢量定位的计算过于复杂,不利于实时实现。
基于svpwm的三电平逆变器控制策略研究

基于svpwm的三电平逆变器控制策略研究
基于svpwm(Space Vector Pulse Width Modulation)的三电平
逆变器控制策略研究是一个有趣又有兴趣的话题,尤其是在有需要开
发出新一代控制策略以满足市场不断提高要求时,受到越来越多的关注。
SVPWM是一种多相双向逆变器控制的有效方式,它能够在负载测动
或静态状态时提供有效的响应,以调节输出电压并减少电磁悬浮。
然而,当输出功率较大时,可能会出现火花现象,增加了损耗,影响了
系统效率。
因此,采用三电平逆变器技术减少了火花现象,可以改善
输出功率对分部多脉冲控制的响应。
SVPWM技术与三电平逆变器的结合构成了一种适用于三电平逆变器
的新一代控制策略,可以有效改善该系统的性能。
在研究中,已经实
现了针对三电平逆变器的改进的SVPWM策略,调节了单相的输出电压,将负载拖动电流降低至最低,并且可以对输入电压的变化作出及时响应,从而提高系统效率。
此外,由于信号电平与控制精度之间的关系,本文还介绍了如何
可以使用基于三电平逆变器的SVPWM策略来提高信号电平和控制精度
之间的性能。
该方案利用不同的控制方法来控制三相的逆变器的输出,通过理论和仿真结果,得出了显著的改善效果。
总而言之,基于svpwm的三相逆变器控制策略研究可能会取得长
足的进展,以满足市场的新一代控制需求。
在相关的研究工作中已经
取得了良好的成果,并且有望在未来继续发展,使得三电平逆变器能
够发挥更好的控制性能。
基于空间电压矢量法(SVPWM)的三电平逆变器的研究的开题报告

基于空间电压矢量法(SVPWM)的三电平逆变器的研
究的开题报告
一、选题背景
三电平逆变器作为一种新型的逆变器拓扑结构,因其具有更低的谐波含量、更小的开关损耗以及更高的输出电压质量等优势受到了广泛关注。
而空间电压矢量法(SVPWM)则是一种广泛使用的控制方法,其控制策略简单、实现方便、控制精度高等特点,使其成为了三电平逆变器控制的一种重要方法。
因此,本文将研究基于SVPWM的三电平逆变器控制方法,以期能够更加深入地了解其控制原理和性能特点,为三电平逆变器的实际应用提供技术支持。
二、研究目的
本文的研究目的是通过对三电平逆变器的控制方法进行深入的分析和研究,探讨其控制原理和特性,为提高三电平逆变器控制器性能和应用贡献一份力量。
三、研究内容
本文将以以下内容为主要研究内容:
1. 对三电平逆变器的基本原理进行分析和介绍,包括三电平逆变器的拓扑结构和控制方法等。
2. 对SVPWM控制方法进行介绍,包括其基本原理、控制策略和实现方法等,以及与传统PWM控制方法的比较。
3. 基于SVPWM控制方法,对三电平逆变器进行仿真模拟,研究其输出电压波形和谐波含量等性能指标,并与传统PWM控制方法进行对比分析。
4. 在仿真模拟基础上,进一步设计和实现基于SVPWM的三电平逆变器控制系统,对其性能进行实际测试和验证。
四、研究意义
通过本文的研究,不仅能够深入了解三电平逆变器的控制方法和SVPWM技术的特点,还能提高三电平逆变器控制器的性能,为其在实际工程应用中的推广和应用提供技术支持。
同时,本文的研究也为其他相关领域的研究提供了借鉴和参考。
H桥级联多电平逆变器相移SVPWM技术的研究

W M a o h r n ca d h g o t g tl a i n Th o to t o s s p ea d e s o iia e l a in Ba e n h s lw a mo i n i h v l e u i z t . a i o e c n r lme h d i i l n a y f rd g t l ai t . m r z o sd o t e c n i u a in o b i g a c d d mu t e e i v r e ,t i a e o bn s S W M n a re h s -h fe PWM . h o f r t fH— r e c s a e li v l n e t r h sp p rc m i e VP g o d l a d c r irp a e s i d S t
c r irf e u n y a d lw a mo i. An h u p tb t e o ru i s b ln e , n ti a y f r e p n i n a re r q e c n o h r n c d t e o t u e we n p we n t i aa c d a d i s e s o x a s .S s o VP —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y ur=0? N
Y Ur>0?
si=1 si=(3*thi1/3.1415926)+1
si=7-(3*thi1/3.1415926)
22
小扇区判断程序(预处理部分):
准备
Y Si<=3
N
thi2=thi1-(si-1)*3.1415926/3
thi2 = thi1-(6-si)*3.1415926/3
• 三电平逆变器的27个矢量远多于两电平逆变器的8个矢量,矢量选择 范围的拓展使得合成时过渡更自然,输出能更好地逼近正弦波,所含 谐波分量更少,获得更好的性能。
• 扇区的划分:
• 为便于分析,我们把整个矢量区域分成 6个大扇区,每个大扇区分为 4个小扇区。
15
SVPWM合成算法(以A相为例)
由伏秒平衡有:
LS-PWM
√
√
-
范式的 围
PS-PWM
×
√
√
Hybrid
×
×
√
Modulation
SHE
√
√
√
SVC
-
√
√
NLC
-
√
√
√ : 适合/推荐使用 - : 不适合/不推荐
× :不适合
6
多电平技术背景 三电平基础 SVPWM
7
下图为中点箝位三电平逆变的拓扑结构。以输出 A 相电压为例,分析图 示中点箝位三电平逆变电路的工作原理。
作用时间 ta/4 tb/2 tc/2 ta/2 tc/2 tb/2 ta/4
20
SVPWM程序分析及流程图
SVPWM程序流程图:
参考电压转换 (abc-αβ)
大扇区判断
小扇区判断
脉冲序列生成
矢量作用时间 计算
21
大扇区判断程序: 其中, k为调制系数 Si为大扇区序号
初始化
Ur=sqrt(ua^2+ub^2), k=2*ur/ud/sqrt(3.0),thi1=acos(ua/ur)
O 此时称 A 相的状态为
10
• ⅲ 当 s3,s4 开关管导通,s1, s2开关管关断时,如果负载电流为正,电流流 过开关管 s3, s4;该相输出端电压 U = -Udc/2;如果负载电流为负,电流流过 与开关管s3, s4 并联的续流二极管,则该相输出端电压是 U= -Udc/2,
N 此时称 A相的状态为 11
16
• 将每个矢量在α-β坐标轴上进行分解,可解得:
17
• 同理,当 在其他区域时,同样可以用伏秒平衡来求出合成参考电压 矢量的空间电压矢量的作用时间。
18
SVPWM的脉冲序列生成方案
• 脉冲序列的生成应遵循以下原则:
✓ 为了保证每个桥臂只能同时有两个开关器件开通,要求在一个控制周 期内,相邻的每相开关状态不能突变,即不允许存在从“1”开关状态 到“-1”开关状态的直接切换;
三电平逆变器与SVPWM
指导老师:查晓明 演讲人:王启盛
1
目录
多电平技术背景 三电平技术基础 SVPWM
2
多电平技术背景 三电平技术基础 SVPWM
3
1.背景
成熟半导 体技术
采用中小功率半 导体器件
大功率电力电
子领域的两个 方向
采用
新型高压大功率 器件
开发中的
半导体技 术
NPC(二极 管箝位型)
• 2000年,Fang Z.Peng提出了一种通用式多电平逆变器的主电路结构。
• 1988年,M.Marchesoni等人提出了级联式多电平逆变器。 • 2000年,M.D.Manjrekan等人提出了FBI(单相全桥逆变单元)串联式
逆变器。
5
1.背景
NPC
FC
CHB
与调多
SVM
使制电
√
√
√
用方平
谢谢!
26
tri==3
Y ta = 2*k*ts*sin(3.1415926/3-thi2) tb = 2*k*ts*sin(thi2)-$ts tc = ts-ta-tb
ta = 2*k*ts*sin(thi2)
tb = 2*k*ts*sin(3.1415926/3-thi2)-ts
25
tc = ts-ta-tb
FC(飞跨电 容)
CHB(级联 多电平)
经典两电平 结构
4
1.背景
• 1980年,日本长冈科技大学的南波江章(A.Kira Nabae)等人在IEEE工 业应用年会上提出了NPC(二极管中性点箝位式)三电平逆变器主电 路的结构
• 1992年,法国学者T.A.Meynard和H.Foch,提出了FC(飞跨电容箝位式) 多电平逆变器。
多电平技术背景 三电平基础 SVPWM
12
SVPWM
• 三电平逆变器的关键技术之一是PWM控制信号的发生。而三电平空 间矢量调制算法比之于其他PWM算法具有较高电压利用率,较小的 输出谐波分量,更易于数字化实现且更适合向多电平应用中拓展等优 点,因此三电平SVPWM控制算法一直以来都是三电平逆变器研究的 热点。以下主要对三电平SVPWM控制的基本原理做一些简要介绍。
8
• ⅰ 当 s1,s2 开关管导通,s3, s4开关管关断时,如果电流为正,电流流过开 关管 s1, s2,忽略管压降,该相输出端电压U=Udc/2;如负载电流为负,电流 流过与开关管 s1, s2 并联的续流二极管,则该相输出端电压是 U=Udc/2,
P 此时称 A 相的状态为 9
• ⅱ 当 s2, s3 开关管导通,s1, s4 开关管关断时,如果负载电流为正,电流流 过箝位二极管 Dz1、开关管 s2,此时该相输出端电压 U=0;如果负载电流为 负,电流流过开关管 s3,再流过箝位二极管 Dz2,则该相输出端电压是 U=0,
23
小扇区判断程序: 其中, k为调制系数 tri为小扇区序号
准备
Y Ur=0
N 2*k*sin(thi2+3.1415926/3) <= 1
tri = 1 Y
N
Y 2*k*sin(thi2-3.1415926/3) <= -1
N
Y 2*k*sin(thi2) > 1
N
tri = 1 tri = 4 tri = 3
tri = 2
24
矢量作用时间计算程序:
其中, ta,tb,tc为a,b,c三相在一个周 期T内的总作用时间。Leabharlann 准备Ntri==1
Y
ta = 2*k*ts*sin(3.1415926/3-thi2) tb = 2*k*ts*sin(thi2) tc = ts-ta-tb
N tri==2
Y
ta = ts*(1-2*k*sin(thi2)) tb = 2*k*ts*sin(thi2+3.1415926/3) tc = ts-ta-tb
• 空间矢量调制的最初目的是使电机获得圆形旋转磁场,现在空间矢量 调制已经发展成为和SPWM并行的一种变换器PWM调制技术。因为三 相变换器的负载各式各样,并不一定存在像电机负载那样对称的分布 的三相绕组,所以对于普遍意义上的空间矢量调制方法,空间一词仅 具有数学上的意义,无实际物理意义。普遍意义上的电压空间矢量方 法是从数学角度出发,将三相交换器的各相电压定义在互差120。的 平面坐标系上,并将三相输出电压转换到复平面上合成空间矢量。 空间电压矢量可做如下定义:
13
• 对于三电平逆变器拓扑前己分析每相具有三种开关状态,因此三相三 电平输出电路就可以得到3^3=27种开关组合,对应27组不同的开关状 态组合,可以画出三相三电平的空间矢量分布图,如下图所示:
14
• 空间电压矢量分为四类:零矢量、小矢量、中矢量、大矢量。其中, 小矢量的幅值为Vd/3,中矢量的幅值(3^0.5)Vd/3,大矢量的幅值为 Vd/3 。
✓ 为了减少开关次数,降低开关损耗,从一个开关状态切换到下一个开 关状态时,三相桥臂只有一相有开关动作;
✓ 同时为了消除偶次谐波,控制实现的方便,在一个开关周期内,开关 矢量的选择是对称的。
19
SVPWM的脉冲序列生成方案
所选取的向量合成方案如下表:
作用顺序 1 2 3 4 5 6 7
开关状态 onn oon ooo poo ooo oon onn