生物芯片技术的研究现状及发展前景

生物芯片技术的研究现状及发展前景
生物芯片技术的研究现状及发展前景

学士学位论文(设计) 文献综述

题目

生物芯片技术的研究现状及发展前景Biological Chip Technology The Present Research Situation and Development Prospect

姓名学号

院系专业生命科学院生物工程指导教师职称

中国·武汉

二○一二年三月

目录

摘要................................................................................................................................I 关键词 ..............................................................................................................................I Abstract ............................................................................................................................II Key words ........................................................................................................................II 1 生物芯片技术的概念及类型 (1)

1.1生物芯片技术的概念 (1)

1.2生物芯片技术的分类 (1)

2生物新品技术的发展状况 (2)

2.1生物芯片技术国外状况 (2)

2.2生物芯片技术国内状况 (3)

3生物芯片技术的问题及发展方向 (3)

3.1生物芯片技术存在的问题 (3)

3.2生物芯片技术的发展方向 (4)

4结语 (4)

参考文献 (6)

致谢 (7)

生物芯片技术的研究现状及发展前景

摘要

简单介绍生物芯片技术及分类,了解生物芯片技术的国内外的发展状况,指出生物芯片技术行业存在的问题和未来的发展方向。

关键词

生物芯片技术;研究现状;用途分类;存在问题;未来方向

Biological chip technology the present research situation and

development prospect

Abstract

Simple introduction biological chip technology and the classification, understand the biological chip technology at home and abroad, the development situation of biochip technology industry points out the existing problems and future development direction.

Key words

Biochip technique;SituationofStudy;Natural grouping object classification;Problems;Future Direction

1 生物芯片技术的概念及类型

1.1生物芯片技术的概念

生物芯片,又称DNA芯片或基因芯片,它们是DNA杂交探针技术与半导体工业技术相结合的结晶。生物芯片(biochip或bioarray)是根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对DNA、RNA、多肽、蛋白质以及其他生物成分的高通量快速检测。狭义的生物芯片概念是指通过不同方法将生物分子(寡核苷酸、cDNA、genomic DNA、多肽、抗体、抗原等)固着于硅片、玻璃片(珠)、塑料片(珠)、凝胶、尼龙膜等固相递质上形成的生物分子点阵。因此生物芯片技术又称微陈列(microarray)技术,含有大量生物信息的固相基质称为微阵列,又称生物芯片。生物芯片在此类芯片的基础上又发展出微流体芯片(microfluidics chip),亦称微电子芯片(microelectronic chip),也就是缩微实验室芯片该技术是指将大量探针分子固定于支持物上后与带荧光标记的DNA样品分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息。。广义的生物芯片指一切采用生物技术制备或应用于生物技术的微处理器。包括用于研制生物计算机的生物芯片,将健康细胞与电子集成电路结合起来的仿生芯片,缩微化的实验室即芯片实验室以及利用生物分子相互间的特异识别作用进行生物信号处理的基因芯片、蛋白质芯片、细胞芯片和组织芯片等。狭义的生物芯片就是微阵列,包括基因芯片、蛋白质芯片、细胞芯片和组织芯片等。

1.2生物芯片技术的分类

根据作用方式可分为:主动式芯片、被动式芯片;根据用途可分为:生物电子芯片、生物分析芯片;根据固定在载体上的物质成分可分为:基因芯片(gene chip)、蛋白质芯片(protein chip或protein microarray)、细胞芯片(cell chip)、组织芯片(tissue chip)、芯片实验室(Lab on chip)。

根据作用方式分类:

(1)主动式芯片:是指把生物实验中的样本处理纯化、反应标记及检测等多个实验步骤集成,通过一步反应就可主动完成。其特点是快速、操作简单,因此有人又将它称为功能生物芯片。主要包括微流体芯片(microftuidic chip)和缩微芯片实验室(labchip,也叫“芯片实验室”,是生物芯片技术的高境界)。

(2)被动式芯片:即各种微阵列芯片,是指把生物实验中的多个实验集成,但操作步骤不变。其特点是高度的并行性,目前的大部分芯片属于此类。由于这类芯片主要是获得大量的生物大分子信息,最终通过生物信息学进行数据挖掘分析,因此这类芯片又称为信息生物芯片。包括基因芯片、蛋白芯片、细胞芯片和组织芯片。

根据用途分类:

(1)生物电子芯片:用于生物计算机等生物电子产品的制造。

(2)生物分析芯片:用于各种生物大分子、细胞、组织的操作以及生物化学反应的检测。前一类目前在技术和应用上很不成熟,一般情况下所指的生物芯片主要为生物分析芯片。根据固定在载体上的物质成分分类:

(1)基因芯片(gene chip):又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray),是将cDNA或寡核苷酸按微阵列方式固定在微型载体上制成。

(2)蛋白质芯片(protein chip或protein microarray):是将蛋白质或抗原等一些非核酸生命物质按微阵列方式固定在微型载体上获得。

(3)细胞芯片(cell chip):是将细胞按照特定的方式固定在载体上,用来检测细胞间相互影响或相互作用。

(4)组织芯片(tissue chip):是将组织切片等按照特定的方式固定在载体上,用来进

行免疫组织化学等组织内成分差异研究。

(5)芯片实验室(Lab on chip):用于生命物质的分离、检测的微型化芯片。现在,已经有不少的研究人员试图将整个生化检测分析过程缩微到芯片上,形成所谓的“芯片实验室”(Lab on chip)。芯片实验室是生物芯片技术发展的最终目标。它将样品的制备、生化反应到检测分析的整个过程集约化形成微型分析系统。由加热器、微泵、微阀、微流量控制器、微电极、电子化学和电子发光探测器等组成的芯片实验室已经问世,并出现了将生化反应、样品制备、检测和分析等部分集成的芯片)。“芯片实验室”可以完成诸如样品制备、试剂输送、生化反应、结果检测、信息处理和传递等一系列复杂工作。这些微型集成化分析系统携带方便,可用于紧急场合、野外操作甚至放在航天器上。例如可以将样品的制备和PCR扩增反应同时完成于一块小小的芯片之上。再如Gene Logic公司设计制造的生物芯片可以从待检样品中分离出DNA或RNA,并对其进行荧光标记,然后当样品流过固定于栅栏状微通道内的寡核苷酸探针时便可捕获与之互补的靶核酸序列。应用其自己开发的检测设备即可实现对杂交结果的检测与分析。这种芯片由于寡核苷酸探针具有较大的吸附表面积,所以可以灵敏地检测到稀有基因的变化。同时,由于该芯片设计的微通道具有浓缩和富集作用,所以可以加速杂交反应,缩短测试时间,从而降低了测试成本。

2生物新品技术的发展状况

2.1生物芯片技术国外状况

生物芯片的设想最早起始于80年代中期,90年代美国Affymetrix公司实现了DNA探针分子的高密度集成,即将特定序列的寡核苷酸片段以很高的密度有序地固定在一块玻璃、硅等固体片基上,作为核酸信息的载体,通过与样品的杂交反应获取其核酸序列信息。生物芯片由于采用了微电子学的并行处理和高密度集成的概念,因此具有高效、高信息量等突出优点。

1995年,斯坦福大学布朗(P.Brown)实验室发明了第一块以玻璃为载体的基因微矩阵芯片。美国总统克林顿在1998年1月对全国的演讲中指出“未来十二年, 基因芯片将为我们一生中的疾病预防指点迷津”。1998年6月27日华盛顿邮报在报道Motorola进入基因芯片领域时, 认为这将造福于子孙后代。美国“Fortune”杂志在1997年3月重点介绍了基因芯片技术, 论述了未来产业化的前景,该文预测“在2005年仅仅在美国用于基因组研究的芯片销售额将达约50亿美元。2001年,全世界生物芯片市场已达170亿美元,用生物芯片进行药理遗传学和药理基因组学研究所涉及的世界药物市场每年约1800亿美元。2000-2004年的五年内,在应用生物芯片的市场销售达到200亿美元左右。2005年,仅美国用于基因组研究的芯片销售额即达50亿美元。2010年有可能上升为400亿美元”。这还不包括用于疾病预防及诊治以及其它领域中的基因芯片,这部分预计比基因组研究用量还要大上百倍。

2004年3月,英国著名咨询公司弗若斯特·沙利文(Frost & Sulivan)公司出版了关于全球芯片市场的分析报告《世界DNA芯片市场的战略分析》。报告认为,全球DNA生物芯片市场每年平均增长6.7%,2003年的市场总值是5.96亿美元,2010年将达到93.7亿美元。纳侬市场(NanoMarkets)调研公司预测,以纳米器械作为解决方案的医疗技术将在2009年达到13亿美元,并在2012年增加到250亿美元,而其中以芯片实验室最具发展潜力,市场增长率最快。

由于生物芯片的重大意义和巨大的商业潜力, 北美和欧洲许多国家的政府和公司投入大量人力物力来推动此项研究工作。如美国的国立卫生研究院、商业部高技术署、国防部、司法部和一些大公司以及风险投资者投入了数亿美元的巨资。基因芯片以及相关产品产业有可能成为下一世纪最大的高技术产业之一。

2.2生物芯片技术国内状况

中国生物芯片研究始于1997~1998年间,在此之前生物芯片技术在中国还是空白。尽管起步较晚,但是中国生物芯片技术和产业发展迅速,实现了从无到有的阶段性突破,并逐步发展壮大。截止到2006年,中国生物芯片的产值已达到2亿多元,生物芯片研究已经从实验室进入应用阶段。据有关资料表明,在市场销售方面,2004年国内市场分额为2亿元,约占全球市场的2%左右。其中主要由863计划支持的几家国内企业出售的生物芯片以及提供的相关服务累计销售收入约1.1亿元人民币,所有代理国外产品及服务总计为9000万。

“十五”期间,国家“863”计划重点组织实施了“功能基因组及生物芯片研究”重大专项,对生物芯片的系统研发给与了倾斜性支持。从2000年开始,国家还陆续投入大笔资金,建立了北京国家芯片工程中心、上海国家芯片工程中心、西安微检验工程中心、天津生物芯片公司、南京生物芯片重点实验室共五个生物芯片研发基地,为加强中国在这一新兴高科技领域的自

主创新和产业化能力奠定了坚实的基础。目前,生物芯片产业在中国已初见端倪并初具规模,形成了以北京、上海两个国家工程研究中心为龙头,天津、西安、南京、深圳、哈尔滨等地近50家生物芯片研发机构和30多家生物芯片企业蓬勃发展的局面。到2006年为止,中国已有500余种生物芯片及相关产品问世,从2002到2005年累计销售额近2.5亿元,10余个芯片或相关产品获得了国家新药证书、医疗器械证书或其他认证,并已实现产业化生产。例如深圳益生堂研制的丙型肝炎病毒分片段抗体检测试剂(蛋白质片)、北京博奥公司的微阵列芯片扫描仪等六种芯片及设备被国家食品药品监督管理局(SFDAO)已批准注册,获得新药证书或医疗器械证书。另外,被国家食品药品监督管理局受理的有10 个。中国是世界上批准生物芯片进入临床最早的国家,比美国早近3 年。

为了加强生物芯片的研发与产业化,缩短与国际上的差距,中国分别在北京和上海建立了两个国家级的研究中心。中心现已初步形成了生物芯片技术产业化式的企业发展格局,通过了IS09001:2000版质量管理体系认证,成立基因芯片部、蛋白抗体部、产品开发部、生物信息部和以组织芯片为特色的上海芯超生物科技有限公司、以基因分型为特色的上海南方基因科技有限公司、以市场营销为主的上海沪晶生物科技有限公司以及以专业诊断产品研发和生产的上海华冠生物芯片有限公司、江苏海晶诊断科技有限公司、中美合资上海英伯肯医学生物技术有限公司等多个为产业化依托的具有良好的自我循环能力的专业子公司。

在激烈的国际竞争中,中国生物芯片产业不仅实现了跨越式的发展,而且已经走出国门,成为世界生物芯片领域一股强大的力量。例如中国科学家自主研制的激光共焦扫描仪向欧美、韩国等地区的出口订单已经达到百台级规模,实现了中国原创性生命科学仪器的首次出口,未来三年将保持更高速度的增长,这标志着中国生物芯片企业正式迈入国际领先者行列,也使生物芯片北京国家工程研究中心进入国际市场的产品达到了5 种。

3生物芯片技术的问题及发展方向

3.1生物芯片技术存在的问题

尽管生物芯片技术目前得到了很大的支持与发展,但是在实际的研究、操作、生产过程中仍然存在着问题:

生物芯片的重复利用:生物芯片技术是现代的前沿科学,针对性强。

生物芯片的多重用途:如果将生物芯片更多更广泛的应用到实践生活,帮助人类切实的解决问题。

统一的行业标准:目前国际上没有一个统一、规范的行业标准体系。

降低检测生物芯片的仪器的价格:生物芯片技术是一项高端的科学技术,目前多数在实验室研发,投入到生产中得为少数,价格昂贵。

对于中国生物芯片工业来讲。关键问题有3个:

(1)制作技术:芯片制作技术原理并不复杂,就制作涉及的每项技术而言,中国已具有实际能力,中国发展生物芯片的难点是如何实现各种相关技术的整合集成。

(2)基因、蛋白质等前沿研究:除去制作技术外,关键就是芯片上放置的基因和蛋白质等物质了。如果制作用于检测核苷酸多态性以诊断某种遗传病,或者用于基因测序,那么芯片探针上一般放置的是有8个碱基的寡核苷酸片段,基因芯片和蛋白质芯片则相应放置的是基因标志性片段EST(表达序列标签)、全长基因或蛋白质。因此制作生物芯片首先要解决的是DNA探针、基因以及蛋白质的尽可能全面和快速地收集问题。

(3)专利和产权:以生物芯片技术为核心的各相关产业正在全球崛起,一个不容忽视的问题就是专利和产权的问题。专家指出世界工业发达国家已开始有计划、大投入、争先恐后地对该领域知识产权进行跑马圈地式的保护。中国国家工程研究中心主任程京教授说:“就生物芯片领域而言,目前全世界都在‘跑马圈地’,专利和自主产权比什么都重要。我们不能再像计算机芯片那样受制于人。”现在,科学家、企业家和金融界已经联起手来,组成了结构上更为合理、运作上更具可操作性的商业运行构架,通过全球定位布局,建立产权结构清晰的公司.为生物芯片在中国的产业化奠定良好基础。

3.2生物芯片技术的发展方向

技术进展与市场动态,生物芯片是一个新兴的科学领域,具有良好的发展前景。现在生物芯片主要向以下几个方向发展。

一是产业化。对于现在技术已经相对成熟的生物芯片,如基因芯片,产业化是发挥生物芯片作用的最好途径。现在很多公司已经推出各种不同种类的基因芯片。而且相关其产业,如点样设备,检测设备也有重要的价值。现在成本是束缚产业化的一个关键的因素。

二是微型化。由于微加工技术,生物芯片的尺寸范围已经从微米尺寸向纳米尺寸发展。例如在硅片上刻制的纳米尺寸的微结构阵列,可以完成生物大分子如DNA 的筛选。但是,由于细胞等生物样品本身尺寸的限制,生物芯片的微型化不是无限的。

三是集成化。对生物芯片研究人员来说最终的研究目标是对分析的全过程实现全集成,即制造微型全分析系统或微芯片实验室,在芯片上实现生化检测的全部功能。集成方面,目前已有了一些进展,并且得到了一批初步成果。

四是信息化。生物芯片可以检测到的信息量是传统检测技术无可比拟的,特别是大规模阵列芯片一次可以采集大量数据。如何从如此众多错综复杂的数据中得到真正有用的信息是一个相当烦琐的T作。生物信息技术的发展是解决这一问题的唯一途径。

生物芯片技术是现代微加工技术和生物科技的结晶。它涉及生物、化学、微加工、光学、微电子和信息技术等前沿学科,是一个综合的研究领域。上个世纪90年代以来,生物芯片的研究已有了巨大的发展,越来越多的研究机构和企业投入了这一领域。但是,这毕竟是一门新的学科,总体来说还是处于起步阶段。很多相关技术仍然制约着生物芯片技术的快速发展。例如微加工技术,如何加工更复杂、更精密而且成本低的芯片是芯片技术的一个瓶颈。微电子技术和检测技术也在很大程度上限制了芯片的集成化。但是,随着各方面的不断投入和相关技术的发展,相信在不远的将来,各具特色的生物芯片将逐渐占据未来的生命科学仪器市场,成为未来生物医学检测的主要工具。

4结语

虽然生物芯片技术是一项新兴的技术,但是由于其巨大的应用前景,它已经成为各国工业界和学术界竞相研究的热点。随着生物芯片制作工艺和检测分析手段的不断进步,可以预

期在不远的将来,生物芯片技术将渗透到生命科学研究、疾病诊断与治疗、新药开发、国防、司法鉴定、食品卫生检验、航空航天等各个领域中去,成为科学家探索未知世界奥秘的有力武器。

参考文献

[1] 张文毓. [ J ] 生物芯片产业发展现状及展望. 传感器世界,2007(10):1-2.

[2] 武汉中美科技有限公司生物[J].芯片的主要种类2006(8):3-4.

[3] 华强电子网[ J ]生物芯片的应用2012(3):1-2.

[4] 药物分析网[ J ].生物芯片的发展历史2008(5):3-4.

[5] 杨军等. [ J ].生物芯片技术的现状和发展前景2007(11).

[6] 华晔等.[ J ]生物芯片技术的发展及应用.

[7] 药物分析网[ J ]. 生物芯片技术毒理研究.

[8]芯片实验室[ J ]. 新闻2011-05-19.

[9]百度百科[ J ].生物芯片技术2010-12-23.

[10]张宝等.探针的纯化与否对基因芯片重复利用的影响[ J ]生物芯片重复利用2002(3).

致谢

生物芯片研究进展分子生物学论文

生物芯片研究进展 摘要 生物芯片是切采用生物技术制备或应用于生物技术的微处理器是便携式生物化学分析器的核心技术。通过对微加工获得的微米结构作生物化学处理能使成千上万个与生命相关的信息集成在一块厘米见方的芯片上。生物芯片发展的最终目标是将从样品制备、化学反应到检测的整个生化分析过程集成化以获得所谓的微型全分析系统或称缩微芯片实验室。生物芯片技术的出现将会给生命科学、医学、化学、新药开发、生物武器战争、司法鉴定、食品和环境卫生监督等领域带来一场革命。本文主要阐述了生物芯片技术种类和应用方面的近期研究进展。 关键词 生物芯片,疾病诊断,研究运用,基因表达 基因芯片的种类 基因芯片产生的基础则是分子生物学、微电子技术、高分子化学合成技术、激光技术和计算机科学的发展及其有机结合。根据基因芯片制造过程中主要技术的区别,下面主要介绍四类基因芯片。 一、光引导原位合成技术生产寡聚核苷酸微阵列 开发并掌握这一技术的是Affymetrix公司,Affymetrix采用了照相平板印刷技术技术结合光引导原位寡聚核苷酸合成技术制作DNA芯片,生产过程同电子芯片的生产过程十分相似。采用这种技术生产的基因芯片可以达到1×106/cm2的微探针排列密度,能够在一片1厘米多见方的片基上排列几百万个寡聚核苷酸探针。 原位合成法主要为光引导聚合技术(Light-directed synthesis),它不仅可用于寡聚核苷酸的合成,也可用于合成寡肽分子。光引导聚合技术是照相平板印刷技术(photolithography)与传统的核酸、多肽固相合成技术相结合的产物。半导体技术中曾使用照相平板技术法在半导体硅片上制作微型电子线路。固相合成技术是当前多肽、核酸人工合成中普遍使用的方法,技术成熟且已实现自动化。二者的结合为合成高密度核酸探针及短肽列阵提供了一条快捷的途径。 Affymetrix公司已有诊断用基因芯片成品上市,根据用途可以分为三大类,分别为基因表达芯片、基因多态性分析芯片和疾病诊断芯片,基因表达分析芯片和基因多态性分析芯片主要用于研究机构和生物制药公司,可以用来寻找新基因、基因测序、疾病基因研究、基因制药研究、新药筛选等许多领域,Affymetrix公司主要生产通用寡聚核苷酸芯片;疾病诊断芯片则主要用于医学临床诊断,包括各种遗传病和肿瘤等,目前Affymetrix公司生产

生物芯片及应用简介

生物芯片及应用简介 简介 生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。由于基因芯片(Genechip)这一专有名词已经被业界的领头羊Affymetrix公司注册专利,因而其他厂家的同类产品通常称为DNA微阵列(DNA Microarray)。这类产品是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。 生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量

最新生物技术的发展和应用

生物技术地发展和应用 自2001年初,生物技术产业便显现出一片诱人地前景。人类基因组草图地即将完成,带动各生物技术地不断飚升。人们普遍认为这将导致医学与药物研究地繁荣,并会带来滚滚地财富。随着基因组测序地完成,许多科学家和投资者开始把目光投向生物技术向个学科地渗透,如今生物技术已经在芯片、医学等领域都取得丰硕地成果。下面对生物芯片、基因治疗及微生物地研究地基本问题作简单地介绍。 (一)生物芯片 20世纪90年代初开始实施地人类基因组计划取得了人们当初意料不到地巨大进展,而由此也诞生了一项类似于计算机芯片技术地新兴生物高技术———生物芯片。 生物芯片主要是指通过微加工和微电子技术在固体芯片表面构建微型生物化学分析系统,以实现对生命机体地组织、细胞、蛋白质、核酸、糖类以及其他生物组分进行准确、快速、大信息量地检测。目前常见地生物芯片分为三大类:即基因芯片、蛋白芯片、芯片实验室或称微流控芯片等。生物芯片主要特点是高通量、微型化和自动化。生物芯片上高度集成地成千上万密集排列地分子微阵列,能够在很短时间内分析大量地生物分子,使人们能够快速准确地获取样品中地生物信息,检测效率是传统检测手段地成百上千倍。使用基因芯片分析人类基因组,可找出癌症、

糖尿病由遗传基因缺陷引起疾病地致病地遗传基因。生物医学研究人员可以在数秒钟内鉴定出导致癌症地突变基因。借助一小滴测试液,医生们能很快检测病菌对人体地感染。利用基因芯片分析遗传基因,可以使糖尿病地确诊率达到50%以上。生物芯片在疾病检测诊断方面具有独特地优势,它可以在一张芯片上同时对多个病人进行多种疾病地检测。仅用极小量地样品,在极短时间内,向医务人员提供大量地疾病诊断信息,这些信息有助于医生在短时间内找到正确地治疗措施。对肿瘤、糖尿病、传染性疾病、遗传病等常见病和多发病地临床检验及健康人群检查,具有十分重要地应用价值。 (二)基因治疗 众里盼她千百度,如今,基因治疗已近走出实验室,进入实践阶段,如:癌症地基因治疗,肿瘤地基因治疗属于一种生物治疗手段,是一大类治疗策略地总称。根据治疗机理不同,目前至少可以分为以下几方面: (1)免疫基因治疗:指地是通过基因修饰地瘤苗或抗原呈递细胞体内回输,或者免疫基因地直接体内导入,激发或增强人体地抗肿瘤免疫功能,达到治疗肿瘤地目地,它也是一大类治疗地总称。治疗基因包括肿瘤相关抗原基因、细胞因子基因或者MHC基因等。

论文 生物芯片技术

生物芯片技术——生物化学分析论文 08应化2 江小乔温雪燕袁伟豪张若琦 2011-5-3

一、摘要: 生物芯片技术,被喻为21世纪生命科学的支撑技术,是便携式生化分析仪器的技术核心,是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting 等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。 二、关键词 生物芯片;检测;基因 三、正文 (一)、生物芯片的简介 生物芯片技术是一种高通量检测技术,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization, SBH)等,为"后基因组计划"时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。(1)它包括基因芯片、蛋白芯片及芯片实验室三大领域。 基因芯片(Genechip)又称DNA芯片(DNAChip)。它是在基因探针的基础上研制出的,所谓基因探针只是一段人工合成的碱基序列,在探针上连接一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。它将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强度及分布来进行分析。 蛋白质芯片与基因芯片的基本原理相同,但它利用的不是碱基配对而是抗体与抗原结合的特异性即免疫反应来检测。蛋白质芯片构建的简化模型为:选择一种固相载体能够牢固地结合蛋白质分子(抗原或抗体),这样形成蛋白质的微阵列,即蛋白质芯片。 芯片实验室为高度集成化的集样品制备、基因扩增、核酸标记及检测为一体

基因芯片技术基础知识(概念、制备、杂交、应用及发展方向)

生物科学正迅速地演变为一门信息科学。最明显的一个例子就是目前正在进行的HGP (human genome project),最终要搞清人类全部基因组的30亿左右碱基对的序列。除了人的遗传信息以外,还有其它生物尤其是模式生物(model organism)已经或正在被大规模测序,如大肠杆菌、啤酒酵母、秀丽隐杆线虫以及中国和日本科学家攻关的水稻基因组计划。但单纯知晓生物基因组序列一级结构还远远不够,还必须了解其中基因是怎样组织起来的,每个基因的功能是什么,又是怎样随发育调控和微环境因素的影响而在特定的时空域中展开其表达谱的,即我们正由结构基因组时代迈入功能基因组时代。随着这个功能基因组学问题的提出(后基因组时代,蛋白组学)[1],涌现出许多功能强大的研究方法和研究工具,最突出的就是细胞蛋白质二维凝胶电泳(2-D-gel)(及相应的质谱法测蛋白分子量)和生物芯片(Biochip)技术[2]。 一.什么是基因芯片 生物芯片,简单地说就是在一块指甲大小(1cm3)的有多聚赖氨酸包被的硅片上或其它固相支持物(如玻璃片、硅片、聚丙烯膜、硝酸纤维素膜、尼龙膜等,但需经特殊处理。作原位合成的支持物在聚合反应前要先使其表面衍生出羟基或氨基(视所要固定的分子为核酸或寡肽而定)并与保护基建立共价连接;作点样用的支持物为使其表面带上正电荷以吸附带负电荷的探针分子,通常需包被以氨基硅烷或多聚赖氨酸等)将生物分子探针(寡核苷酸片段或基因片段)以大规模阵列的形式排布,形成可与目的分子(如基因)相互作用,交行反应的固相表面,在激光的顺序激发下标记荧光根据实际反应情况分别呈现不同的荧光发射谱征,CCD相机或激光共聚焦显微镜根据其波长及波幅特征收集信号,作出比较和检测,从而迅速得出所要的信息。生物芯片包括基因芯片、蛋白质芯片、组织芯片。而基因芯片中,最成功的是DNA芯片,即将无数预先设计好的寡核苷酸或cDNA在芯片上做成点阵,与样品中同源核酸分子杂交[3]的芯片。 基因芯片的基本原理同芯片技术中杂交测序(sequencing by hybridization, SBH)。

生物芯片技术研究进展

生物芯片技术研究进展 张智梁 摘要:随着DNA测序技术的发展和几种同时监测大量基因表达的新技术出现,人类基因组DNA序列分析可能很快完成,并由此产生了生物信息学,而DNA芯片技术应运而生。生物芯片主要是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,是近些年来发展迅速的一项高新技术。生物芯片主要包括基因芯片、蛋白质芯片、组织芯片等。 关键词:生物芯片;研究进展;应用 生物芯片是指通过微电子、微加工技术在芯片表面构建的微型生物化学分析系统,以实现对细胞、DNA、蛋白质、组织、糖类及其他生物组分进行快速、敏感、高效的处理和分析,其实质就是在面积不大的基片(玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)表面上有序地点阵排列一系列已知的识别分子,在一定条件下,使之与被测物质(样品)结合或反应,再以一定的方法(同位素法、化学荧光法、化学发光法、酶标法等)进行显示和分析,最后得出被测物质的化学分子结构等信息。因常用玻片/硅片等材料作为固相支持物,且制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。这项技术是由美国旧金山以南的的一个新兴生物公司首先发展起来的。S.P.AForder及其同事于90年代初发明了一种利用光刻技术在固相支持物上光导合成多肽的方法,并在此基础上于l993年设计了一种寡核苷酸生物芯片,直至l996年制造出世界上第一块商业化的DNA芯片。在此期间国际上掀起了一片DNA芯片设计的热潮,出现了多种类型的DNA芯片技术。DNA芯片在产生的短短几年时间内技术不断,现已经显现出在基因诊断、基因表达分析和新基因的发现、蛋白组学方面的应用、基因组文库作图等生物医学领域中的应用价值。 l、生物芯片的分类 目前常见的生物芯片分为3类:第1类为微阵列芯片,包括基因芯片、蛋白芯片、细胞芯片和组织芯片;第2类为微流控芯片(属于主动式芯片),包括各类样品制备芯片、聚合酶链反应(PCR)芯片、毛细管电泳芯片和色谱芯片等;第3类为以生物芯片为基础的集成化分析系统(也叫“芯片实验室”,是生物芯片技术的最高境界)。“芯片实验室”可以完成如样品制备、试剂输送、生化反应、结果检测、信息处理和传递等一系列复杂工作。这些微型集成化分析系统携带方便,可用于紧急场合、野外操作甚至放在航天器上。 2、生物芯片的应用 2.1基因测序基因芯片利用固定探针与样品进行分子杂交产生的杂交图谱而排列出待测样品的序列,这种测定方法快速,具有十分诱人的前景。芯片技术能辨别单核苷酸多态性(SNPs),当基因组序列中的单个核苷酸发生突变,就会引起基因组DNA序列变异。Hacia等用含有48000个寡核苷酸的高密度微阵列分析了黑猩猩和人BRCAl基因序列差异,结果发现在外显子11约3.4kb长度范围内的核酸序列同源性为83.5%~98.2%,提示了二者在进化上的高度相似性。Check 等通过运用DNA微集阵列分析研究与早期心血管疾病相关的候选基冈一丁SP基冈家族,结果发现TSP-1和TSP-4基因错义变异与早期冠状动脉疾病相关,它们在m液凝固和动脉修复中起重要作用,而丁SP一2基冈非编码区的突变却在心脏病的发生过程有一定的保护作用。在卵巢癌发展过程中,基因TP53起到临界

基因芯片技术的应用和发展趋势

基因芯片技术的应用和发展趋势 随着基因芯片技术的日渐成熟, 在功能基因组、疾病基因组、系统生物学等领域中得到了广泛的应用, 已经发表了上万篇研究论文, 每年发表的论文呈现增长的趋势. 芯片制备技术极大地推进了生物芯片的发展, 从实验室手工或机械点制芯片到工业化原位合成制备, 从几百个点的芯片到几百万点的高密度芯片, 生物芯片从一项科学成为一项技术, 被越来越多的研究者广泛运用. 各个实验室不断产生海量的杂交数据, 相同领域的研究者需要比较不同实验平台产生的数据, 作为基于分子杂交原理的高通量技术, 芯片实验的标准化、可信度、重现性和芯片结果是否能作为定量数据等问题成为所有的芯片使用者关心的课题. 迈阿密原则和微阵列质量控制系列研究回答了这两个问题. 迈阿密原则(Minimum Information About a Micro- array Experiment, MIAME, 微阵列实验最小信息量)提出了生物芯片标准化的概念, 该原则的制定使世界各地实验室的芯片实验数据可以为所有的研究者共享. 同 时, 美国国家生物信息学中心(NCBI)和位于英国的欧洲生物信息学研究所(EBI)也建立了GEO ( https://www.360docs.net/doc/6410650372.html,/geo/)和ArryExpress (http:// ;https://www.360docs.net/doc/6410650372.html,/arrayexpress/)公共数据库, 接受和储存全球研究者根据迈阿密原则提交的生物芯片数据, 对某项研究感兴趣的研究人员可以下载到相关课题的芯片原始数据进行分析. 2006年美国FDA联合多个独立实验室进行了MAQC系列实验(micro array quality control, MAQC), 旨在研究目前所使用的芯片平台的质量控制. 该研究的12篇系列文章发表在2006年9月份的Nature Biotechnology 上, 用严格的实验分析了目前主流芯片平台数据质量, 芯片数据和定量PCR结果之间的相关性, 芯片数据均一化方法, 不同芯片平台之间的可重现性. 证明了不同芯片平台产生的数据具有可比性和可重现性, 各种芯片平台之间的系统误差远远小于人为操作和生物学样品之间本身的差异, 肯定了芯片数据的可信性, 打消了以往对芯片数据的种种猜疑, 明确了基于杂交原理的芯片同样可以作为一种定量的手段. 推动了生物芯片技术在分子生物学领域更广泛的应用. 生物信息学和统计学是在处理基因芯片产生的海量数据中必不可少的工具. 随着芯片应用的推进, 芯片数据分析的新理论和新算法不断地被开发出来, 这些方法帮助生物学家从海量的数据里面快速筛选出差异表达的基因. 一次芯片实验获得的是成千上万个基因的表达信息, 任何一种单一的分析方法都很难将所有蕴含在数据中的生物学信息全部提取出来, 从近年来生物信息学研究的趋势来看, 目前研究的重点开始转向芯片数据储存、管理、共享和深度信息挖掘, 旨在从芯片数据中获得更多的生物学解释, 而不再停留在单纯的差异表达基因筛选上。 目前基因芯片的制备向两个主要方向发展. 第一, 高密度化, 具体表现为芯片密度的增加, 目前原位合成的芯片密度已经达到了每平方厘米上千万个探针. 一张芯片上足以分析一个物种的基因组信息. 第二, 微量化, 芯片检测样品的微量化, 目前芯片检测下限已经能达到纳克级总RNA水平, 这为干细胞研究中特别是IPS干细胞对单个细胞的表达谱研究提供了可能. 另一方面, 微量化也体现芯片矩阵面积的微量化, 即在同一个芯片载体上平行的进行多个矩阵的杂交, 大大减少系统和批次可能带来的差异, 同时削减实验费用. 微阵列技术改变了生物学研究的方法, 使得微量样品快速高通量的分析成为可能, 从单个基因的研究迅速扩展到全基因组的系统生物学研究. 微阵列技术帮助生物学研究进入后基因组时代, 研究成果层出不穷。 2001年国家人类基因组南方研究中心韩泽广博士研究小组利用cDNA芯片对肝癌和正常组织中的12393个基因和EST序列进行了表达谱筛查, 其中发现了2253个基因和EST在肝癌中发生了差异表达, 并对这些差异基因的信号通路进行了分析, 发现WNT信号通路在肝癌的发生中出现了表达异常. 2002年中国科学院神经科学研究所张旭博士研究组利用表达谱芯片对大鼠外周神经损伤模型背根神经节的基因表达进行了研

生命科学与技术研究进展

1. 什么是系统生物学? 系统生物学是一种典型的多学科交叉研究,它需要生命科学、信息科学、数学、计算机科学等各种学科的共同参与。它是一种整合型大科学,要把系统内不同性质的构成要素(基因、mRNA、蛋白质、生物小分子等)整合在一起进行研究。对于多细胞生物而言,系统生物学就是要实现从基因到细胞、到组织、到个体的各个层次的整合。 系统生物学包括四个方面: 一、系统结构。包括基因,蛋白间关系以及由此得到的基因蛋白网络和生物通路,以及这些相互之间关系所牵涉到的细胞内和细胞外结构的物理特性和机制。 二、系统动力学。可以通过代谢分析,敏感性分析,动力学分析工具比如分叉分析等,以及识别不同行为所内含的机制等分析方法和手段来理解在不同时间点不同条件下系统的行为。 三、系统的控制方法。掌握这些控制细胞处于各种状态的机制,用来模拟系统,能得到治疗疾病的药靶。 四、设计的方法。基于某些设计的原则和模拟方法,可以修正和构造具有所需特性的系统,而不需要盲目地反复实验。 2. 生物芯片技术对于系统生物学的意义? 生物芯片是多领域相揉合的产物,生物芯片技术涉及电子技术、成像光学、材料学、计算机技术、生物技术等。简单说,生物芯片就是在一块玻璃片、硅片、尼龙膜等材料上放上生物样品,然后由一种仪器收集信号,用计算机分析数据结果。根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。生物芯片技术是系统生物学技术的基本内容。 系统生物学有两个关键技术基础,“组学”数据基础,以及检测和实验技术基础。在检测和实验技术这一方面,生物芯片占有举足轻重的地位。二十世纪末期,生物芯片开始进入大家的视野,它有着传统技术无可比拟的优势:高通量、微型化、自动化。系统生物学需要处理海量的组学数据,如果仅仅依靠传统手段,将举步维艰,借助于芯片技术,将事半功倍。 3. 以某离子通道为例,叙述蛋白结构和功能的测量方法和手段 以BK通道为例,结构测量:首先得到通道的序列,设计引物,通过体外PCR 快速高效的体外扩增该片段,然后连接到合适的载体上导入宿主细胞中进行表达,获得蛋白,通过HPLC进行蛋白分析和分离,将纯化后的蛋白配制成浓溶液,进行晶体生长实验,获得高质量的单晶体后,进行X射线衍射来解析该通道的结构,功能测量:通过量:通过切除部分序列,来测量通道的功能序列,定点突变来确定通道的关键氨基酸。通过特异性药物或毒素与通道的结合相互作用来检测通道的生理活性和功能。 4、有哪些方法可用来确定离子通道生理功能? (1)电压钳技术 膜对某种离子通透性的变化是膜电位和时间的函数。用玻璃微电极插入细胞内,利用电子学技术施加一跨膜电压并把膜电位固定于某一数值,可以测定该膜电位条件下离子电流随时间变化的动态过程。利用药物使其他离子通道失效,即可测定被研究的某种离子通道的功能性参量

基因芯片技术的研究进展与前景

基因芯片技术的研究进展与前景 摘要 关键词基因芯片,遗传性疾病,基因组计划, 一、基因芯片技术的产生背景 基因芯片技术是伴随着人类基因组计划而出现的一项高新生物技术。2001年6月公布了人类基因组测序工作草图;2002年出发飙了较高精确度和经过详细注解的人类基因组研究结果;2004年10月发表了已填补基因组中许多Gap片段的更精确的人类全基因组序列,标志人类基因组计划的完成和新时代的开始。随着人类基因组计划的开展,也同时进行了模式生物基因组测序工作。动物、植物、细菌及病毒基因组等测序工作都已取得重大进展。 随着各种基因组计划的实施和完成(有的即将完成),一个庞大的基因数据库已经建成。怎样从海量的基因信息中发掘基因功能。如何研究成千上万基因在生命过程中所担负的角色;如何开发利用各种基因组的研究成果,将基因的序列与功能关联起来,认识基因在表达调控、机体分化等方面的生物学意义;解释人类遗传进化、生长发育、分化衰老等许多生命现象的奥秘;深入了解疾病的物质基础及发生、发展过程;开发基因诊断、治疗和基因工程药物并用来预防诊断和治疗人类几千种遗传性疾病……这些都将成为现代生物学面临的最大挑战。这样的背景促使人们研究和开发新的技术手段来解决后基因组时代面临的一系列关键问题。20世纪90年代初,为适应“后基因组时代”的到来,产生了一项新的技术,即以基因芯片为先导的生物芯片技术。 二、基因芯片的概念 基因芯片(又称DNA芯片、DNA微阵列)技术是基于核酸互补杂交原理研制的。该技术指将大量(通常每平方厘米点阵密度高于400 )探针分子固定于支持物上后与有荧光素等发光物质标记的样品DNA或RNA分子进行杂交,通过检测每个探针分子的杂交信号强度进而获取样品分子的数量和序列信息,从而对基因表达的量及其特性进行分析。通俗地说,就是通过微加工技术,将数以万计、乃至百万计的特定序列的DNA片段(基因探针),有规律地排列固定于2cm2的硅片、玻片等支持物上,构成的一个二维DNA探针阵列,与计算机的电子芯片十分相似,只是在固相基质上古高度集成的不是半导体管,而是成千上万的网格状密集排列的基因探针,所以被称为基因芯片。 三、基因芯片技术的分类 1 根据功能分类:基因表达谱芯片和DNA测序芯片两类。基因表达图谱芯片可以将克隆的成千上万个基因特异的探针或其cDNA片段固定在一块DNA芯片上,对于来源不同的个体、组织、细胞周期、发育阶段、分化阶段、病变、刺激(包括不同诱导、不同治疗手段)下的细胞内mRNA或反转录后产生的cDNA进行检测,从而对这个基因表达的个体特异性、组织特异性、发育阶段特异性、分化阶段特异性、病变特异性、刺激特异性进行综合的分析和判断,迅速将某个或某几个基因与疾病联系起来,极大地加快这些基因功能的确定,同时可进一步研究基因与基因间相互作用的关系,DNA测序芯片则是基于杂交测序发展起来的。其原理是任何线状的单链DNA或RNA序列均可裂解成一系列碱基数固定、错落而重叠的寡核苷酸,如能把原序列所有这些错落重叠的寡核苷酸序列全部检测出来,就可据此重新组建出新序列。 2 根据基因芯片所用基因探针的类型不同,可分为cDNA微阵列和寡核苷酸微阵

生物芯片技术及其应用研究

生物芯片技术及其应用研究 宋杭杰11152228 [ 摘要]近年来,生物芯片已成为科学界的研究热点之一。本文综述了生物芯 片的概念、主要分类和制作,介绍了生物芯片的应用,分析了生物芯片技术中存在的问题并对其发展前景作了展望。 [关键词]生物芯片应用检测问题发展前景 [正文] 1 生物芯片概述 生物芯片(biochip) 是将大量的生物大分子,如核苷酸片段、多肽分子、组织切片和细胞等生物样品制成探针,以预先设计的方式有序地、高密度地排列在玻 璃片或纤维膜等载体上,构成二维分子阵列,然后与已标记的待测生物样品靶分子杂交,通过检测杂交信号实现对样品的检测,因此该技术一次能检测大量的目 标分子,从而实现了快速、高效、大规模、高通量、高度并行性的技术要求;并且芯片技术的研究成果具有高度的特异性、敏感性和可重复性。因常用玻片/硅 片等材 料作为固相支持物,且在制备过程中模拟计算机芯片的制备技术,所以称之为生物芯片技术。 2 生物芯片的分类 生物芯片技术是一种高通量检测技术,其主要类型包括基因芯片( gene -chip) 、蛋白质芯片( protein-chip) 、组织芯片( tissue -chip) 和芯片实验室( lab-on -chip) 等。 2. 1 基因芯片 基因芯片又称为DNA 芯片(DNA -chip) ,是基于核酸探针互补杂交技术原 理研制的。它是将大量的寡核苷酸片段按预先设计的排列方式固化在载体表面如硅片或玻片上,并以此为探针,在一定的条件下与样品中待测的靶基因片段杂交,

通过检测杂交信号的强度及分布来实现对靶基因信息的快速检测和分析。 2. 2 蛋白质芯片 蛋白质芯片与基因芯片的原理类似,它是将大量预先设计的蛋白质分子( 如抗原或抗体等) 或检测探针固定在芯片上组成密集的阵列,利用抗原与抗体、受体与配体、蛋白与其它分子的相互作用进行检测。 2. 3 组织芯片 组织芯片技术则是一种不同于基因芯片和蛋白芯片的新型生物芯片。它是将许多不同个体小组织整齐地排布于一张载玻片上而制成的微缩组织切片,从而进行同一指标( 基因、蛋白) 的原位组织学的研究。 2. 4 芯片实验室 所谓实验室就是一种功能的集成。在普通实验室,检侧、分析等是分成不同步骤进行的,芯片实验室就是把所有的步骤聚在一起,也是有形的,只是把这些功能微缩到一个小的平台上。生物检测三大步骤:样品的处理、生物反应、反应的检测,在以前,是由不同的机器做,最后才得出结果。芯片实验室则是把这三大步骤浓缩到一个平台上做,对用户来说无需知道中间步骤,是一个微型的自动化过程。 3 生物芯片的制作 生物芯片制作的方法有很多,大体分为两类:原位合成和合成点样。原位合成主要指光引导合成技术,可用于寡核苷酸和寡肽的合成,所使用的片基多为无机片基,现在也有用聚丙烯膜的。该方法合成的寡核苷酸的长度一般少于30nt,缩合率可达95 % ,特异性不是太好。原位合成的另外一种方法是压电打印法或称作喷印合成。该方法合成寡核苷酸的长度一般在40-50nt,缩合率达99 % ,特异性较好。合成点样最常用的方法是机械打点法。点样的可以是寡核苷酸和寡肽,也可以是DNA 片段或蛋白质。所使用的片基多为尼龙膜等有机合成物片基。该方法的特点是操作迅速、成本低、用途广,但定量准确性和重现性不好,加样

【2019年整理】生物芯片技术的发展历史

注:蓝字是建议使用的素材,别的你们也可以看一下选用哦世界发展史 进入21世纪,随着生物技术的迅速发展,电子技术和生物技术相结合诞生了半导体芯片的兄弟——生物芯片,这将给我们的生活带来一场深刻的革命。这场革命对于全世界的可持续发展都会起到不可估量的贡献。 生物芯片技术的发展最初得益于埃德温·迈勒·萨瑟恩(Edwin Mellor Southern)提出的核酸杂交理论,即标记的核酸分子能够与被固化的与之互补配对的核酸分子杂交。从这一角度而言,Southern杂交可以被看作是生物芯片的雏形。弗雷德里克·桑格(Fred Sanger)和吉尔伯特(Walter Gilbert)发明了现在广泛使用的DNA测序方法,并由此在1980年获得了诺贝尔奖。另一个诺贝尔奖获得者卡里·穆利斯(Kary Mullis)在1983年首先发明了PCR,以及后来再此基础上的一系列研究使得微量的DNA可以放大,并能用实验方法进行检测。 生物芯片这一名词最早是在二十世纪八十年代初提出的,当时主要指分子电子器件。它是生命科学领域中迅速发展起来的一项高新技术,主要是指通过微加工技术和微电子技术在固格体芯片表面构建的微型生物化学分析系统,以实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。美国海军实验室研究员卡特(Carter)等试图把有机功能分子或生物活性分子进行组装,想构建微功能单元,实现信息的获取、贮存、处理和传输等功能。用以研制仿生信息处理系统和生物计算机,从而产生了"分子电子学",同时取得了一些重要进展:如分子开关、分子贮存器、分子导线和分子神经元等分子器件,更引起科学界关注的是建立了基于DNA或蛋白质等分子计算的实验室模型。 进入二十世纪九十年代,人类基因组计划(Human Genome Project,HGP)和分子生物学相关学科的发展也为基因芯片技术的出现和发展提供了有利条件。与此同时,另一类"生物芯片"引起了人们的关注,通过机器人自动打印或光引导化学合成技术在硅片、玻璃、凝胶或尼龙膜上制造的生物分子微阵列,实现对化合物、蛋白质、核酸、细胞或其它生物组分准确、快速、大信息量的筛选或检测。 ●1991年Affymatrix公司福德(Fodor)组织半导体专家和分子生物学专家共同研制出利用光蚀刻光导合成多肽; ●1992年运用半导体照相平板技术,对原位合成制备的DNA芯片作了首次报道,这是世界上第一块基因芯片; ●1993年设计了一种寡核苷酸生物芯片; ●1994年又提出用光导合成的寡核苷酸芯片进行DNA序列快速分析; ●1996年灵活运用了照相平板印刷、计算机、半导体、激光共聚焦扫描、寡核苷酸合成及荧光标记探针杂交等多学科技术创造了世界上第一块商业化的生物芯片; ●1995年,斯坦福大学布朗(P.Brown)实验室发明了第一块以玻璃为载体的基因微矩阵芯片。 ●2001年,全世界生物芯片市场已达170亿美元,用生物芯片进行药理遗传学和药理基因组学研究所涉及的世界药物市场每年约1800亿美元; ●2000-2004年的五年内,在应用生物芯片的市场销售达到200亿美元左右。2005年,仅美国用于基因组研究的芯片销售额即达50亿美元,2010年有可能上升为400亿美元,这还不包括用于疾病预防及诊治及其它领域中的基因芯片,部分预计比基因组研究用量还要大上百倍。因此,基因芯片及相关产品产业将取代微电子芯片产业,成为21世纪最大的产业。 ●2004年3月,英国著名咨询公司弗若斯特·沙利文(Frost &Sulivan)公司出版了关于全球芯片市场的分析报告《世界DNA芯片市场的战略分析》。报告认为,全球DNA生物芯片

PCR生物芯片研究进展

PCR生物芯片研究进展 文章介绍了PCR的反应机理与PCR生物芯片的优点,主要介绍了PCR生物芯片微装置的一般原理和设计研究进展。 标签:聚合酶链式反应设计进展微流控芯片 自从1991年福多尔(S.P.A.Fodor)等人提出DNA芯片至今,以DNA芯片为代表的生物芯片技术已经得到了快速的发展。目前生物芯片技术除了DNA芯片技术外,还包括免疫芯片分析技术、芯片核酸扩增技术、细胞芯片分析技术和以芯片为平台的高通量药物筛选技术等。这些新兴技术的出现将为生命科学研究、疾病诊断与治疗、新药开发、国防、司法鉴定、食品卫生检验、航空航天等领域带来一场革命。正是由于生物芯片技术的飞速发展,美国科学促进协会将其评为1998年科技十大突破之一。 聚合酶链式反应(PCR)的反应机理及其优点 聚合酶链式反应(Polymerase Chain Reacion,PCR)是一种对核酸分子进行提外扩正的方法,已经广泛应用于生物科学各个领域,PCR的引入给分子生物学带来了革命性的变化。反应的主要操作过程在三个温度区间重复循环,经过酶促反应扩增特定的DNA片段。扩增后的反应产物可用于诊断疾病、检验组织或血样中的特殊细菌或病毒。 常规的PCR方法存在着耗时长,操作繁琐,试剂消耗量大等缺点。寻求更快速、更简便的方法一直是人们追求的目标。微流控芯片为PCR微型化操作提供了一条可行的途径,和通常的PCR设备相比,微型化的好处是显著改善了热能传输,极大地提高了热循环速度,降低了昂贵试剂的消耗,是系统具有灵活、多功能、集成化的特点。但也有可能因PCR反应体积减小致使表面/体积比增加而产生一些与表面吸附有关的不利影响。 为了克服这种影响,人们研究了一些具备生物适应性的各种表面处理方法,通过化学修饰和/或物理吸附方式对硅、石英、玻璃或塑料等材料进行表面涂层或钝化。微流控芯片PCR的另一问题是如何将小体积的试样处理、扩增与芯片分离分析系统联用,开发真正自动化的高通量产品。一些研究者使用单晶硅微反应室进行实时快速PCR。DNA扩增以和专门设计的微流控元件耦合,在PCR之前完成组织、细胞、全血、土壤、食品等各种样品中DNA的提取。 微型装置的一般原理 这种微流控芯片是通过技术在基底材料(如玻璃、硅以及聚合物等)上刻蚀出微流道通道作为反应池,样品流体连续地通过解链、退火以及延伸3个不同的温度带。它的结构设计能很好地控制解链、退火、延伸时间以及扩增的速度,而且反应混合物在3个温度带滞留时间仅仅表现为通道长度、横截面以及反应通道中

生物芯片技术的研究现状及发展前景

学士学位论文(设计) 文献综述 题目 生物芯片技术的研究现状及发展前景Biological Chip Technology The Present Research Situation and Development Prospect 姓名学号 院系专业生命科学院生物工程指导教师职称 中国·武汉 二○一二年三月

目录 摘要................................................................................................................................I 关键词 ..............................................................................................................................I Abstract ............................................................................................................................II Key words ........................................................................................................................II 1 生物芯片技术的概念及类型 (1) 1.1生物芯片技术的概念 (1) 1.2生物芯片技术的分类 (1) 2生物新品技术的发展状况 (2) 2.1生物芯片技术国外状况 (2) 2.2生物芯片技术国内状况 (3) 3生物芯片技术的问题及发展方向 (3) 3.1生物芯片技术存在的问题 (3) 3.2生物芯片技术的发展方向 (4) 4结语 (4) 参考文献 (6) 致谢 (7)

基因芯片技术及其应用简介(精)

基因芯片技术及其应用简介 生物科学学院杨汝琪 摘要:随着基因芯片技术的发展,基因芯片越来越多的被人们利用,它可应用于生活中的方方面面,如:它可以应用于医学、环境科学、微生物学和农业等多个方面,基因技术的发展将有利于社会进一步的发展。 关键词:基因芯片;技术;应用 基因(gene是载有生物体遗传信息的基本单位,存在于细胞的染色体(chromosome上。将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片(又称DNA 芯片、生物芯片。在一块1 平方厘米大小的基因芯片上,根据需要可固定数以千计甚至万计的基因片段,以此形成一个密集的基因方阵,实现对千万个基因的同步检测。基因芯片技术是近年来兴起的生物高新技术,把数以万计的基因片段以显微点阵的方式排列在固体介质表面,可以实现基因检测的快速、高通量、敏感和高效率检测,将可能为临床疾病诊断和健康监测等领域,带来全新的技术并开拓广阔的市场。 1 基因芯片技术原理及其分类 1.1基因芯片的原理: 基因芯片属于生物芯片的一种"其工作原理是:经过标记的待测样本通过与芯片上特定位置的探针杂交,可根据碱基互补配对的原则确定靶序列[1],经激光共聚集显微镜扫描,以计算机系统对荧光信号进行比较和检测,并迅速得出所需的信息"基因芯片技术比常规方法效率高几十到几千倍,可在一次试验中间平行分析成千上万个基因,是一种进行序列分析及基因表达信息分析的强有力工具。 1.2基因芯片分类: 1.2.1根据其制造方法可分原位合成法和合成后点样法;

1.2.2根据所用载体材料不同分为玻璃芯片!硅芯片等; 1.2.3根据载体上所固定的种类可分为和寡核苷酸芯片两种; 1.2.4根据其用途可分测序芯片!表达谱芯片!诊断芯片等 2 基因芯片技术常规流程 2.1 芯片设计根据需要解决的问题设计拟采用的芯片,包括探针种类、点阵数目、片基种类等。 2.2 芯片制备将DNA, cDNA或寡核昔酸探针固定在片基上的过程。从本质上可分为两大类fz} ,一类是在片基上直接原位合成,有光蚀刻法、压电印刷法和分子印章多次压印法三种;另一类是将预先合成的探针固定于片基表面即合成点样法。 2.3 样品制备常规方法提取样品总RNA,质检控制。再逆转录为。DNAo 2.4 样品标记在逆转录过程中标记荧光素等。 2.5 芯片杂交标记的cDNA溶于杂交液中,与芯片杂交。 2.6 芯片扫描一用激光扫描仪扫描芯片。 2.7 图像采集和数据分析专用软件分析芯片图像,然后对数据进行归一化,最后以差异为两倍的标准来确定差异表达基因。 2.8 验证用定量PCR或原位杂交验证芯片结果的可信性。 3基因芯片合成的主要方法 目前已有多种方法可以将基因片段(寡核苷酸或短肽固定到固相支持物上。这些方法总体上有两种: 3.1原位合成:

生物芯片技术的发展及其在农业科学上的应用

生物芯片技术的发展及其在农业科学上的应用 摘要: 生物芯片的应用是将探针固定于芯片上, 利用核酸链间的分子杂交, 鉴定DNA 和蛋白质的一种新技术。尽管生物芯片仅仅出现几年, 但它带来的信息却蕴藏着生物学中结构与功能的内在联系, 其应用具有十分巨大的潜力, 它已在功能基因组研究、新药研究、物种改良和医学诊断、军事科学等方面提供或正在提供极有价值的信息, 已成为科学家们手中的有力武器。本文主要阐述了生物芯片技术种类和在农业科学应用方面的近期研究进展。 关键词:芯片技术、研究应用、农业科学 一、生物芯片技术简介 生物芯片技术是一种高通量检测技术,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization, SBH)等,为"后基因组计划"时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。该技术被评为1998年度世界十大科技进展之一。(1)它包括基因芯片、蛋白芯片及芯片实验室三大领域。 基因芯片(Genechip)又称DNA芯片(DNAChip)。它是在基因探针的基础上研制出的,所谓基因探针只是一段人工合成的碱基序列,在探针上连接一些可检测的物质,根据碱基互补的原理,利用基因探针到基因混合物中识别特定基因。它将大量探针分子固定于支持物上,然后与标记的样品进行杂交,通过检测杂交信号的强度及分布来进行分析。 蛋白质芯片与基因芯片的基本原理相同,但它利用的不是碱基配对而是抗体

生物工程研究进展

生物工程的研究现状 摘要:在 20世纪90年代初,“21世纪是生命科学的世纪”还是科学家的预言,仅仅十年的发展,在刚刚进入21世纪,这个预言正在变成现实。 关键词:生物工程、研究现状、基因、克隆、生物芯片 当今世界,我们所处的这个时代,是科学技术飞速发展、知识信息爆炸的知识经济时代,世界各国都在相互竞争,竞争的焦点集中在科学技术上,谁的科技发达,谁的综合国力就强大。 现在世界七大高新技术分别是现代生物技术、航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术。 其中生物技术列在首位,生物技术之所以令世界各国如此重视,是因为它是解决人类所面临的诸如食物短缺、人类健康、环境污染和资源匮乏等重大问题上有着不可比拟的优越性,还因为它与理、工、农、医等科技的发展、与伦理道德、法律等社会问题都有着密切的关系。 高新技术的重要特征之一是学科横向渗透,纵向加深,综合交错,发展迅速。所以世界各国争相投巨资发展,确定生物技术为21世纪经济和科技发展的优先领域。 一、研究热点 (一)、基因组学技术 基因组学(英文genomics),研究生物基因组和如何利用基因的一门学问。用于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。2001年,人类基因组计划公布了人类基因组草图,为基因组学研究揭开新的一页。 基因组学的主要工具和方法包括:生物信息学,遗传分析,基因表达测量和基因功能鉴定。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。 我国结构基因组学研究虽然启动时间较短,但已经获得了不少重要进展。据初步统计,已经完成了近千个克隆,已表达出210个蛋白质,其中有100多个可溶或部分可溶;获得近30个结晶和NMR样品,已经测定出5个结构。

相关文档
最新文档