算法与数据结构 单链表的创建

合集下载

单链表的基本操作实验报告

单链表的基本操作实验报告

湖南第一师范学院信息科学与工程系实验报告课程名称:数据结构与算法成绩评定:实验项目名称:单链表的基本操作指导教师:学生姓名:沈丽桃学号: 10403080118 专业班级: 10教育技术实验项目类型:验证实验地点:科B305 实验时间: 2011 年 10 月20 日一、实验目的与要求:实验目的:实现线性链表的创建、查找、插入、删除与输出。

基本原理:单链表的基本操作二、实验环境:(硬件环境、软件环境)1.硬件环境:奔ⅣPC。

2.软件环境:Windows XP 操作系统,TC2.0或VC++。

三、实验内容:(原理、操作步骤、程序代码等)#include<stdio.h>#include<stdlib.h>#include<malloc.h>struct celltype{int element;struct celltype*next;};typedef int position;void main(){struct celltype*head,*p;int x,choice;void INSERT(int x,struct celltype*p);void LOCATE(int x,struct celltype*p);void DELETE(int x,struct celltype*p);p=(struct celltype*)malloc(sizeof(struct celltype));head=p;p->element=0;p->next=NULL;printf(“Please option:1:Insert 2:Locate 3:Delete\n”);printf(“Please choose:”);scanf(“%d”,&choice);switch(choice)case 1:printf(“Please input a node:”);scanf(“%d”,&x);p=head;INSERT(x,p);for(p=head;p!=NULL;p=p->next)printf(“%d”,p->element);printf(“\n”);break;case 2:printf(“Please input the data you want to locate:”); scanf(“%d”,&x);p=head;LOCATE(x,p);break;case 3:printf(“Please input the data you want to delete:”); scanf(“%d”,&x);DELETE(x,p);for(p=head;p!=NULL;p=p->next)printf(“%d”,p->next);printf(“\n”);break;}void INSERT(int x,struct celltype*p){struct celltype*t,*q;q=(struct celltype*)malloc(sizeof(struct celltype)); q->next=x;while((x>p->element)&&(p!=NULL)){t=p;p=p->next;}if((x>p->element)&&(p->next!=NULL)){p->next=q;q->next=NULL;}else{q->next=p;t->next=q;}}void LOCATE(int x,struct celltype*p){while(p->next!=NULL)if(p->next->element==x)printf(“the number %d is in %d\n”,x,p);else printf(“the number not exist!\n”);}void DELETE(int x,struct celltype*p){while((p->element!=x)&&(p->next!=NULL)){t=p;p=p->next;}if(p->element==x)t->next=p->next}error C2018:unknown character ’Oxal’error C2065:’Please’:undeclared identifiererror C4024:’printf’:different types for formal and actual parameter 1error C4047:’function’:’const*differs in levers of indirection from ’int’error C2146:syntaxerror:missing’)’before identifier’option’error C2017:illegal escape sequenceerror C2059:syntax error:’)’error C2143:syntax error:missing’)’before’%’出现了很多错误,主要是因为printf里的一对双引号不是英文状态下的。

数据结构与算法——单链表的实现及原理

数据结构与算法——单链表的实现及原理

数据结构与算法——单链表的实现及原理1. 单链表的原理 链表是线性表的链式存储⽅式,逻辑上相邻的数据在计算机内的存储位置不必须相邻,那么怎么表⽰逻辑上的相邻关系呢?可以给每个元素附加⼀个指针域,指向下⼀个元素的存储位置。

如图所⽰: 从图中可以看出,每个结点包含两个域:数据域和指针域,指针域存储下⼀个结点的地址,因此指针指向的类型也是结点类型链表的核⼼要素:Ø 每个节点由数据域和指针域组成 Ø 指针域指向下⼀个节点的内存地址。

1.1 结构体定义1 Typedef struct LinkNode2 {3 ElemType data; //节点中存放数据的类型4struct LinkNode* next; //节点中存放下⼀节点的指针5 }LinkList, LinkNode;2. 单链表初始化链表的节点均单向指向下⼀个节点,形成⼀条单向访问的数据链1//单链表的初始化2 typedef struct _LinkNode3 {4int data; //结点的数据域5struct _LinkNode* next; //结点的指针域6 }LinkNode, LinkList; //链表节点、链表78bool InitList(LinkList*& L) //构造⼀个空的单链表 L9 {10 L = new LinkNode; //⽣成新结点作为头结点,⽤头指针 L 指向头结点11if(!L)return false; //⽣成结点失败12 L->next=NULL; //头结点的指针域置空13return true;14 }3. 单链表增加元素 - 单链表前插法插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。

1//前插法2bool ListInsert_front(LinkList * &L, LinkNode * node) //参数1 链表指针参数2 要插⼊的节点元素3 {4if (!L || !node) return false; //如果列表或节点为空返回 false5 node->next = L->next; //将头节点指向节点1的地址赋值给要插⼊节点的指针域,使要插⼊的节点先与后部相连6 L->next = node; //将插⼊节点的地址赋值给头结点的指针域,使要插⼊节点与头结点相连78return true;9 }4. 单链表增加元素 - 单链表尾插法1//尾插法2bool ListInsert_back(LinkList*& L, LinkNode* node)3 {4 LinkNode* last = NULL; //创建空指针,5if (!L || !node) return false; //如果列表或节点为空返回 false67 last = L;8while (last->next) last = last->next; //使⽤ last 找到最后⼀个节点910 node->next = NULL; //要插⼊节点由于在尾部,指针域置为 NULL11 last->next = node; //将要插⼊节点的地址赋值给之前的尾部节点的指针域,将要插⼊节点放置到尾部12return true;13 }5. 单链表增加元素 - 单链表任意位置插⼊插⼊节点的要素就是要找到要插⼊位置的前⼀个节点,将这个节点的Next赋值给新节点,然后将新节点的地址赋值给前⼀个节点的Next便可,任意位置插⼊和前插法均是如此。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告实验目的:掌握单链表的基本操作,学会使用单链表实现各种算法。

实验内容:实现单链表的基本操作,包括创建、插入、删除、访问等。

利用单链表完成以下算法:- 单链表逆序- 查找单链表中的中间节点- 删除单链表中的倒数第K个节点- 合并两个有序单链表为一个有序单链表实验步骤:1. 创建单链表在创建单链表时,先定义一个结构体Node来表示链表中的节点,节点包括数据域和指针域,指针域指向下一个节点。

然后,用指针p指向链表的头节点,将头节点的指针域初始化为NULL。

2. 插入节点在单链表中插入节点的操作分为两种情况:- 在链表头插入节点- 在链表中间或尾部插入节点无论是哪种情况,先将新节点的指针域指向要插入的位置的下一个节点,再将要插入的位置的指针域指向新节点即可。

3. 删除节点删除链表节点的操作同样分为两种情况:- 删除头节点- 删除中间或尾部节点要删除头节点,先用一个指针将头节点指向的下一个节点保存起来,再将头节点释放掉。

要删除中间或尾部节点,先用一个指针指向要删除节点的前一个节点,然后将指向要删除节点的前一个节点的指针域指向要删除节点的下一个节点,最后将要删除的节点释放掉。

4. 单链表逆序单链表逆序可以使用三个指针来完成,分别为pre指针、cur指针和next指针。

首先将pre指针和cur指针指向NULL,然后循环遍历链表,将cur指针指向当前节点,将next指针指向当前节点的下一个节点,然后将当前节点的指针域指向pre指针,最后将pre指针和cur指针向前移动一个节点,继续进行循环。

5. 查找单链表中的中间节点查找单链表中的中间节点可以使用双指针法,将两个指针p1和p2都指向链表头,然后p1每次向前移动一个节点,而p2每次向前移动两个节点,当p2指向了链表尾部时,p1指向的节点即为中间节点。

6. 删除单链表中的倒数第K个节点删除单链表中的倒数第K个节点可以使用双指针法,在链表中定义两个指针p1和p2,p1指向链表头,p2指向第K个节点,然后p1和p2同时向前移动,直到p2指向链表尾部,此时p1指向的节点即为要删除的节点。

数据结构___头插法和尾插法建立链表(各分有无头结点)

数据结构___头插法和尾插法建立链表(各分有无头结点)

实验一链表的建立及基本操作方法实现一、【实验目的】1、理解和掌握单链表的类型定义方法和结点生成方法。

2、掌握利用头插法和尾插法建立单链表和显示单链表元素的算法。

3、掌握单链表的查找(按序号)算法。

4、掌握单链表的插入、删除算法。

二、【实验内容】1、利用头插法和尾插法建立一个无头结点单链表,并从屏幕显示单链表元素列表。

2、利用头插法和尾插法建立一个有头结点单链表,并从屏幕显示单链表元素列表。

3、将测试数据结果用截图的方式粘贴在程序代码后面。

重点和难点:尾插法和头插法建立单链表的区别。

建立带头结点和无头结点单链表的区别。

带头结点和无头结点单链表元素显示方法的区别三、【算法思想】1) 利用头插法和尾插法建立一个无头结点单链表链表无头结点,则在创建链表时,初始化链表指针L=NULL。

当用头插法插入元素时,首先要判断头指针是否为空,若为空,则直接将新结点赋给L,新结点next指向空,即L=p,p->next=NULL,若表中已经有元素了,则将新结点的next指向首结点,然后将新结点赋给L即(p->next=L,L=p)。

当用尾插法插入元素时,首先设置一个尾指针tailPointer以便随时指向最后一个结点,初始化tailPointer和头指针一样即tailPointer=L。

插入元素时,首先判断链表是否为空,若为空,则直接将新结点赋给L即L=p,若不为空,else将最后一个元素的next指向新结点即tailPointer->next=p,然后跳出这个if,else语句,将新结点next指向空,并且将tailPointer指向新结点即p->next=NULL,tailPointer=p。

2) 利用头插法和尾插法建立一个有头结点单链表链表有头结点,则在创建链表时,初始化链表指针L->next = NULL。

与无头结点区别在于,判断链表为空是根据L->next是否为空。

用头插法插入元素时,要判断链表是否为空,若为空则将新结点next指向空,作为表尾,若不为空,则直接插入,将新结点next指向头结点next的指向,再将头结点next指向新结点即p->next=L->next,L->next=p。

数据结构实验报告实现单链表各种基本运算的算法

数据结构实验报告实现单链表各种基本运算的算法

实验截图(1)void InitList(LinkNode *&L)//初始化线性表{L=(LinkNode *)malloc(sizeof(LinkNode)); //创建头结点L->next=NULL;//单链表置为空表}void DestroyList(LinkNode *&L)//销毁线性表{LinkNode *pre=L,*p=pre->next;实验截图(2)bool GetElem(LinkNode *L,int i,ElemType &e) //求线性表中第i个元素值{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L;//p指向头结点,j置为0(即头结点的序号为0) while (j<i && p!=NULL)//找第i个结点p{ j++;p=p->next;}if (p==NULL)//存在值为e的结点,返回其逻辑序号ireturn(i);}实验截图(3)bool ListInsert(LinkNode *&L,int i,ElemType e) //插入第i个元素{ int j=0;if (i<=0) return false;//i错误返回假LinkNode *p=L,*s;//p指向头结点,j置为0(即头结点的序号为0) while (j<i-1 && p!=NULL)//查找第i-1个结点p{ j++;p=p->next;}}实验截图(4)编写exp2-2.cpp程序包含有关代码//文件名:exp2-2.cpp#include "linklist.cpp"int main(){LinkNode *h;ElemType e;printf("单链表的基本运算如下:\n");printf(" (1)初始化单链表h\n");InitList(h);printf(" (2)依次采用尾插法插入a,b,c,d,e元素\n");return 1;}实验截图(5)运行得到结果实验截图(6)。

算法与数据结构实验报告

算法与数据结构实验报告

2015-2016学年第二学期《算法与数据结构》课程实验报告专业软件工程学生姓名成晓伟班级软件141学号1410075094实验学时16实验教师徐秀芳信息工程学院实验一单链表的基本操作一、实验目的1.熟悉C语言上机环境,进一步掌握C语言的基本结构及特点。

2.掌握线性表的各种物理存储表示和C语言实现。

3.掌握单链表的各种主要操作的C语言实现。

4.通过实验理解线性表中的单链表存储表示与实现。

二、主要仪器及耗材普通计算机三、实验内容与要求1、用C语言编写一个单链表基本操作测试程序。

(1)初始化单链表(2)创建单链表(3)求单链表长度(4)输出单链表中每一个结点元素(5)指定位置插入某个元素(6)查找第i个结点元素的值(7)查找值为e 的结点,并返回该结点指针(8)删除第i个结点(9)销毁单链表2、实验要求(1)程序中用户可以选择上述基本操作。

程序启动后,在屏幕上可以菜单形式显示不同功能,当按下不同数字后完成指定的功能,按其他键,则显示错误后重新选择。

(2)要求用线性表的顺序存储结构,带头结点的单链表存储结构分别实现。

(3)主函数实现对基本操作功能的调用。

3、主要代码(1)初始化单链表LinkList *InitList(){ //创建一个空链表,初始化线性表LinkList *L;L=(LinkList *)malloc(sizeof(LinkList));L->next=NULL;return L;}(2)创建单链表//头插法void CreateListF(LinkList *L){LinkList *s;int i=1,a=0;while(1){printf("输入第%d个元素(0表示终止)",i++);scanf("%d",&a);if(a==0)break;s=(LinkList *)malloc(sizeof(LinkList));s->data=a;s->next=L->next;L->next=s;}}(3)求链表长度int ListLength(LinkList *L){ //求链表长度int n=0;LinkList *p=L;while(p->next!=NULL){p=p->next;n++;}return(n);}(4)在指定位置插入元素int InsertList(LinkList *L,int i,ElemType e){LinkList *p=L,*s;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找出要插入的位置的前一个位置if(p==NULL){return 0;}else{s=(LinkList *)malloc(sizeof(LinkList));s->data=e;s->next=p->next;p->next=s;return 1;}}(5)输出链表void DispList(LinkList *L){ //输出链表LinkList *p=L->next;while(p!=NULL){printf("%d",p->data);p=p->next;}printf("\n");}(6)查找链表中指定元素int GetElem(LinkList *L,int i){ //查找链表中指定元素LinkList *p=L;int j=0;while(j<i&&p!=NULL){j++;p=p->next;}if(p==NULL){return 0;}else{return p->data;}}(7)查找值是e的结点并返回该指针LinkList *LocateElem(LinkList *L,ElemType e){ //查找值是e的结点并返回该指针int i=1;LinkList *p=L;while(p!=NULL)if(p->data==e) return p;}if(p==NULL){return NULL;}}(8)删除元素int ListDelete(LinkList *L,int i,ElemType *e){ //删除元素LinkList *p=L,*q;int j=0;while(p!=NULL&&j<i-1){p=p->next;j++;} //找到要删除元素地址的前一个地址if(p==NULL){ return 0;} //不能删除else{q=p->next;*e=q->data;p->next=q->next;free(q); //删除成功return 1;}}(9)销毁链表void DestroyList(LinkList *L){//销毁链表LinkList *pre=L,*p=L->next;while(p!=NULL){free(pre);pre=p;p=pre->next;}free(pre);}main函数:int main(){LinkList *L;ElemType e;int i;L=InitList();CreateListF(L);DispList(L);printf("输入要查找的元素位置:\n");scanf("%d",&i);e=GetElem(L,i);printf("%d\n",e);printf("单链表长度为:%d\n",ListLength(L));printf("输入要删除元素的位置:");scanf("%d",&i);if (i>ListLength(L)){printf("超出范围重新输入");scanf("%d",&i);}if(ListDelete(L,i,&e)==0){printf("未找到元素\n");}else DispList(L);printf("输入插入元素的位置和值:");scanf("%d%d",&i,&e);InsertList(L,i,e);DispList(L);return 0;}4、测试数据及测试结果输入:23 56 12 28 45输出:四、注意事项1、存储结构定义和基本操作尽可能用头文件实现。

实验报告1

实验报告1

实验一创建链表和链表操作一、实验目的掌握线性表的基本操作:插入、删除、查找、以及线性表合并等操作在顺序存储结构和链式存储结构上的实现。

二、实验内容:1. 创建单链表2.在链表上进行插入、删除操作;3.设计一个程序,用两个单链表分别表示两个集合,并求出这两个集合的并集。

四、测试数据:∙(3,9,5,6,11,8);在5之前插入4,7,并删除11∙求集合{1,12,8,6,4,9}和{2,5,12,7,4}的并集五、概要设计:本操作应完成如下功能:(1)创建链表说明:分配一定的空间,根据给定的链表长度输入值,创建链表。

(2)合并链表说明:将两个链表合并为一个链表只需修改链表头、尾指针即可实现。

(3)在链表中插入值说明:将给定的值插入到指定位置上,只需修改插入位置的前后结点的指针即可。

(4)在链表中删除值说明:将指定位置的值删除,只需修改删除位置的前后结点的指针即可。

六、详细设计:源代码:#include<stdio.h>#include<conio.h>#include<stdlib.h>#include<iostream.h>#define OK 1#define ERROR 0#define OVERFLOW 0//线性链表的存储结构,一个结点typedef struct LNode{int data; // 数据域struct LNode *next; // 指针域}LNode,*LinkList; //结点结构类型和指向结点的指针类型int TraverseList_L(LinkList L) //遍历单链表{LinkList p;p=L->next;while(p){printf("-->%d",p->data);p=p->next;}return OK;}//尾插法创建的带头结点的单链表。

void CreateList_L(LinkList &L,int &n){L=(LinkList)malloc(sizeof (LNode));//建立一个空链表L。

单链表数据结构

单链表数据结构

插入
if (p != NULL && j == i-1) { // 找到第i个结点
s = (LinkList) malloc ( sizeof (LNode)); // 生成新结点
s->data = e;
// 数据域赋值
s->next = p->next; //新结点指针指向后一结点
p->next = s; return OK;
6、销毁
4.6 销毁操作
while(L) { p = L->next; free(L); L=p;
// p指向第一结点(头节点为“哑结点”) // 释放首结点 // L指向p
}
// 销毁完成后,L为空(NULL)
算法的时间复杂度为:O(ListLength(L))
判空 求表长
4.7 其它操作
if(L->next==NULL) return TRUE; // 空
5、清空
4.5 清空操作
while (L->next) { p = L->next; L->next = p->next; free(p);
// p指向当前结点 // 头结点指向当前结点的后结点 // 释放当前结点内存
}
// 清空完成后,仍保留头结点L
算法的时间复杂度为:O(ListLength(L))
点。
5.1.2 逆序建立单链表
①建立一个带头结点的空单链表;
②输入数据元素ai,建立新结点p, 并把p插入在头结点之后成为第一个 结点。
③重复执行②步,直到完成单链表的 建立。
a1
a2 a1
创建出来的链表 点顺序与插入操作
顺序相反。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 3 4 5 6 7 8
链表的值:
12345678
返回第四个结点的地址:
00222EC8
第三个位置插入9后的链表值:
123945678
删除的结点为:
9
删除第四个结点后的链表值8
Press any key to continue
提交源程序,列出测试结果,包括输入和输出。
cout<<"链表的值:"<<endl;
a.show();
cout<<"返回第四个结点的地址:"<<endl;
cout<<a.setpos(4)<<endl;
cout<<"第三个位置插入9后的链表值:"<<endl;
int value=9;
a.insert(3,9);
a.show();
cout<<"删除的结点为:"<<endl;
}
bool insert(const int i,const T value)
{
link<T> *p,*q;
if((p=setpos(i-1))==NULL)
{
cout<<"非法插入"<<endl;
return false;
}
q=new link<T>(value,p->next);
p->next=q;
{
int count=0;
if(i==-1)
return head;
link<T>*p=head->next;
while(p!=NULL&&count<i)
{
p=p->next;
count++;
}
return p;
}
bool insert(const int i,const T value)
{
link<T> *p,*q;
a.Delete(4,value);
cout<<"删除第四个结点后的链表值:"<<endl;
a.show();
cout<<"链表的长度为:"<<endl;
cout<<a.length()<<endl;
}
三.用户手册
根据屏幕显示的操作提示来输入相关数据即可
四.调试报告
五.运行结果
请输入链表元素(八位)
{
link<T>*p,*q;
if((p=setpos(i-2))==NULL||p==tail)
{
cout<<"非法删除"<<endl;
return false;
}
q=p->next;
if(q==tail)
{
tail=p;
value=q->data;
cout<<value<<endl;
p->next=NULL;
count++;
}
return count;
}
void show()
{
link<T>*p;
p=head->next;
while(p)
{
cout<<p->data;
p=p->next;
}
cout<<endl;
}
};
{
cin>>data;
insert(i,data);
}
}
link<T>*setpos(int i)
{
cin>>data;
insert(i,data);
}
}
link<T>*setpos(int i)
{
int count=0;
if(i==-1)
return head;
link<T>*p=head->next;
while(p!=NULL&&count<i)
{
p=p->next;
count++;
}
return p;
{
p=p->next;
count++;
}
return count;
}
void show()
{
link<T>*p;
p=head->next;
while(p)
{
cout<<p->data;
p=p->next;
}
cout<<endl;
}
};
2.2实现注释
•(1)创建单链表;
•(2)在单链表上查找第i个数据结点,返回其地址值;
delete q;
}
else if(q!=NULL)
{
p->next=q->next;
value=q->data;
cout<<value<<endl;
delete q;
}
return true;
}
}
int length()
{
int count=0;
link<T> *p=head->next;
while(p)
•(3)在单链表第i个位置上插入一个取值为value的新的数据结点;
•(4)删除单链表第i个数据结点,并返回该数据结点的取值;
•(5)求单链表的长度。
功能有待完善(程序灵活性不够好)
void main()
{ cout<<"请输入链表元素(八位)"<<endl;
lnklist<int> a;
a.createlist(8);
二.设计
2.1算法描述
class link
{
public:
T data;
link<T> *next;
link(const T info, link<T> *const nextValue=NULL)
{
data=info;
next=nextValue;
}
link(link<T> *const nextValue=NULL)
•(5)求单链表的长度。
•(6)有余力的同学可完成教材单链表定义中的其它功能。
测试数据:
•(1)线性表中数据元素的取值集合为{1,2,3,4,5,6,7,8};或线性表中数据元素的取值集合为{1.0,3.0,5.0,6.0,7.0,8.0},
•(2)给出在单链表实现时(a)查找第4个数据结点;(b)在第3个位置插入value=9/9.0;(c)删除第4个数据结点;(d)给出单链表的长度。
{
next=nextValue;
}
};
template<class T>
class lnklist
{
link<T>*head,*tail;
public:
lnklist()
{
head=tail=new link<T>;
}
void createlist(int n)
{
T data;
for(int i=0;i<n;i++)
if(p==tail)
tail=q;
return true;
}
bool Delete(const int i)
{
link<T>*p,*q;
if((p=setpos(i-2))==NULL||p==tail)
{
cout<<"非法删除"<<endl;
return false;
}
q=p->next;
if(q==tail)
{
tail=p;
p->next=NULL;
delete q;
}
else if(q!=NULL)
{
p->next=q->next;
delete q;
}
return true;
}
int length()
{
int count=0;
link<T> *p=head->next;
while(p)
{
p=p->next;
if((p=setpos(i-1))==NULL)
{
cout<<"非法插入"<<endl;
return false;
}
q=new link<T>(value,p->next);
p->next=q;
if(p==tail)
tail=q;
return true;
}
return true;
}
bool Delete(const int I,T &value)
《算法与数据结构》实验报告
实验题目:线性表的单链表实现任课教师:
学号:姓名:完成日期:







线性表基本操作在单链表上的实现,包括:
•(1)创建单链表;
相关文档
最新文档