苏教版高中数学必修三试卷(含参考答案)
高中数学苏教版必修3章末综合测评1 Word版含解析

章末综合测评(一)(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.下面的伪代码运行后的输出结果是________.【解析】第4行开始交换,a=2,b=3,c为赋值后的a,∴c=2.【答案】2,3,22.(2015·北京高考改编)执行如图1所示的程序框图,输出的结果为________.图1【解析】第一次循环:s=1-1=0,t=1+1=2,x=0,y=2,k=1;第二次循环:s =0-2=-2,t =0+2=2,x =-2,y =2,k =2; 第三次循环:s =-2-2=-4,t =-2+2=0,x =-4,y =0,k =3. 满足条件,退出循环,输出(-4,0). 【答案】 (-4,0)3.执行下面的伪代码,输出的结果是________.【解析】 第一次循环:x =0+1=1,x =12=1; 第二次循环:x =1+1=2,x =22=4; 第三次循环:x =4+1=5,x =52=25. 满足条件,退出循环.输出25. 【答案】 254.对任意非零实数a 、b ,若a ⊗b 的运算原理如图2所示,则lg 1 000⊗⎝ ⎛⎭⎪⎫12-2=________. 【导学号:90200031】图2【解析】 令a =lg 1 000=3,b =⎝ ⎛⎭⎪⎫12-2=4,∴a<b,故输出b-1a=4-13=1.【答案】 15.阅读图3的流程图,若输出s的值为-7,则判断框内可填写________.图3【解析】第一次循环:s=2-1=1,i=1+2=3;第二次循环:s=1-3=-2,i=3+2=5;第三次循环:s=-2-5=-7,i=5+2=7.此时应退出循环,故判断框内应填“i<6”.【答案】i<6(答案不唯一)6.如下图所给出的是一个算法的伪代码.如果输出的y的值是20,则输入的x 的值是________.【解析】当x≤5时,10x=20,即x=2;当x>5时,2.5x+5=20,解得x =6.【答案】2或67.上述伪代码运行后输出的结果为________.【解析】第一次循环a=Mod(1,5)=1.I=2;第二次循环a=Mod(3,5)=3.I=3;第三次循环a=Mod(6,5)=1.I=4;第四次循环a=Mod(5,5)=0.I=5;第五次循环a=Mod(5,5)=0.I=6.【答案】08.图4是求12+22+32+…+1002的值的流程图,则正整数n=________.图4【解析】因为第一次判断执行后,S←12,i←2,第二次判断执行后,S←12+22,i←3,而题目要求计算12+22+32+…+1002,故n=100.【答案】1009.(2015·南京高二检测)下列伪代码输出的结果是________.【解析】 第一次循环:s =2×1+3=5,I =1+2=3;第二次循环:s =2×3+3=9,I =3+2=5;第三次循环:s =2×5+3=13,I =5+2=7;第四次循环:s =2×7+3=17,I =7+2=9.不满足条件,结束循环,输出17.【答案】 1710.执行如图5所示的流程图,若输入的x 为4,则输出y 的值为________.图5【解析】 当输入x =4时, 计算y =12x -1,得y =1.不满足|y -x |<1.于是得x =1,此时y =12-1=-12, 不满足|y -x |<1,此时x =-12,得y =-54. 这样|y -x |=⎪⎪⎪⎪⎪⎪-54+12=34<1,执行“Y ”,所以输出的是-54.【答案】-5 411.(2015·南通高一月考)某程序的伪代码如下所示,则程序运行后的输出结果为________.【解析】此程序的功能是计算1+3+5+7的值,故输出结果为16.【答案】1612.阅读流程图6,如果输出i=5,那么在空白矩形框中应填入的语句为________.图6【解析】当空白矩形框中应填入的语句为S=2i时,在运行过程中各变量的值如下所示:i S是否继续循环循环前10第一圈25是第二圈36是第三圈49是第四圈510否故输出的i 值为5,符合题意. 【答案】 S ←2i13.(2015·新课标Ⅰ高考改编)执行下面的程序框图7,如果输入的t =0.01,则输出的n =________.图7【解析】 执行第1次,t =0.01,S =1,n =0,m =12=0.5,S =S -m =0.5,m =m2=0.25,n =1,S =0.5>t =0.01,是,循环;执行第2次,S =S -m =0.25,m =m2=0.125,n =2,S =0.25>t =0.01,是,循环;执行第3次,S =S -m =0.125,m =m2=0.062 5 ,n =3,S =0.125>t =0.01,是,循环;执行第4次,S =S -m =0.062 5,m =m2=0.03 125,n =4,S =0.062 5>t =0.01,是,循环;执行第5次,S =S -m =0.031 25,m =m2=0.015 625,n =5,S =0.03 125>t =0.01,是,循环;执行第6次,S=S-m=0.015 625,m=m=0.007 812 5,n=6,S=0.015 625>t2=0.01,是,循环;=0.003 906 25,n=7,S=0.007 执行第7次,S=S-m=0.007 812 5,m=m2812 5>t=0.01,否,输出n=7.【答案】714.执行如图8所示的流程图,若输出的结果是8,则判断框内m的取值范围是________.图8【解析】由题知,k=1,S=0,第一次循环,S=2,k=2;第二次循环,S=2+2×2=6,k=3;…;第六次循环,S=30+2×6=42,k=6+1=7;第七次循环,S=42+2×7=56,k=7+1=8,此时应输出k的值,从而易知m的取值范围是(42,56].【答案】(42,56]二、解答题(本大题共6个小题,共90分.解答时写出文字说明、证明过程或演算步骤)15.(本小题满分14分)设计一个算法,将n个数a1,a2,…,a n中的最小数找出来,并用伪代码表示这个算法.【解】算法如下:S1x←a1,l←2;S2如果2≤l≤n,那么转S3;否则转S6;S3输入a l;S4如果a l<x,那么x←a l;S5l←l+1,转S2;S6输出x.伪代码如下:16.(本小题满分14分)某公司为激励广大员工的积极性,规定:若推销产品价值在10 000元之内的年终提成5%;若推销产品价值在10 000元以上(包括10 000元),则年终提成10%,设计一个求公司员工年终提成f(x)的算法的流程图.【解】流程图如下图所示:17.(本小题满分14分)下列是某个问题的算法,将其改为伪代码,并画出流程图. 【导学号:90200032】算法:S1 令i ←1,S ←0.S2 若i ≤999成立,则执行S3. 否则,输出S ,结束算法. S3 S ←S +1i . S4 i ←i +2,返回S2.【解】 伪代码和流程图如下:18.(本小题满分16分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出流程图,写出用基本语句编写的流程图.【解】 程序框图:伪代码如下:19.(本小题满分16分)如图9所示程序框图中,有这样一个执行框x i =f (x i -1),其中的函数关系式为f (x )=4x -2x +1,程序框图中的D 为函数f (x )的定义域. (1)若输入x 0=4965,请写出输出的所有x i ;(2)若输出的所有x i 都相等,试求输入的初始值x 0.图9【解】 (1)当x 0=4965时,x 1=f (x 0)=f ⎝ ⎛⎭⎪⎫4965=1119, x 2=f (x 1)=f ⎝ ⎛⎭⎪⎫1119=15, x 3=f (x 2)=f ⎝ ⎛⎭⎪⎫15=-1,终止循环,所以输出的数为1119,15. (2)要使输出的所有数x i 都相等,则x i =f (x i -1)=x i -1.此时有x 1=f (x 0)=x 0,即4x 0-2x 0+1=x 0,解得x 0=1或x 0=2, 所以输入的初始值x 0=1或x 0=2时,输出的所有数x i 都相等.20.(本小题满分16分)新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分).设计一算法,通过考试成绩和平时成绩计算学分,并画出流程图.【解】 算法如下:S1 输入考试成绩C 1和平时成绩C 2;S2 计算模块成绩C =C 1+C 22;S3 判断C 与60的大小关系,输出学分F :若C ≥60,则输出F =2;若C <60,则输出F =0.流程图如图所示:。
新高中数学苏教版必修三同步练习:3.2古典概型(含答案解析)

数学·必修 3( 苏教版 )第3章3.2概率古典概型基 础 巩 固1.以下试验中,是古典概型的个数为 ()①种下一粒花生,察看它能否抽芽;②向上抛一枚质地不均的硬币,察看正面向上的概率; ③向正方形ABCD内,随意取一点P ,点P 恰与点C 重合;④从1, 2, 3, 4 四个数字中,任取两个数字,求所取两数字之一是2 的概率;⑤在区间[0,5] 上任取一个数,求此数小于2 的概率.A .0 个B .1 个C .2 个D .3 个分析:①花生抽芽与不抽芽的可能性不相等,不是古典概型;②硬币不平均,所以正 面向上与反面向上的可能性不相等,不是古典概型; ③点P 的个数是无穷的, 不是古典概型;⑤在区间[0, 5)上任取一个数有无穷个,不是古典概型.故只有④是古典概型,选B.答案:B2.从 {1 ,2, 3, 4, 5} 中随机选出一个数字为 a ,从 {1 , 2,3} 中随机选用一个数字为b ,则 b >a 的概率是 ()4 3 21A. 5B.5C.5D.5分析:用(a ,b)表示基本领件,则基本领件有(1,1),(1,2),(1,3),(2,1), , (5,31), (5,2),(5,3)共 15 个,此中 b > a 的事件有: (1,2),(1,3) ,(2,3).故其概率为 15=15.选 D.答案: D3.一批产品有 100 个部件,此中5 件次品,从中随意抽取一件产品,抽到次品的概率为 ________.P = 51分析:抽到次品概率100= 20.答案: 1204.甲、乙两人玩数字游戏,先由甲心中任想一个数字记为 a ,再由乙猜甲方才想的数字,把乙想的数字记为b ,且 a ,b ∈ {1 , 2,3, 4, 5, 6} ,若 |a - b| ≤1,则称 “甲、乙心有灵犀 ”,现随意找两个人玩这个游戏,得出他们“心有灵犀 ”的概率为 ________.分析:数字a ,b 的全部取法有62= 36 种,知足 |a - b| ≤1 的取法有 16 种,故其概率为P =16 436= .9答案:495. 3 名学生排一排,甲乙站在一同的概率为________.分析:总的结果为6 种,而甲乙排一同的排法有4 种:甲乙丙,乙甲丙,丙甲乙,丙4 2乙甲.∴ P = 6= 3.答案:236.从数字 1,2,3,4,5 中,随机抽取 3 个数字 (同意重复 )构成一个三位数,其各位数字之和等于 9 的概率为 ________.分析:从 5 个数字中可重复的抽取三个,共有53=125 种不一样的结果,三位数之和等于 9 的数字有 2,3, 4; 3,3, 3; 2, 2, 5; 1, 4, 4; 1, 3, 5;共构成 6+ 6+ 3+3+ 1= 19 个,19∴ P = 125.答案:19125能 力 升 级7.任取一正整数,该数的平方的末位数是 1 的概率是 ________.分析:第一要注意假如把正整数的全体取为样本空间,则空间是无穷的,不属于古典概型.可是一个正整数的平方的末位数只取决于该正整数的末位数,正整数的末位数0, 1,2, , 9 中的随意一个数,此刻任取一正整数的含义就是这十个数字是等可能出现的.因此取样本空间为 {0 , 1, 2, , 9} ,欲求的事件为A ={1,9},∴ P(A) = 2 = 1 .10 5答案:158.若以连续掷两次骰子,分别获得的点数m , n 作为点 P 的坐标,则点 P 落在圆 x 2+ y 2= 16 外的概率是 ________.分析:画出相应的图形,点P 的坐标总数有 36 个,点 P 落在圆 x 2+ y 2=16 外的有 2828 7个.∴ P =36= 9.答案:799.投掷两个平均的正方体玩具(它的每个面上分别标有数 1, 2, 3, 4, 5, 6),它落地时向上的两数之和为几的概率最大?这个概率是多少?分析:作图,由以下图可知,基本领件空间与点集S = {(x , y)|x ∈ N , y ∈ N , 1≤ x ≤ 6,1≤ y ≤ 6} 中的元素一一对应, 由于 S 中的点数是6×6= 36 个,所以基本领件总数n = 36.记“落地向上两数之和”为事件A ,由图可知,数7 出现6 次,次数最多,即和为7 出现的概率最大, P(A) = 6 =1.36 610.箱子里有 3 双不一样的手套, 随机地取出 2 只,记事件 A ={ 取出的手套配不可对 } ;事件 B = { 取出的都是同一只手上的手套 } ;事件 C ={ 取出的手套一不过左手的,一不过右手的,但配不可对 } .(1) 请列出全部的基本领件;(2) 分别求事件 A 、事件 B 、事件 C 的概率.分析:分别设 3 双手套为: a 1a 2;b 1b 2;c 1c 2.a 1, b 1,c 1 分别代表左手手套, a 2, b 2, c 2分别代表右手手套.从箱子里的 3 双不一样的手套中,随机地取出 2 只,全部的基本领件是:(a 1, a 2) 、(a 1,b 1) 、(a 1,b 2)、 (a 1,c 1)、 (a 1, c 2)、 (a 2, b 1 )、(a 2,b 2) 、(a 2, c 1)、 (a 2, c 2)、 (b 1,b 2)、(b 1, c 1)、(b 1 , c 2)、 (b 2, c 1)、 (b 2, c 2) 、 (c 1, c 2),共 15 个基本领件.(2) ①事件 A 包括 12 个基本领件,故 P(A) =12= 4,( 或能配对的只有 3 个基本领件, 15 5P(A) = 1-3 415= );5②事件 B 包括 6 个基本领件,故P(B) = 6 = 2;15 5 ③事件 C 包括 6 个基本领件,故P(C)= 6 215 = .511.已知向量 a = (x ,y),b = (1,- 2),从 6 张大小同样、分别标有号码1、2、3、 4、5、 6 的卡片中,有放回地抽取两张,x , y 分别表示第一次、第二次抽取的卡片上的号码.(1) 求知足 a ·b =- 1 的概率;(2) 求知足 a ·b > 0 的概率.分析:设 (x ,y)表示一个基本领件,则两次抽取卡片的全部基本领件有(1,1),(1,2),(1, 3), (1, 4), (1, 5), (1, 6), (2,1), (2, 2), , (6, 5),(6,6),共 36 个.用 A 表示事件 “a ·b=- 1”,即 x - 2y =- 1,则 A 包括的基本领件有 (1, 1),(3, 2),31(5, 3),共 3 个,则 P(A) = 36= 12.(2)a b ·> 0,即 x - 2y > 0,在 (1)中的 36 个基本领件中, 知足 x - 2y > 0 的事件有 (3,1),(4, 1), (5, 1), (6, 1), (5, 2), (6,2),共 6 个.61所以所求概率 P =36= 6.12.用 3 种不一样的颜色给图中的 3 个矩形随机涂色,每个矩形只涂一种颜色.求:(1)3 个矩形颜色都同样的概率;(2)3 个矩形颜色都不一样的概率.分析:设三种颜色为甲、乙、丙,按次序涂色,则每个矩形框都有3 种涂法,所以试验可能的结果共有 3×3× 3=27 种,即 n = 27.(1) 设“3个矩形颜色都同样”为事件 A ,则 A 有 3 个基本领件,故 P(A) = 3 =1.27 9 (2) 设“3个矩形颜色都不一样”为事件 B ,则事件 B 的基本领件个数为 3×2×1= 6 种,故P(B) =6 227= .913.为认识学生身高状况, 某校以 10%的比率对全校 700 名学生按性别进行抽样检查,测得身高状况的统计图以下:(1) 预计该校男生的人数;(2) 预计该校学生身高在 170~ 185 cm 之间的概率;(3) 从样本中身高在 180~ 190 cm 之间的男生中任选2 人,求起码有 1 人身高在 185~190 cm 之间的概率.分析: (1)样本中男生人数为40 ,由分层抽样比率为10%预计全校男生人数为400.(2)由统计图知,样本中身高在 170~ 185 cm 之间的学生有 14+ 13+ 4+ 3+ 1= 35 人,样本容量为 70 ,所以样本中学生身高在 170~ 185 cm 之间的频次 f =3570= 0.5.故由 f 预计该校学生身高在170~185 cm 之间的概率p=0.5.(3) 样本中身高在180~ 185 cm 之间的男生有 4 人,设其编号为①,②,③,④,本中身高在185~ 190 cm 之间的男生有 2 人,设其编号为⑤,⑥,从上述 6 人中任取样2 人的树状图为:故从样本中身高在 180~ 190 cm 之间的男生中任选 2 人得全部可能结果数为15,起码有 1 人身高在 185~190 cm 之间的可能结果数为9,所以,所求概率p2=9=3. 155。
【苏科版】高中数学必修三期末试题(含答案)(2)

一、选择题1.如图所示,已知圆1C 和2C 的半径都为2,且1223C C =,若在圆1C 或2C 中任取一点,则该点取自阴影部分的概率为( )A .233533ππ++B .233533ππ-+C .2331033ππ++D .2331033ππ-+2.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .383.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .164.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为()A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 5.执行如图所示的程序框图,如果输入x =5,y =1,则输出的结果是( )A.261 B.425 C.179 D.544 6.阅读如图所示的程序框图,当输入5n=时,输出的S=()A.6 B.4615C.7 D.47157.某程序框图如图所示,则该程序运行后输出的值是()A .3-B .32-C .3D .328.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为( )A .4i ≤B .5i ≤C .6i ≤D .7i ≤9.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,810.某产品的广告费用与销售额的统计数据如下表:( ) 广告费用(万元) 销售客(万元)根据上表中的数据可以求得线性回归方程中的为,据此模型预报广告费用为万元时销售额为( ) A .万元B .万元C .万元D .万元11.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30B .25C .20D .1512.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.14.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.15.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______. 16.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____17.如图是一个算法流程图,若输入x 的值为2,则输出y 的值为_______. .18.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.19.某公司的广告费支出x 与销售额y (单位:万元)之间有下列对应数据:由资料显示y 对x 呈线性相关关系。
【苏科版】高中数学必修三期末试卷(及答案)

一、选择题1.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .232.在下列命题中,①从分别标有1,2,……,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是518; ②341()2x x+的展开式中的常数项为2;③设随机变量~(0,1)N ξ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是( ) A .② B .①③ C .②③D .①②③3.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。
在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .134.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .53175.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( )A .84B .56C .35D .286.二分法是求方程近似解的一种方法,其原理是“一分为二,无限逼近”.执行如图所示的程序框图,若输入11x =,22x =,0.1d =,则输出n 的值为( )A .2B .3C .4D .57.如图,“大衍数列”:0,2,4,8,12….来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前n 项和的程序框图.执行该程序框图,输入10m =,则输出的S =( )A .100B .140C .190D .2508.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S9.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是( )A .24B .48C .56D .6410.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙11.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 17612.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是( )A .90.5B .91.5C .90D .91二、填空题13.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.14.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.15.十六个图钉组成如图所示的四行四列的方阵,从中任取三个图钉,则至少有两个位于同行或同列的概率为______.16.下图所示的算法流程图中,输出的S表达式为__________.a ,则以下程序运行后的结果是_____.17.若4518.如图是一个算法流程图,则输出的S的值为______.19.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg~的人数为__________.20.一个容量为40的样本,分成若干组,在它的频率分布直方图中,某一组相应的小长方形的面积为0.4,则该组的频数是__________.三、解答题21.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bcKa b c d a c b d-=++++.优秀非优秀合计甲班10乙班30合计11022.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:[40,50),[50,60),[60,70),…,[90,100]后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在[50,60)的概率.23.编写一个程序,要求输入两个正数a和b的值,输出a b和b a的值,并画出程序框图. 24.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.25.潜叶蝇是南方地区水稻容易遭受的虫害之一,成虫将虫卵产在叶片里,待虫卵孵化之后幼虫会在叶片中啃叶肉,使得秧苗的叶片呈现白色的状态,进而降低水稻产量.经研究,每只潜叶蝇的平均产卵数y和夏季平均温度x有关,现收集了某地区以往6年的数据,得到下面数据统计表格.x︒212325272931平均温度Ci平均产卵数i y个711212264115(Ⅰ)根据相关系数r判断,潜叶蝇的平均产卵数y与平均温度x是否具有较强的线性相=+,若没有较强的线性相关关系,若有较强的线性相关关系,求出线性回归方程y bx ar>时,可认为变量有较强的线性相关关关关系,请说明理由(一般情况下,当0.75系);(Ⅱ)根据以往的统计,该地区夏季平均气温为()C ξ︒近似地服从正太分布()226.5,N σ,且()125282P ξ<≤=.当该地区某年平均温度达到28C ︒以上时,潜叶蝇快速繁殖引发虫害,需要进行一次人工治理,每次的人工治理成本为200元/公顷(其他情况均不需要人工治理),且虫害一定会导致水稻减产,对过往10次爆发虫害时的减产损失进行统计,结果如下:用样本的频率估计概率,预测未来2年,每公顷水稻可能因潜叶蝇虫害造成的经济损失Y (元)的数学期望.(经济损失=减产损失+治理成本) 参考公式和数据:()()niix x y y r --=∑()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-()()61700iii x x yy =--=∑,6214126ii x==∑,61240i i y ==∑,()6218816i i y y=-=∑,8.4≈786≈.26.两台机床同时生产直径为10的零件,为了检验产品质量,质量质检员从两台机床的产品中各抽取4件进行测量,结果如下:如果你是质量检测员,在收集到上述数据后,你将通过怎样的运算来判断哪台机床生产的零件质量更符合要求.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.2.C解析:C 【解析】 【分析】根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断. 【详解】对①:从9张卡片中不放回地随机抽取2次,共有9872⨯=种可能; 满足2张卡片上的数奇偶性不同,共有54240⨯⨯=种可能; 根据古典概型的概率计算公式可得,其概率为405729P ==,故①错误; 对②:对341()2x x +写出通项公式可得434124144122rrr r r rr x T C C xx ---+⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 令1240r -=,解得3r =,即可得常数项为31422C -⋅=,故②正确;对③:由正态分布的特点可知11(10)(1)22P P p ξξ-<<=-≥=-,故③正确. 综上所述,正确的有②③. 故选:C. 【点睛】本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.3.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题.4.B解析:B 【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩, 此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环; 5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.C解析:C 【分析】按照用二分法求函数零点近似值的步骤求解即可,注意验证精确度的要求. 【详解】解:模拟程序的运行,可得121,1,2,0.1n x x d ====,令22f xx ,则()()110,220f f =-<=>,()1.5, 1.50.250m f ==>,满足条件()()120, 1.5f m f x x <=,此时1.510.50.1-=>,不符合精确度要求;()2, 1.25, 1.250.43750n m f ===-<,不满足条件()()110, 1.25f m f x x <=,此时1.5 1.250.250.1-=>,不符合精确度要求;()3, 1.375, 1.3750.1090n m f ===-<,不满足条件()()110, 1.375f m f x x <=,此时1.5 1.3750.1250.1-=>,不符合精确度要求;()4, 1.4375, 1.43750.0660n m f ===>,满足条件()()120, 1.4375f m f x x <=,此时1.4375 1.3750.06250.1-=<,符合精确度要求. 退出循环,输出n 的值为4. 故选:C. 【点睛】本题主要考查循环结构程序框图以及用二分法求区间根的问题,属于基础题型,二分法是把函数的零点所在区间一分为二,使区间的两个端点逐步逼近零点,进而求零点近似值的方法.7.C解析:C 【分析】根据程序框图进行运算,直到满足判断框中的条件,就停止运行,输出结果. 【详解】第一次运行,211,0,0002n n a S -====+=,不符合n m ≥,继续运行;第二次运行,22,22n n a ===,022S =+=,不符合n m ≥,继续运行,第三次运行,213,42n n a -===,426S =+=,不符合n m ≥,继续运行,第四次运行,24,82n n a ===,8614S =+=,不符合n m ≥,继续运行,第五次运行,5n =,21122n a -==,121426S =+=, 不符合n m ≥,继续运行,第六次运行,6n =,2182n a ==,182644S =+=, 不符合n m ≥,继续运行,第七次运行,217,242n n a -===,244468S =+=, 不符合n m ≥,继续运行,第八次运行,28,322n n a ===,3268100S =+=, 不符合n m ≥,继续运行,第九次运行,219,40,401001402n n a S -====+=, 不符合n m ≥,继续运行,第十次运行,210,50,501401902n n a S ====+=,符合n m ≥,退出运行,,输出190S =.故选:C 【点睛】本题考查了程序框图中循环结构,正确理解程序框图是解题关键,属于基础题. 8.C解析:C 【分析】根据程序框图列出所有的循环步骤,最后一次循环中的S 满足条件,以及倒数第二次循环中S 不满足条件来选择四个选项中的判断条件. 【详解】第一次循环:1S =,不满足条件,2i =; 第二次循环:3S =,不满足条件,3i =; 第三次循环:6S =,不满足条件,4i =; 第四次循环:10S =,不满足条件,5i =; 第五次循环:15S =,不满足条件,6i =; 第六次循环:21S =,不满足条件,7i =; 第七次循环:28S =,满足条件,输出的值为7. 所以判断框中的条件可填写“28S ”. 故选C .【点睛】本题考查程序框图中判断条件的选择,这种类型的问题一般要列举出所有的循环步骤,利用最后一次和倒数第二次循环中变量满足与不满足来筛选判断条件,考查逻辑推理能力,属于中等题.9.B解析:B 【分析】根据频率分布直方图可知从左到右的前3个小组的频率之和,再根据频率之比可求出第二组频率,结合频数即可求解. 【详解】 由直方图可知,从左到右的前3个小组的频率之和为1(0.01250.0375)510.250.75-+⨯=-=, 又前3个小组的频率之比为1:2:3,所以第二组的频率为20.750.256⨯=, 所以学生总数120.2548n =÷=,故选B. 【点睛】本题主要考查了频率分布直方图,频率,频数,总体,属于中档题.10.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.11.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 12.A解析:A 【分析】共有8个数据,中位数就是由小到大中间两数的平均数,求解即可. 【详解】根据茎叶图,由小到大排列这8个数为84,85,89,90,91,92,93,95, 所以中位数为90+91=90.52,故选A. 【点睛】本题主要考查了中位数,茎叶图,属于中档题.二、填空题13.【解析】从分别写有12345的5张卡片中随机抽取1张放回后再随机抽取1张基本事件总数n=5×5=25抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(21)(31)(32)(41)(42解析:25【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4), 共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=2.5故答案为25. 14.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.15.【分析】先求出从16个图钉中任取3个的所有方法数再求出三个图钉分别位于三行或三列的情况的数量利用排除法即得解【详解】从16个图钉中任取3个共有种取法;三个图钉分别位于三行或三列的情况的数量:种至少有 解析:2935【分析】先求出从16个图钉中任取3个的所有方法数,再求出三个图钉分别位于三行或三列的情况的数量,利用排除法,即得解. 【详解】从16个图钉中任取3个共有316560C =种取法;三个图钉分别位于三行或三列的情况的数量:34432=96C ⨯⨯⨯种 至少有两个位于同行或者同列的情况的数量:56096464-=种. 所以至少有两个位于同行或同列的概率为2935. 故答案为:2935【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.16.【分析】根据流程图知当满足条件执行循环体依此类推当不满足条件退出循环体从而得到结论【详解】满足条件执行循环体满足条件执行循环体满足条件执行循环体…依此类推满足条件执行循环体不满足条件退出循环体输出故解析:112399++++【分析】根据流程图知当1i =,满足条件100i <,执行循环体,1S =,依此类推,当100i =,不满足条件100i <,退出循环体,从而得到结论. 【详解】1i =,满足条件100i <,执行循环体,1S =2i =,满足条件100i <,执行循环体,12S =+ 3i =,满足条件100i <,执行循环体,123S =++…依此类推99i =,满足条件100i <,执行循环体,1299S =++⋯+,100i =,不满足条件100i <,退出循环体,输出1112399S S ==+++⋯+,故答案为112399++++.【点睛】本题主要考查了循环结构应用问题,此循环是先判断后循环,属于中档题.17.5【分析】根据条件就是求a 除以10的整数减去a 除以10的商加上a 除以10的余数【详解】【点睛】本题考查除法与取整同余等概念考查基本求解能力解析:5 【分析】根据条件就是求a 除以10 的整数减去a 除以10 的商加上a 除以10 的余数. 【详解】4545\10/1010[]54 4.55 4.5.1010a a aMOD -+=-+=-+= 【点睛】本题考查除法与取整、同余等概念,考查基本求解能力.18.【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】模拟程序的运行可得满足条件执行循环体满足条件执行循 解析:7【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】模拟程序的运行,可得1S =,1i =满足条件4i <,执行循环体,2S =,2i =满足条件4i <,执行循环体,4S =,3i = 满足条件4i <,执行循环体,7S =,4i = 此时,不满足条件4i <,退出循环,输出S 的值为7. 故答案为7. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.19.240【解析】该校2000名男生中体重在的人数为解析:240 【解析】该校2000名男生中体重在()7078kg ~的人数为2000(0.020.01)4240⨯+⨯=.20.16【解析】根据频率直方图的含义每组小矩形的面积就是该组数据在总体中出现的频率所以该组频数为故填16解析:16 【解析】根据频率直方图的含义,每组小矩形的面积就是该组数据在总体中出现的频率,所以该组频数为400.4=16⨯,故填16.三、解答题21.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个.所以P(A)=736,即抽到9号或10号的概率为736.【点睛】本小题主要考查22⨯列联表独立性检验,考查古典概型概率计算,属于中档题.22.(1)众数为75,中位数为73.33;(2)9 10.【分析】(1)由频率分布直方图能求出a=0.030.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数2510n C==,这两人的分数至少一人落在[50,60)包含的基本事件个数112 2339m C CC=+=,由此能求出这两人的分数至少一人落在[50,60)的概率.【详解】(1)由频率分布直方图得:(0.0100.0150.0150.0250.005)101a+++++⨯=,解得0.030a=,所以众数为:7080752+=,[)40,70的频率为(0.010.0150.015)100.4++⨯=,[)70,80的频率为0.03100.3⨯=,中位数为:0.50.4701073.330.3-+⨯≈.(2)用分层抽样的方法从[)40,60的学生中抽取一个容量为5的样本,[)40,50的频率为0.1,[)50,60的频率为0.15,[)40,50∴中抽到0.1520.25⨯=人,[)50,60中抽取0.15530.25⨯=人,从这五人中任选两人参加补考,基本事件总数2510n C==,这两人的分数至少一人落在[)50,60包含的基本事件个数1122339m C C C =+=,所以这两人的分数至少一人落在[)50,60的概率910m P n ==. 【点睛】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式mP n=求得概率 23.见解析; 【解析】试题分析: 先利用INPUT 语句输入两个正数a 和b 的值,再分别赋值a b 和b a 的值,最后输出a b 和b a 的值 试题程序和程序框图分别如下:24.(1)①m=0②i=i+1;(2)见解析 【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写. 【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下: i=1 WHILE i<=100 m=I MOD 2 IF m=0 THEN PRINT i END IF i=i+1 WEND END 【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题. 25.(Ⅰ)具有较强的线性相关关系,10220y x =-;(Ⅱ)330元【分析】(Ⅰ)代入公式计算r ,再做判断,根据公式求,b a ,即得结果;(Ⅱ)先确定温度达到28C ︒以上时概率,再确定随机变量取法,分别求出对应概率,最后根据数学期望公式求结果. 【详解】 (Ⅰ)21232527293171121226411526,4066x y ++++++++++=======()()7000.75786niix x y y r --==>=>∑所以潜叶蝇的平均产卵数y 与平均温度x 具有较强的线性相关关系,()()()1217001070nii i ni i xx y y b x x==--===-∑∑,401026220a y bx =-=-⨯=- 10220y bx a x ∴=+=-;(Ⅱ)()12528,2P ξ<≤=()C ξ︒近似地服从正太分布()226.5,N σ,()()12528128,24P P ξξ-<≤∴>==0,1200,1600Y =13141163(0)1,(1200),(1600)444101041020P Y P Y P Y ==-===⨯===⨯= 313()01200140033041020E Y =⨯+⨯+⨯=(元)【点睛】本题考查线性回归方程、数学期望公式、正态分布,考查综合分析求解能力,属中档题. 26.机床乙的零件质量更符合要求,运算见解析. 【详解】先考虑各自的平均数:设机床甲的平均数、方差分别为211x s 、; 机床乙的平均数、方差分别为222x s 、.1109.81010.2104x +++==,210.1109.910104x +++==∴两者平均数相同,再考虑各自的方差:2222211[(1010)(9.810)(1010)(10.210)]0.024s =-+-+-+-= 2222221[(1010)(10.110)(1010)(9.910)]0.0054s =-+-+-+-= ∵2212s s >,∴机床乙的零件质量较稳定,乙更符合要求.。
【苏科版】高中数学必修三期末试卷(及答案)(1)

一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()P B A =( )A .14π-B .4π C .21π- D .2π2.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( )A .16πB .4π C .3224π- D .14π-3.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .564.如图,过球心的平面和球面的交线称为球的大圆.球面几何中,球O 的三个大圆两两相交所得三段劣弧AB ,BC ,CA 构成的图形称为球面三角形ABC . AB 与AC 所成的角称为球面角A ,它可用二面角B OA C --的大小度量.若球面角3A π=,2B π=,2C π=,则在球面上任取一点P ,P 落在球面三角形ABC 内的概率为( )A .16B .18C .112D .1165.数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a ,b 分别为6,3,则输出的n =( )A .2B .3C .4D .56.某程序框图如图所示,该程序运行后输出S 的值是( )A .910B .1011C .1112D .1117.对任意非零实数a 、b ,若a b ⊗的运算原理如图所示,则121log 43-⎛⎫⊗ ⎪⎝⎭的值为( )A .13B .1C .43D .28.执行如下图的程序框图,那么输出S 的值是( )A .2B .1C .12D .-19.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.7510.若一组数据12345,,,,x x x x x 的平均数为5,方差为2,则12323,23,23x x x ---,4523,23x x --的平均数和方差分别为( )A .7,-1B .7,1C .7,2D .7,811.一组数据的平均数为x ,方差为2s ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为x B .这组新数据的平均数为a x + C .这组新数据的方差为2as D .这组新数据的标准差为2a s12.某同学10次测评成绩的数据如茎叶图所示,总体的中位数为12,若要使该总体的标准差最小,则42x y +的值是( )A .12B .14C .16D .18二、填空题13.已知函数2()22f x x =-的定义域为M ,(())y f f x =的定义域为P ,在M 上随机取一个数x ,则x P ∈的概率是____________.14.已知某运动队有男运动员4名,女运动员3名,若现在选派3人外出参加比赛,则选出的3人中男运动员比女运动员人数多的概率是_________.15.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________ 16.某程序框图如图所示,则该程序运行后输出的S 值是_____________.17.如图是某算法流程图,则程序运行后输出S 的值为____.18.执行如图所示的程序框图,输出S 的值为___________.19.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=20.由茎叶图可知,甲组数据的众数和乙组数据的极差分别是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (3)若从样本中身高属于第六组和第八组的所有男生中随机抽取两名男生,求抽出的两名男生在同一组的概率.22.一工厂对某条生产线加工零件所花费时间进行统计,得到如下表的数据: 零件数x (个) 1020304050加工时间y (分钟)62 68 75 82 88(1)从加工时间的五组数据中随机选择两组数据,求该两组数据中至少有一组数据小于加工时间的均值的概率;(2)若加工时间y 与零件数x 具有相关关系,求y 关于x 的回归直线方程;若需加工80个零件,根据回归直线预测其需要多长时间.(121()()()ˆniii ni i x x y y bx x ==--=-∑∑,^^a yb x =-)23.已知数列{}n a 的递推公式111n n n a a a --=+,且11a =,请画出求其前10项的流程图. 24.根据下面的要求,求满足123500n +++⋅⋅⋅+>的最小的自然数n ,并画出执行该问题的程序框图.25.据了解,温带大陆性气候,干燥,日照时间长,昼夜温差大,有利于植物糖分积累.某课题研究组欲研究昼夜温差大小()/x ℃与某植物糖积累指数()/y GI 之间的关系,得到如下数据:下的2组数据进行检验,假设这剩下的2组数据恰好是第一组与第六组数据.(1)求y 关于x 的线性回归方程ˆˆˆybx a =+ (2)若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2.58,则认为得到的线性回归方程是理想的,试问(1)中所得线性回归方程是否理想?(参考公式:回归直线方程ˆˆˆybx a =+的斜率和截距的最小二乘估计()()()211ˆˆˆ,iii ni ni x x y y bay bx x x ==--==--∑∑ 26.从某小区抽取100个家庭进行月用电量调查,发现其月用电量都在50度至350度之间,频率分布直方图如图所示.(1)根据直方图求x 的值,并估计该小区100个家庭的月均用电量(同一组中的数据用该组区间的中点值作代表);(2)从该小区已抽取的100个家庭中, 随机抽取月用电量超过300度的2个家庭,参加电视台举办的环保互动活动,求家庭甲(月用电量超过300度)被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:设正方形ABCD 边长为a ,分别求解圆I 和正方形EFGH 的面积,得到在圆I 内且在正方形EFGH 内的面积,即可求解()P B A . 详解:设正方形ABCD 边长为a ,则圆I 的半径为,2a r =其面积为21.4a π 设正方形EFGH 边长为b ,22,2b a b a =⇒=其面积为211,2S a =则在圆I 内且在正方形EFGH 内的面积为21,S S S =- 故()121.S S P B A S π-==- 故选C .点睛:本题考查条件概率的计算,其中设正方形ABCD 边长和正方形EFGH 得到在圆I 内且在正方形EFGH 内的面积是解题的关键.2.D解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3.B解析:B 【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B . 【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.4.C解析:C 【分析】根据球体的性质,利用面积比求出概率即可. 【详解】解:由题知,球面角3A π=,2B π=,2C π=,则得出球面三角形ABC 是112的球面,设球面三角形ABC 的面积为S ,则球面上任取一点P ,P 落在球面三角形ABC 内的概率为:1=12S P S =球. 故选:C. 【点睛】本题考查面积型几何概型,通过面积比求概率,还考查球体的性质和应用,解题时需要认真审题和理解分析题目.5.B解析:B 【分析】模拟程序运行,观察变量值的变化,判断循环条件得出结论. 【详解】程序运行中变量值变化如下:6,3a b ==,1n =,9,6a b ==,不满足a b ≤;2n =,13.5a =,12b =,不满足a b ≤;3n =,20.25a =,24b =,满足a b ≤,输出3n =. 故选:B . 【点睛】本题考查程序框图,考查循环结构.解题方法是模拟程序运行,观察变量值的变化,判断循环条件得出结论.6.B解析:B 【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案. 【详解】模拟程序运行过程如下: 0)1,0kS,判断为否,进入循环结构,1)110,2122S k =+==⨯,判断为否,进入循环结构, 2)11,3223S k =+=⨯,判断为否,进入循环结构, 3)111,422334S k =++=⨯⨯,判断为否,进入循环结构, …… 9)111,10223910S k =+++=⨯⨯,判断为否,进入循环结构, 10)1111,112239101011S k =++++=⨯⨯⨯,判断为是,故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B. 【点睛】 本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.7.B解析:B【解析】模拟执行程序框图可得程序的功能是计算并输出分段函数1,2,b a b a a b a a b b-⎧⎪⎪⊗=⎨+⎪>⎪⎩的值, ∵121log 4233-⎛⎫=<= ⎪⎝⎭.∴12131log 4132--⎛⎫⊗== ⎪⎝⎭. 本题选择B 选项. 8.A解析:A【解析】【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k=0, S =112-=﹣1, k =1,S =()111--=12; k =2,S =12112=-;k =3,S =11-2=-1… 变量S 的值以3为周期循环变化,当k=2018时,s=2,K=2019时,结束循环,输出s 的值为2.故选:A .【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,是基础题.9.C解析:C【分析】 求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解.【详解】 由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a ,故选:C .【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.10.D解析:D【分析】根据平均数的性质,方差的性质直接运算可得结果.【详解】令23(1,2,,5)i i y x i =-= 1234555x x x x x x ++++==, 1234523232323232310375x x x x x y x -+-+-+-+-∴==-=-=, (也可()(23)2()32537E y E x E x =-=-=⨯-=) ()()()2y 232428D D x D x =-==⨯=故选:D【点睛】本题主要考查方差及平均值的性质的简单应用,属于中档题.11.D解析:D【分析】根据平均数及方差的定义可知,一组数据的每个数都乘以a 得到一组新数据,平均值变为原来a 倍,方差变为原来2a 倍. 【详解】设一组数据1234,,,,,n x x x x x ⋯的平均数为x ,方差为2s ,则平均值为()12341n ax ax ax ax ax ax n ++++⋯+=, ()()()()()22222212341n s x x x x x xx x x x n ⎡⎤=-+-+-+-+⋯+-⎢⎥⎣⎦, ()()()()()222222212341n ax ax ax ax ax ax ax ax ax ax a s n ⎡⎤∴-+-+-+-+⋯+-=⋅⎢⎥⎣⎦ 故选:D.【点睛】本题主要考查了方差,平均数的概念,灵活运用公式计算是解题关键,属于中档题. 12.A解析:A【分析】由题,中位数为12,求得4x y +=,再求得平均数,利用总体标准差最小和基本不等式求得x ,y 的值,即可求得答案.【详解】由题,因为中位数为12,所以242x y x y +=∴+= 数据的平均数为:1(22342019192021)11.410x y ++++++++++= 要使该总体的标准最小,即方差最小,所以222222.8(1011.4)(1011.4)( 1.4)( 1.4)2()0.722x y x y x y +-+-++-=-+-≥= 当且紧当 1.4 1.4x y -=-,取等号,即2x y ==时,总体标准差最小此时4212x y +=故选A【点睛】本题考查了茎叶图,熟悉茎叶图,清楚中位数、标准差的求法是解题的关键,属于中档题型.二、填空题13.【分析】根据函数解析式可求得定义域和的定义域即可由几何概型概率求解【详解】函数的定义域为则的定义域为即解得即根据几何概型的概率计算公式得故答案为:【点睛】本题考查了函数定义域的求法复合函数定义域的求解析:22- 【分析】根据函数解析式,可求得()f x 定义域M 和(())y f f x =的定义域P ,即可由几何概型概率求解.【详解】函数()f x =M ,则[1,1]M =-,(())y f f x =的定义域为P []1,1-,解得1,22x ⎡⎤∈--⋃⎢⎥⎣⎦⎣⎦,即1,P ⎡⎤=-⋃⎢⎥⎣⎦⎣⎦.根据几何概型的概率计算公式得212⎛⨯- ⎝⎭=.故答案为:22-. 【点睛】本题考查了函数定义域的求法,复合函数定义域的求法,几何概型概率求法,属于中档题. 14.【分析】将所求事件分为两种情况:男女男这两个事件互斥然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率【详解】事件选出的人中男运动员比女运动员人数多包含事件男女和事件男由古典概型 解析:2235. 【分析】 将所求事件分为两种情况:2男1女,3男,这两个事件互斥,然后利用古典概型的概率公式和互斥事件的概率加法公式可求出所求事件的概率.【详解】事件“选出的3人中男运动员比女运动员人数多”包含事件“2男1女”和事件“3男”, 由古典概型概率公式和互斥事件的概率加法公式可知,事件“选出的3人中男运动员比女运动员人数多”的概率为213434372235C C C C +=, 故答案为2235. 【点睛】 本题考查古典概型的概率公式和互斥事件的概率加法公式的应用,解题时要将所求事件进行分类讨论,结合相关公式进行计算,考查计算能力,属于中等题.15.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考 解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时,小明等车时间不超过10分钟, 故201402P ==.故答案为12. 【点睛】 本题考查的知识点是几何概型,难度不大,属于基础题.16.【分析】按照程序框图运行程序可确定输出结果利用裂项相消法可求得结果【详解】由程序框图运行程序输入则循环;循环;……输出结果故答案为:【点睛】本题考查根据程序框图计算输出结果涉及到裂项相消法求和的问题 解析:20152016【分析】 按照程序框图运行程序可确定输出结果111122320152016S =++⋅⋅⋅+⨯⨯⨯,利用裂项相消法可求得结果.【详解】由程序框图运行程序,输入1k =,0S = 则112S =⨯,2k =,循环;111223S =+⨯⨯,3k =,循环; (111122320152016)S =++⋅⋅⋅+⨯⨯⨯,2016k =,输出结果 11111111112232015201622320152016S ∴=++⋅⋅⋅+=-+-+⋅⋅⋅+-⨯⨯⨯12015120162016=-= 故答案为:20152016 【点睛】本题考查根据程序框图计算输出结果,涉及到裂项相消法求和的问题,属于基础综合题. 17.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次 解析:41【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案.【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=;第二次循环,2n =,不满足判断框的条件,54213S =+⨯=;第三次循环,3n =,不满足判断框的条件,134325S =+⨯=;第四次循环,4n =,不满足判断框的条件,254441S =+⨯=;第五次循环,5n =,满足判断框的条件,输出41S =,故答案为41.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.18.48【解析】第1次运行成立第2次运行成立第3次运行成立第3次运行不成立故输出的值为48解析:48【解析】第1次运行,1,2,122,4i S S i ===⨯=<成立第2次运行,2,2,224,4i S S i ===⨯=<成立第3次运行,3,4,3412,4i S S i ===⨯=<成立第3次运行,4,12,41248,4i S S i ===⨯=<不成立,故输出S 的值为4819.【分析】(1)由回归方程知相关变量与成负相关(2)为假命题则同时为假命题为假命题则中至少有一假命题(3)全称命题与特称命题转换条件不变结论变相反(4)由正态曲线的对称性可解【详解】(1)由回归方程知 解析:(2)【分析】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题(3)全称命题与特称命题转换条件不变,结论变相反 (4)由正态曲线的对称性可解.【详解】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,若变量x 增加一个单位,则y 平均增加4-个单位,故(1)错误(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题,所以“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件是正确的.故(2)正确 (3)全称命题与特称命题转换条件不变,结论变相反,故(3)错误(4)由正态曲线的对称性知,随机变量()22X N σ~,,若()0.32P X a <=,对称轴是2x = ,则()40.32P X a >-=,故(4)错误.故答案为; (2)【点睛】利用正态曲线的对称性求概率是常见的正态分布应用问题.解题的关键是利用对称轴=x μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时可借助图形判断.对于正态分布2()N μσ,,由=x μ是正态曲线的对称轴知: (1)对任意的a ,有()()P X a P X a μμ<->+=;(2)()001;()P X x P X x -≥=<;(3)()()=()P a X b P X b P X a <<<≤-.20.【分析】首先从茎叶图中找到出现次数最多的数从而得到甲组数据的众数找出乙组数据的最大值和最小值两者作差求得极差得到结果【详解】根据众数的定义可以断定甲组数据的众数是21;从茎叶图中可以发现其最大值为其 解析:21,43【分析】首先从茎叶图中找到出现次数最多的数,从而得到甲组数据的众数,找出乙组数据的最大值和最小值,两者作差求得极差,得到结果.【详解】根据众数的定义,可以断定甲组数据的众数是21;从茎叶图中可以发现,其最大值为52,其最小值为9,所以极差为52943-=, 故答案为21,,43.【点睛】该题考查的是茎叶图的应用,涉及到的知识点有一组数据的众数和极差的概念,只要明确众数是数据中出现次数最多的数,极差是最大值和最小值的差距,从而求得结果.三、解答题21.(1)0.06;(2)1745.;144;(3)715. 【分析】(1)先由第六组的人数除以样本容量得到第六组的频率,然后用1减去除第七组外其它各组的频率和即可得到第七组的频率;(2)过中位数的直线两侧的矩形的面积相等.第一组到第三组的频率和为0.32,第一组到第四组的频率和为0.52,所以中位数在第四组内,可求出中位数;(3)求出第八组的人数,根据排列组合,求出从这两组的所有男生中随机抽取两名男生的基本事件总数和抽出的两名男生在同一组的基本事件数,即可求得概率.【详解】 第六组的频率为400850.=, ∴第七组的频率为()100850008200160042006006......--⨯⨯++⨯+=(2)第一组到第三组的频率和为()50.0080.0160.040.32⨯++=,第一组到第四组的频率和为()50.0080.0160.0420.52⨯++⨯=,所以中位数在第四组内,设中位数为m ,则170175m <<,由()0.321700.040.5,174.5m m +-⨯=∴=,所以可估计该校800名男生的身高的中位数为1745..第六组到第八组的频率和为0.080.0650.0080.18++⨯=,身高在180cm 以上(含180cm )的人数为8000.18144⨯=人.(3)第六组的人数为4人,第八组的人数为5050.0082⨯⨯=人.记“抽出的两名男生在同一组”为事件A ,从样本中身高属于第六组和第八组的所有男生中随机抽取两名男生,共有2615C =种不同选法,其中事件A 包含22427C C 种, 所以事件A 的概率715P =. 【点睛】 本题主要考查频率分布直方图,属于基础题.22.(1)710(2)108分钟. 【分析】(1)利用列举法和古典概型的概率公式计算可得;(2)根据公式计算可得回归方程,根据回归公式计算可得答案.【详解】解:(1)6268758288755y ++++== 记:“两组数据中至少有一组数据小于加工时间的均值” 为事件A ,基本事件:(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88),(75,82),(75,88),(82,88)共10种,其中事件A :(62,68),(62,75),(62,82),(62,88),(68,75),(68,82),(68,88)共7个,所以7()10P A =. (2)由题,1020304050305x ++++==, ()5214001001004001000i i x x =-=+++=∑ ()()5126070070260660iii x x y y =--=++++=∑ ()()()121ˆ0.66,ni ii n i i x x y y b x x ==--==∴-∑∑ˆˆ55.2a y bx=-= 所以回归方程为ˆ0.6655.2yx =+.80x =时,ˆ0.668055.2108yx =⨯+=,即预测其加工80个零件需要108分钟. 【点睛】本题考查了利用列举法和古典概型概率公式计算概率,考查了求线性回归方程,考查了运算求解能力,属于中档题.23.流程图见解析【分析】由数列的递推公式可知,该数列由前项推出后项,可用循环结构的流程图来表示.在画流程图之前,先将上述流程分解为若干比较明确的步骤,并确立这些步骤之间的关系即可画出流程图.【详解】流程图如图:【点睛】本题考查的知识要点:数列的递推关系式,流程图,主要考查学生的转换能力及思维能力,属于基础题型.24.详见解析【分析】用当型或直到型循环结构写程序框图,当型循环结构是当满足条件时,进入循环体,否时退出循环,判断框填入500S ≤,直到型循环结构是当满足条件时退出循环体,否时进入循环,判断框填入500S >.【详解】或者【点睛】本题考查当型或直到型循环结构,需熟悉循环结构特征,分清两种循环结构,并且注意判断框的写法,25.(1)171277y =⨯;(2)该小组所得线性回归方程是理想的. 【分析】 (1)根据数据求出ˆb与ˆa 的值,即可求出y 关于x 的线性回归方程; (2)分别计算出1月份和6月份对应的预测值,与检验数据作差取绝对值,再与2.58进行比较即可得到结论.【详解】(1)由表中2月至5月份的数据, 得11(1113128)11,(24302818)2544x y =+++==+++=, 故有()()520(1)2513(3)(7)34i i i x x y y =--=⨯-+⨯+⨯+-⨯-=∑, ()5222222021(3)14i i x x =-=+++-=∑, 34171712,251114777b a y bx ∴===-=-⨯=-, 即y 关于x 的线性回归方程为171277y =⨯; (2)由171277y =⨯,当10x =时,171215810777y =⨯-=, 1581820 2.5877-=<,当6x =时,1712906777y =⨯=, 901515 2.5877-=<, 则该小组所得线性回归方程是理想的.【点睛】方法点睛:该题考查的是有关回归分析的问题,解题方法如下:(1)结合题中所给的数据,根据最小二乘法系数公式起的ˆb与ˆa 的值,得到回归直线方程;(2)将相应的变量代入,得到的值域题中条件比较,得到结论.26.(1)x=0.0044, 月均用电量约为186度;(2). 【详解】(1)由题意得,.设该小区100个家庭的月均用电量为S则9+22.5+52.5+49.5+33+19.5=186.(2),所以用电量超过300度的家庭共有6个.分别令为甲、A 、B 、C 、D 、E ,则从中任取两个,有(甲,A )、(甲,B )、(甲,C )、(甲,D )、(甲,E )、(A,B )、(A,C )、(A,D )、(A,E )、(B,C )、(B,D )、(B,E )、(C,D )、(C,E )、(D,E )15种等可能的基本事件,其中甲被选中的基本事件有(甲,A )、(甲,B )、(甲,C )、(甲,D )、(甲,E )5种.家庭甲被选中的概率.。
苏教版高中数学必修三练习:1.2.1顺序结构含答案

1.2.1 次序构造【新知导读】1.什么是流程图 ,它有哪些常用符号?2.次序构造的流程图是什么?【典范点睛】例 1.尺规作图 ,确立线段AB 的一个 5 平分点 .思路点拨:确立线段AB 的 5 平分点,是指在线段AB 上确立一点M,使得AM 1 AB .所以5解决这个问题的方法是:第一,从 A 点出发生一条与原直线不重合的射线;第二,任取射线上一点C,并在射线上作线段AD,使 AD 5AC;第三,连结DB ,并过C点作 BD 的平行线交AB 于 M,M 就是要找的 5 平分点 .这个实现过程用流程图表示:易错辨析:有些同学想直接从已知线段AB 下手取 5 平分点,实质上用尺规是作不出来的。
方法评论:这个算法拥有一般性,对于随意自然数n ,都能够依据这个算法的思想,设计出确立线段 n 平分点的步骤,获得解决这个一般问题的算法.【课外链接】1.经过市场检查剖析得悉,2006 年第一季度内,某地域对某件商品的需求量为12000 件 .为保证商品不畅销,商家在月初时将商品按同样数目投放市场.已知年初商品的库存量为50000件,用S 表示商品的库存量,请设计一个算法,求出第一季度结束时商品的库存量,并画出流程图 .思路点拨:由于第一季度商品的需求量为12000 件,并且每个月以同样数目投放市场,所以每个月向市场投放4000 件商品 .能够用下表表示库存量跟着月份的变化状况【随堂操练】1.算法的三种基本构造是()A. 次序构造、模块构造、条件构造B. 次序构造、循环构造、模块构造C. 次序构造、条件构造、循环构造D. 模块构造、条件构造、循环构造2.以下图形符号中,表示输入输出框的是()3.以下对于流程图(符号)的几种说法:①任何一个流程图都一定有起止框;②输入框只好放在开始框后,输出框只好放在结束框前;③判断框是独一拥有超出一个退出点的符号.此中正确说法的个数是()A.1个B.2 个C.3 个D.0 个4.流程图中的判断框,有m 个进口和n 个出口,则m,n 的值分别为()A. 1,1 B. 1,2C .2, 1D .2,25. 将两个数 a=8,b=17 互换 ,使 a=17,b=8,下边语句正确一组是 ()a=b c=b a=cb=ab=ab=a c=ba=ba=cAB C D6. 对次序构造,以下说法:( 1)是最基本、最简单的算法构造;( 2)框与框之间是挨次进行办理;( 3)除输入框、输出框以外,中间过程都为办理框;( 4)能够从一个框跳到另一个框图进行履行,此中正确的有()A.1 个B.2 个C.3 个D.4 个7.用赋值语句写出以下算法,并画出流程图:摄氏温度 C 为 23.5℃,将它变换成华氏温度 F ,并输出.已知 F5C 3298.相关专家建议, 在将来几年, 中国的通货膨胀率保持在3%左右将对中国经济的稳固有益无害 .所谓通货膨胀为 3%,指的是每年花费品的价钱增加率为3% .在这类状况下, 某种品牌的钢琴 2006年的价钱为 10000 元,请用流程图描绘这类钢琴此后4 年的价钱变化状况,并输出4 年后钢琴的价钱 .。
高中数学苏教版必修3章末综合测评2含解析

章末综合测评(二)(时间120分钟,满分150分)一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中的横线上)1.下列四组对应变量:①学生的数学成绩与总成绩;②一个人的身高与脚的长度;③某工厂工人人数与产品质量;④人的身高与视力.其中具有相关关系的是________.【解析】人的身高与视力之间没有联系,不具有相关关系,同样③也不具有相关关系,其余均有相关关系.【答案】①②2.根据2005~2015年统计,全国营业税收总额y(亿元)与全国社会消费品零售总额x(亿元)之间有如下线性回归方程:y=0.568 7x-705.01.则全国社会消费品零售总额每增加1亿元时,全国营业税税收总额的变化为________.【解析】由线性回归方程中系数b的含义知全国营业税税收总额平均增加0.568 7亿元.【答案】平均增加0.568 7亿元3.管理人员从一池塘内捞出30条鱼,做上标记后放回池塘.10天后,又从池塘内捞出50条鱼,其中有标记的有2条.根据以上数据可以估计该池塘内共有________条鱼.【解析】设池塘内共有n条鱼,则30n=250,解得n=750.【答案】7504.某校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本.已知从女生中抽取80人,则n=________.【解析】 因为80∶1 000=8∶100,所以n ∶(200+1 200+1 000)=8∶100,所以n =192.【答案】 1925.对一组数据x i (i =1,2,3,…,n ),如果将他们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是________.(填序号)①平均数与方差均不变;②平均数变了,而方差保持不变;③平均数不变,而方差变了;④平均数与方差均发生了变化.【解析】 设原来数据的平均数为x -,将他们改变为x i +c 后平均数为x -′,则x -′=x +c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.【答案】 ②6.(2015·镇江高二检测)一小店批发购进食盐20袋,各袋重量(单位:g)为: 508 500 487 498 509 503 499 503 495 489 504 497 484 498 493 493 499 498 496 495其平均重量x -=497.4,标准差s =6.23,则20袋食盐重量位于(x --2s ,x -+2s )的频率是________.【解析】 由题意知x --2s =484.96,x -+2s =509.86.故落在区间(484.96,509.86)间的数据共19个,所以所求频率为1920=0.95. 【答案】 0.957.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.【解析】 由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.【答案】768.茎叶图1记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则x、y 的值分别为________.图1【解析】因为甲组数据的众数为124,可得x=4,其中位数为124,由题意可得乙组数据的平均数为124,由此可得16(116×2+125+128+134+120+y)=124,∴y=5.【答案】4,59.(2015·连云港高一月考)从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图2所示.(1)直方图中x的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.图2【解析】(0.006 0+0.003 6+0.002 4×2+0.001 2+x)×50=1,x=0.004 4,(0.003 6+0.006+0.004 4)×50×100=70.【答案】 (1)0.004 4 (2)7010.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示如图3,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是________.图3【解析】 由茎叶图可得 x -甲=78+81+84+85+925=84,x -乙=76+77+80+94+935=84,所以s 21=(78-84)2+(81-84)2+(84-84)2+(85-84)2+(92-84)25=22,s 22=(76-84)2+(77-84)2+(80-84)2+(94-84)2+(93-84)25=62,显然有s 1<s 2.【答案】 s 1<s 211.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x (cm) 174 176 176 176 178 儿子身高y (cm)175175176177177则y 对【解析】 设y 对x 的线性回归方程为y ^=bx +a ,因为b =-2×(-1)+0×(-1)+0×0+0×1+2×1(-2)2+22=12,a =176-12×176=88,所以线性回归方程为y ^=12x +88.【答案】 y ^=12x +8812.(2015·徐州高二检测)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图4所示,假设得分值的中位数为m e ,众数为m 0,平均值为x -,则m e ,m 0,x -之间的关系是________.图4【解析】 由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即m e =5.5,5出现次数最多,故m 0=5,x-=2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.于是得m 0<m e <x -.【答案】 m 0<m e < x -13.某班50名学生期末考试数学成绩(单位:分)的频率分布直方图如图5所示,其中数据不在分点上,对图中提供的信息作出如下的判断:图5①成绩在49.5~59.5分段的人数与89.5~99.5分段的人数相等; ②从左到右数,第四小组的频率是0.03;③成绩在79.5分以上的学生有20人; ④本次考试,成绩的中位数在第三小组. 其中正确的判断有________.【解析】 ①49.5~59.5与89.5~99.5两段所在矩形的高相等,所以人数相等.②从左到右数,第四小组的频率/组距的值为0.03,频率为0.03×10=0.3. ③79.5分以上的学生共有50×(0.03+0.01)×10=20人.④49.5~59.5与89.5~99.5段的人数相等,69.5~79.5段的人数比79.5~89.5的人数多,所以中位数在69.5~79.5段,即在第三小组.【答案】 ①③④14.已知总体的各个体的值由小到大依次为2,3,3,7,a ,b,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是________. 【导学号:90200063】【解析】 ∵总体的个体数是10,且中位数是10.5, ∴a +b2=10.5,即a +b =21. ∴总体的平均数是10.要使总体的方差最小,只要(a -10)2+(b -10)2最小, ∵(a -10)2+(b -10)2=(a -10)2+(11-a )2=2a 2-42a +221, ∴当a =422×2=10.5时,(a -10)2+(b -10)2取得最小值,此时b =21-a =21-10.5=10.5.【答案】 10.5,10.5二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数管理技术开发营销生产共计老年40404080200中年80120160240600青年40160280720 1 200小计160320480 1 040 2 000(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?(3)若要抽20人调查对北京冬奥会筹备情况的了解,则应怎样抽样?【解】(1)用分层抽样,并按老年4人,中年12人,青年24人抽取;(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取;(3)用系统抽样.对全部2 000人随机编号,号码从0001~2000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.16.(本小题满分14分)为了了解小学生的体能情况,抽取了某小学同年级部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图6),已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.图6(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】 (1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5,所以x =50.即参加这次测试的学生有50人.(3)达标率为(0.3+0.4+0.2)×100%=90%,所以估计该年级学生跳绳测试的达标率为90%.17.(本小题满分14分)农科院的专家为了了解新培育的甲、乙两种麦苗的长势情况,从甲、乙两种麦苗的试验田中各抽取6株麦苗测量麦苗的株高,数据如下:(单位:cm)甲:9,10,11,12,10,20; 乙:8,14,13,10,12,21.(1)在下面给出的方框内绘出所抽取的甲、乙两种麦苗株高的茎叶图;甲 株高 乙(2)分别计算所抽取的甲、乙两种麦苗株高的平均数与方差,并由此判断甲、乙两种麦苗的长势情况.【解】 (1)茎叶图如图所示:(2)x 甲=9+10+11+12+10+206=12,x 乙=8+14+13+10+12+216=13,s 2甲=16×[(9-12)2+(10-12)2+(11-12)2+(12-12)2+(10-12)2+(20-12)2]≈413,s 2乙=16×[(8-13)2+(14-13)2+(13-13)2+(10-13)2+(12-13)2+(21-13)2]≈503.因为x 甲<x 乙,所以乙种麦苗平均株高较高,又因为s 2甲<s 2乙,所以甲种麦苗长的较为整齐.18.(本小题满分16分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图8(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).图8(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?【解】 (1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5,∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25,所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中用分层抽样方法抽出100人,则月收入在[2 500,3 000)的这=25人.段应抽取100×2 50010 00019.(本小题满分16分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频率如下:[107,109)3株;[109,111)9株;[111,113)13株;[113,115)16株;[115,117)26株;[117,119)20株;[119,121)7株;[121,123)4株;[123,125]2株.(1)列出频率分布表;(2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几?【解】(1)画出频率分布表如下:分组频数频率累积频率[107,109)30.030.03[109,111)90.090.12[111,113)130.130.25[113,115)160.160.41[115,117)260.260.67[117,119)200.200.87[119,121)70.070.94[121,123)40.040.98[123,125]20.02 1.00合计100 1.00(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.20.(本小题满分16分)(2014·全国卷Ⅱ)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表: 【导学号:90200064】(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小乘法估计公式分别为: b ^=∑ni =1 (t i -t -)(y i -y -)∑ni =1 (t i-t -)2,a ^=y --b ^t -. 【解】 (1)由所给数据计算得t -=17(1+2+3+4+5+6+7)=4, y -=17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∑7i =1(t i -t -)2=9+4+1+0+1+4+9=28, ∑7i =1(t i -t -)(y i -y -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b ^=∑7i =1 (t i -t -)(y i -y -)∑7i =1(t i -t -)2=1428=0.5, a ^=y --b ^t -=4.3-0.5×4=2.3, 所求回归方程为y ^=0.5t +2.3.(2)由(1)知,b^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9,代入(1)中的回归方程,得y^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.。
苏教版高中数学必修三试卷(含参考答案).docx

红蓝黄白高中数学学习材料唐玲出品立发中学高二年级数学试卷(含参考答案)(试卷满分:160分;考试时间:2小时)第I卷(选择题,共50分)一、选择题:本大题共有10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.(B) 1.如图,将一个长与宽不等的长方形水平放置,长方形对角线将其分成四个区域,在四个区域内涂上红、蓝、黄、白四种颜色,并在中间装个指针,使其可以自由转动,对于指针停留的可能性, 下列说法正确的是A.一样大B.蓝白区域大C.红黄区域大D.由指针转动圈数确定(D) 2.下列说法正确的是A.某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品B.气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余10﹪的地方不会下雨C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5.(C) 3.同时投掷大小不同的两颗骰子,所得点数之和是5的概率是A.14B.16C.19D.112(C) 4.如图是一个边长为4的正方形及扇形(见阴影部分),若随机向正方形内丢一粒豆子,则豆子落入扇形的概率是A.16πB.8πC.4πD.π(B) 5.已知x、y之间的一组数据如下:x0 1 2 3y8 2 6 4 则线性回归方程ˆy bx a=+所表示的直线必经过点A.(0,0)B.(1.5,5)C.(4,1.5)D.(2,2)(D) 6.将数字1、2、3填入标号为1、2、3的三个方格里,每格填上一个数字,则方格的标号与所填的数字有相同的概率是A.61B.31C.21D.32(B) 7.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥(C) 8.在5件产品中,有3件一等品,2件二等品. 从中任取2件,那么以710为概率的事件是A.都不是一等品B.恰有一件一等品C.至少有一件二等品D.至少有一件一等品(A)9. 正四面体的4个面上分别写着1、2、3、4,将3个这样均匀的正四面体同时投掷于桌面上,与桌面接触的3个面上的3个数的乘积能被4整除的概率是A.1611B.1613C.6413D.6441(D) 10. 下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是游戏1游戏2游戏33个黑球和一个白球 一个黑球和一个白球 2个黑球和2个白球 取1个球,再取1个球 取1个球取1个球,再取1个球 取出的两个球同色→甲胜取出的球是黑球→甲胜取出的两个球同色→甲胜 取出的两个球不同色→乙胜 取出的球是白球→乙胜取出的两个球不同色→乙胜A .游戏1和游戏3B .游戏1C .游戏2D .游戏3第II 卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分.将答案填在题中的横线上. 11.总数为10万的彩票,中奖率为11000,买1000张彩票是否一定中奖?____否____.(填“是”或“否”) 12.某公共汽车站,每隔15分钟有一辆车出发,并且发出前在车站停靠3分钟,则乘客到站候车时间大于10分钟的概率为____215____.(结果用分数表示)13.在平面直角坐标系中,横坐标与纵坐标都在集合A ={0,1,2,3,4,5}内取值的点中任取一个点,此点正好在直线x y =上的概率为____16____.(结果用分数表示)14.过正三角形ABC 的顶点B 任作一条射线BT ,交AC 于T ,则CT ≤12BC 的概率为___12_____.15. 某射手射击一次,命中环数及其概率如下表:命中环数 10环 9环 8环 7环 7环以下概率0.150.260.210.200.18则该射手射击一次,至少命中7环的概率为___0.82_____.16. 某徒工加工外形完全一样的甲、乙两种零件. 他加工的5个甲种零件中有2个次品,2个乙种零件中有1个次品,现从这7个零件中随机抽取2个,则能抽到甲种零件的次品的概率为___1121____.(结果用分数表示)三、解答题:本大题共5小题,每小题16分,共80分.解答应写出文字说明、证明过程或演算步骤.17.一个口袋内装有形状、大小都相同的2个白球和3个黑球.(1)从中一次随机摸出两个球,求两球恰好颜色不同的概率;(2)从中随机摸出一个球,不放回后再随机摸出一个球,求两球同时是黑球的概率; (3)从中随机摸出一个球,放回后再随机摸出一个球,求两球恰好颜色不同的概率. 解:(1)记“一次摸出两个球,两球颜色恰好颜色不同”为事件A ,摸出两个球的基本事件共有10种,其中两球为一白一黑的事件有6种.…………3分 6()0.610P A ∴==.答:从中一次摸出两个球,求两球恰好颜色不同的概率是0.6. ……………5分 (2)记“从中摸出一个球,不放回后再摸出一个球,两球同时是黑球”为事件B ,不放回地摸出两个球的基本事件共有20种,其中两球为黑球的事件有6种. ……8分 63()2010P B ∴==. 答:从中摸出一个球,不放回后再摸出一个球,求两球为黑球的概率是310. ……10分 (3)记“从中摸出一个球,放回后再摸出一个球,两球颜色恰好颜色不同”为事件C ,有放回地摸出两个球的基本事件共有25种,其中两球为一白一黑的事件有12种.………………13分 12()0.4825P C ∴==.答:从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率是0.48.18.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜(24小时)内到达的时间是等可能的,如果甲船停泊的时间是1小时,乙船停泊的时间是2小时,求它们中任何一艘都不需要等候码头空出的概率.10131152(提示:可设甲、乙两船到达该码头的时刻分别为,x y ) 19. 摆地摊的某摊(赌)主拿了8个白的,8个黑的围棋子放在一个口袋里,并规定凡愿意摸彩者每人交一元钱作手续费,然后一次从口袋摸出5个棋子,中彩情况如下:摸棋子 5个白 4个白 3个白其它彩金20元2元纪念品(价值5角)同乐一次(无任何奖品)(1)某人交一元钱作手续费,然后一次从口袋摸出5个棋子,求获得彩金20元的概率; (2)某人交一元钱作手续费,然后一次从口袋摸出5个棋子,求无任何奖品的概率;(3)按摸彩1000次统计,赌主可望净赚约多少钱?解:(1)获得彩金20元的概率585161;78C C =同理:获得彩金2元的概率41885165;39C C C ⋅=获得彩金5角的概率328851614;39C C C =(2)无任何奖品的概率为:1514117839392---= (3)按摸彩1000次统计,赌主可望净赚:151410001000201000210000.5308(783939-⨯⨯-⨯⨯-⨯⨯≈元) 答:略.20. F 表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆy= bx a +; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5) 解: (1)如下图:01234567012345产量能耗(2)4118ii x==∑, 4114i i y ==∑42186ii x==∑,413 2.5+43+54+6 4.5=66.5i i i x y ==⨯⨯⨯⨯∑.代入公式1112211()(),()n n ni i i i i i i n ni i i i n x y x y b a y bx n x x =====-==--∑∑∑∑∑得:266.54 4.5 3.566.5630.7864 4.58681b -⨯⨯-===-⨯- 3.50.7 4.50.35a y bx =-=-⨯=故线性回归方程为y =0.7x +0.35(3) 根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7⨯100+0.35=70.35故耗能减少了90-70.35=19.65(吨)21. 设有一个4⨯4网格,其各个最小的正方形的边长为4cm ,现用直径为2cm 的硬币投掷到此网格上,设每次投掷都落在最大的正方形内或与最大的正方形有公共点. (1)求硬币落下后完全在最大的正方形内的概率; (2)求硬币落下后与网格线没有公共点的概率. 解:考虑圆心的运动情况.(1)因为每次投掷都落在最大的正方形内或与最大的正方形有公共点,所以圆心的最大限度为原正方形向外再扩张1个小圆半径的区域,且四角为四分之圆弧;此时总面积为:16×16+4×16×1+π×12=320+π;完全落在最大的正方形内时,圆心的位置在14为边长的正方形内,其面积为:14×14=196;故:硬币落下后完全在最大的正方形内的概率为:196320Pπ=+;(2)每个小正方形内与网格线没有公共点的部分是正中心的边长为2的正方形的内部,一共有16个小正方形,总面积有:16×22=64;故:硬币落下后与网格线没有公共点的概率为:64320Pπ=+.答:硬币落下后完全在最大的正方形内的概率为:196320Pπ=+;硬币落下后与网格线没有公共点的概率为:64320Pπ=+.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红蓝黄白高中数学学习材料(灿若寒星精心整理制作)立发中学高二年级数学试卷(含参考答案)(试卷满分:160分;考试时间:2小时)第I卷(选择题,共50分)一、选择题:本大题共有10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.(B) 1.如图,将一个长与宽不等的长方形水平放置,长方形对角线将其分成四个区域,在四个区域内涂上红、蓝、黄、白四种颜色,并在中间装个指针,使其可以自由转动,对于指针停留的可能性, 下列说法正确的是A.一样大B.蓝白区域大C.红黄区域大D.由指针转动圈数确定(D) 2.下列说法正确的是A.某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品B.气象部门预报明天下雨的概率是90﹪,说明明天该地区90﹪的地方要下雨,其余10﹪的地方不会下雨C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈D.掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5.(C) 3.同时投掷大小不同的两颗骰子,所得点数之和是5的概率是A.14B.16C.19D.112(C) 4.如图是一个边长为4的正方形及扇形(见阴影部分),若随机向正方形内丢一粒豆子,则豆子落入扇形的概率是A.16πB.8πC.4πD.π(B) 5.已知x、y之间的一组数据如下:x0 1 2 3y8 2 6 4 则线性回归方程ˆy bx a=+所表示的直线必经过点A.(0,0)B.(1.5,5)C.(4,1.5)D.(2,2)(D) 6.将数字1、2、3填入标号为1、2、3的三个方格里,每格填上一个数字,则方格的标号与所填的数字有相同的概率是A.61B.31C.21D.32(B) 7.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥(C) 8.在5件产品中,有3件一等品,2件二等品. 从中任取2件,那么以710为概率的事件是A.都不是一等品B.恰有一件一等品C.至少有一件二等品D.至少有一件一等品(A)9. 正四面体的4个面上分别写着1、2、3、4,将3个这样均匀的正四面体同时投掷于桌面上,与桌面接触的3个面上的3个数的乘积能被4整除的概率是A.1611B.1613C.6413D.6441(D) 10. 下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是游戏1游戏2游戏33个黑球和一个白球 一个黑球和一个白球 2个黑球和2个白球 取1个球,再取1个球 取1个球取1个球,再取1个球 取出的两个球同色→甲胜取出的球是黑球→甲胜取出的两个球同色→甲胜 取出的两个球不同色→乙胜 取出的球是白球→乙胜取出的两个球不同色→乙胜A .游戏1和游戏3B .游戏1C .游戏2D .游戏3第II 卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分.将答案填在题中的横线上. 11.总数为10万的彩票,中奖率为11000,买1000张彩票是否一定中奖?____否____.(填“是”或“否”) 12.某公共汽车站,每隔15分钟有一辆车出发,并且发出前在车站停靠3分钟,则乘客到站候车时间大于10分钟的概率为____215____.(结果用分数表示)13.在平面直角坐标系中,横坐标与纵坐标都在集合A ={0,1,2,3,4,5}内取值的点中任取一个点,此点正好在直线x y =上的概率为____16____.(结果用分数表示)14.过正三角形ABC 的顶点B 任作一条射线BT ,交AC 于T ,则CT ≤12BC 的概率为___12_____.15. 某射手射击一次,命中环数及其概率如下表:命中环数 10环 9环 8环 7环 7环以下概率0.150.260.210.200.18则该射手射击一次,至少命中7环的概率为___0.82_____.16. 某徒工加工外形完全一样的甲、乙两种零件. 他加工的5个甲种零件中有2个次品,2个乙种零件中有1个次品,现从这7个零件中随机抽取2个,则能抽到甲种零件的次品的概率为___1121____.(结果用分数表示)三、解答题:本大题共5小题,每小题16分,共80分.解答应写出文字说明、证明过程或演算步骤.17.一个口袋内装有形状、大小都相同的2个白球和3个黑球.(1)从中一次随机摸出两个球,求两球恰好颜色不同的概率;(2)从中随机摸出一个球,不放回后再随机摸出一个球,求两球同时是黑球的概率; (3)从中随机摸出一个球,放回后再随机摸出一个球,求两球恰好颜色不同的概率. 解:(1)记“一次摸出两个球,两球颜色恰好颜色不同”为事件A ,摸出两个球的基本事件共有10种,其中两球为一白一黑的事件有6种.…………3分 6()0.610P A ∴==.答:从中一次摸出两个球,求两球恰好颜色不同的概率是0.6. ……………5分 (2)记“从中摸出一个球,不放回后再摸出一个球,两球同时是黑球”为事件B ,不放回地摸出两个球的基本事件共有20种,其中两球为黑球的事件有6种. ……8分 63()2010P B ∴==. 答:从中摸出一个球,不放回后再摸出一个球,求两球为黑球的概率是310. ……10分 (3)记“从中摸出一个球,放回后再摸出一个球,两球颜色恰好颜色不同”为事件C ,有放回地摸出两个球的基本事件共有25种,其中两球为一白一黑的事件有12种.………………13分 12()0.4825P C ∴==.答:从中摸出一个球,放回后再摸出一个球,求两球恰好颜色不同的概率是0.48.18.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜(24小时)内到达的时间是等可能的,如果甲船停泊的时间是1小时,乙船停泊的时间是2小时,求它们中任何一艘都不需要等候码头空出的概率.10131152(提示:可设甲、乙两船到达该码头的时刻分别为,x y ) 19. 摆地摊的某摊(赌)主拿了8个白的,8个黑的围棋子放在一个口袋里,并规定凡愿意摸彩者每人交一元钱作手续费,然后一次从口袋摸出5个棋子,中彩情况如下:摸棋子 5个白 4个白 3个白其它彩金20元2元纪念品(价值5角)同乐一次(无任何奖品)(1)某人交一元钱作手续费,然后一次从口袋摸出5个棋子,求获得彩金20元的概率; (2)某人交一元钱作手续费,然后一次从口袋摸出5个棋子,求无任何奖品的概率;(3)按摸彩1000次统计,赌主可望净赚约多少钱?解:(1)获得彩金20元的概率585161;78C C =同理:获得彩金2元的概率41885165;39C C C ⋅=获得彩金5角的概率328851614;39C C C =(2)无任何奖品的概率为:1514117839392---= (3)按摸彩1000次统计,赌主可望净赚:151410001000201000210000.5308(783939-⨯⨯-⨯⨯-⨯⨯≈元) 答:略.20. F 表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:x3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆy= bx a +; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3⨯2.5+4⨯3+5⨯4+6⨯4.5=66.5) 解: (1)如下图:01234567012345产量能耗(2)4118ii x==∑, 4114i i y ==∑42186ii x==∑,413 2.5+43+54+6 4.5=66.5i i i x y ==⨯⨯⨯⨯∑.代入公式1112211()(),()n n ni i i i i i i n ni i i i n x y x y b a y bx n x x =====-==--∑∑∑∑∑得:266.54 4.5 3.566.5630.7864 4.58681b -⨯⨯-===-⨯- 3.50.7 4.50.35a y bx =-=-⨯=故线性回归方程为y =0.7x +0.35(3) 根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7⨯100+0.35=70.35故耗能减少了90-70.35=19.65(吨)21. 设有一个4⨯4网格,其各个最小的正方形的边长为4cm ,现用直径为2cm 的硬币投掷到此网格上,设每次投掷都落在最大的正方形内或与最大的正方形有公共点. (1)求硬币落下后完全在最大的正方形内的概率; (2)求硬币落下后与网格线没有公共点的概率. 解:考虑圆心的运动情况.(1)因为每次投掷都落在最大的正方形内或与最大的正方形有公共点,所以圆心的最大限度为原正方形向外再扩张1个小圆半径的区域,且四角为四分之圆弧;此时总面积为:16×16+4×16×1+π×12=320+π;完全落在最大的正方形内时,圆心的位置在14为边长的正方形内,其面积为:14×14=196;故:硬币落下后完全在最大的正方形内的概率为:196320Pπ=+;(2)每个小正方形内与网格线没有公共点的部分是正中心的边长为2的正方形的内部,一共有16个小正方形,总面积有:16×22=64;故:硬币落下后与网格线没有公共点的概率为:64320Pπ=+.答:硬币落下后完全在最大的正方形内的概率为:196320Pπ=+;硬币落下后与网格线没有公共点的概率为:64320Pπ=+.。