生物芯片技术介绍
生物芯片技术简介及应用

生物芯片技术简介及应用一、生物芯片概念生物芯片(biochip)是指通过微加工技术,将生物大分子如核酸片段、多肽分子甚至细胞,组织切片等生物样品,有序地固化于支持物表面,然后与已标记的探针杂交,通过特定仪器如激光共聚焦显微扫描仪或电荷偶联元件(charge-coupled device,CCD)等对杂交信号的强度进行快速、并行、高效的检测,再经计算机分析和处理数据,从而获得相关生物信息。
由于常用玻片或硅片作为固相支持物,其与半导体芯片都有高度集成的特点,故称之为生物芯片。
生物芯片技术是20世纪90年代中期以来影响最深远的科技进展之一,是集生物学、物理学、化学、微电子学、计算机科学为一体的高度交叉的新技术。
由于该技术可将大量的探针同时固定于固相支持物上,所以一次可以对大量的生物分子进行检测,从而解决了传统生物学分析方法复杂、自动化程度低、检测物数量少(通量低)等不足。
另外,通过设计不同的阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(sequencing by hybridization,SBH)等,为“后基因组计划”时代基因功能的研究及临床检验诊断学发展提供了强有力的工具。
同一种芯片从不同的角度,可有不同的归类组别和定位。
最为通用的分类方法是根据芯片基片上固定的探针分子不同,将生物芯片分为基因芯片、蛋白质芯片、细胞芯片和组织芯片等。
二、生物芯片的应用生物芯片技术可广泛应用于疾病诊断和治疗、药物筛选、农作物的优育优选、司法鉴定、食品卫生监督、环境检测、国防、航天等许多领域。
它将为人类认识生命的起源、遗传、发育与进化、为人类疾病的诊断、治疗和预防开辟全新的途径,为生物大分子的全新设计和药物开发中先导化合物的快速筛选和药物基因组学研究提供技术支撑平台。
(一)疾病诊断基因芯片诊断技术以其快速、高效、灵敏、经济、平行化、自动化等特点,已成为一项现代化诊断新技术。
生物芯片技术

生物芯片技术是通过缩微技术,根据分子间特异性地相互作用的原理,将生命科学领域中不连续的分析过程集成于硅芯片或玻璃芯片表面的微型生物化学分析系统,以实现对细胞、蛋白质、基因及其它生物组分的准确、快速、大信息量的检测。
按照芯片上固化的生物材料的不同,可以将生物芯片划分为基因芯片、蛋白质芯片、细胞芯片和组织芯片。
一、社会前景基因芯片可为研究不同层次多基因协同作用提供手段。
这将在研究人类重大疾病的相关基因及作用机理等方面发挥巨大的作用。
人类许多常见病如肿瘤、心血管病、神经系统退化性疾病、自身免疫性疾病及代谢性疾病等均与基因有密切的关系。
生物芯片能为现代医学发展提供强有力的手段,促进医学从“系统、血管、组织和细胞层次”(第二阶段医学)向“DNA、RNA、蛋白质及其相互作用层次”(第三阶段医学)过渡,使之尽快进入实际应用。
DNA芯片技术可用于水稻抗病基因的分离与鉴定。
水稻是我国的主要粮食作物,病害是提高水稻产量的主要限制因素。
利用转基因技术进行品种改良,是目前最经济有效的防治措施。
而应用这一技术的前提是必须首先获得优良基因克隆,但目前具有专一抗性的抗病基因数量有限,限制了这一技术的应用。
而基因芯片用于水稻抗病相关基因的分离及分析,可方便的获取抗病基因,产生明显的社会效益。
在医药设计、环境保护、农业等各个领域,基因芯片均有很多用武之地,成为人类造福自身的工具二、经济前景美国总统克林顿在1998年1月对全国的演讲中指出“未来十二年, 基因芯片将为我们一生中的疾病预防指点迷津”。
1998年6月27日华盛顿邮报在报道Motorola进入基因芯片领域时, 认为这将造福于子孙后代。
美国“Fortune”杂志在1997年3月重点介绍了基因芯片技术, 论述了未来产业化的前景,该文预测“在2005年仅仅在美国用于基因组研究的芯片销售额将达约50亿美元, 2010年有可能上升为400亿美元”。
这还不包括用于疾病预防及诊治以及其它领域中的基因芯片,这部分预计比基因组研究用量还要大上百倍。
生物芯片技术

生物芯片技术一、引言生物芯片技术是一个将生物学、物理学、化学和计算机科学相结合的新兴领域。
它的出现使得大量的高通量实验可以在相对短的时间内完成,并且提供了面对高维度问题的工具和策略。
本文将会详细介绍生物芯片技术的原理、种类、应用和研究进展等方面。
二、生物芯片技术的原理生物芯片技术是一项将不同生物学实验方法集成在一起的新技术。
它包括制备芯片、检测芯片以及分析芯片的过程。
其中,制备芯片是将不同类别的生物分子(如DNA、蛋白质、RNA等)以固定的顺序固定在芯片表面上;检测芯片则是将样品添加到芯片表面,以检测目标分子的存在与否;分析芯片是对检测芯片进行数据分析以取得最终结果。
三、生物芯片技术的种类根据使用的生物分子不同,生物芯片技术可以分为DNA芯片、RNA芯片、蛋白芯片等。
另外,虽然微阵列芯片受到了很高的关注,但是由于其成本高昂以及瓶颈问题存在,其在实际应用中尚未得到普及。
四、生物芯片技术的应用生物芯片技术在许多领域中得到了广泛的应用,比如生物医学领域、农业领域和环境监测等方面。
其中,生物医学领域是其应用最为广泛的领域。
例如,对于肿瘤的诊断、治疗和预后分析等方面,生物芯片技术已经发挥了重要的作用。
五、生物芯片技术的研究进展随着生物芯片技术应用的不断扩展,其研究领域也在逐步拓宽。
目前,一些新技术和新方法已经被用于生物芯片技术领域,比如单细胞芯片技术、小RNA芯片技术、微流控芯片技术等都已经成为生物芯片技术领域中重要的技术。
六、总结本文介绍了生物芯片技术的原理、种类、应用和研究进展等方面。
虽然生物芯片技术仍然面临很多挑战,如成本高昂、技术局限和标准化缺失等问题,但是其在实际应用中已经得到了广泛的认可,并且具有很大的发展前景。
生物芯片技术

生物芯片技术一、生物芯片简介生物芯片(biochip)是指采用光导原位合成或微量点样等方法,将大量生物大分子比如核酸片段、多肽分子甚至组织切片、细胞等等生物样品有序地固化于支持物(如玻片、硅片、聚丙烯酰胺凝胶、尼龙膜等载体)的表面,组成密集二维分子排列,然后与已标记的待测生物样品中靶分子杂交,通过特定的仪器比如激光共聚焦扫描或电荷偶联摄影像机(CCD)对杂交信号的强度进行快速、并行、高效地检测分析,从而判断样品中靶分子的数量。
由于常用玻片/硅片作为固相支持物,且在制备过程模拟计算机芯片的制备技术,所以称之为生物芯片技术。
根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。
如果芯片上固定的是肽或蛋白,则称为肽芯片或蛋白芯片;如果芯片上固定的分子是寡核苷酸探针或DNA,就是DNA芯片。
DNA微阵列(DNA Microarray)是目前最重要的一种,有寡核苷酸芯片、cDNA芯片和Genomic芯片之分,包括二种模式:一是将靶DNA固定于支持物上,适合于大量不同靶DNA的分析,二是将大量探针分子固定于支持物上,适合于对同一靶DNA进行不同探针序列的分析。
生物芯片技术是90年代中期以来影响最深远的重大科技进展之一,是融微电子学、生物学、物理学、化学、计算机科学为一体的高度交叉的新技术,具有重大的基础研究价值,又具有明显的产业化前景。
由于用该技术可以将极其大量的探针同时固定于支持物上,所以一次可以对大量的生物分子进行检测分析,从而解决了传统核酸印迹杂交(Southern Blotting 和Northern Blotting等)技术复杂、自动化程度低、检测目的分子数量少、低通量(low through-put)等不足。
而且,通过设计不同的探针阵列、使用特定的分析方法可使该技术具有多种不同的应用价值,如基因表达谱测定、突变检测、多态性分析、基因组文库作图及杂交测序(Sequencing by hybridization, SBH)等,为"后基因组计划"时期基因功能的研究及现代医学科学及医学诊断学的发展提供了强有力的工具,将会使新基因的发现、基因诊断、药物筛选、给药个性化等方面取得重大突破,为整个人类社会带来深刻广泛的变革。
生物芯片技术

FGR
FES
ABL
INT2
PIK3CA
NMYC
AKT2
FGFR1
JUNB
AKT1
KRAS2
CDK4
AR
RDA Protocol
RNA extraction and cDNA preparation from archived tissue specimens(tester and driver) Generation of amplified cDNA fragments (‘amplicons’) Subtractive hybridization of amplicons Enrichment of cDNA fragments from differentially expressed genes
DNA Chip Technology
Solid support (glass, plastic, metal, silicon) Miniaturized array of DNA (genetic material) Work on the biochemical principle of DNA/DNA hybridization Hybridized probes (DNA molecules) are fluorescently labeled
应用之一 基因表达谱(gene expression pattern)
Research Use. Clinical Diagnostic Use.
Biological Sample
Functional Information
One Disease——One Gene Expression Pattern
Prototype AmpliOnc™ I Biochip
生物芯片技术

生物芯片技术的主要类型包括基因芯片、蛋白质芯片、组织芯片等,其中基因芯片是最 常用的生物芯片技术之一。
生物芯片的分类
基因芯片 蛋白质芯片 细胞芯片 组织芯片
生物芯片技术:微小的 大科学
,a click to unlimited possibilities
汇报人:
目录
01 生 物 芯 片 技 术 的 定 义与分类
03 生 物 芯 片 技 术 的 优
势与局限性
05 生 物 芯 片 技 术 的 挑
战与对策
02 生 物 芯 片 技 术 的 应 用领域
04 生 物 芯 片 技 术 的 发 展趋势与前景
物多样性
司法鉴定:用 于法医鉴定、 亲子鉴定和基
因图谱绘制
Part Three
生物芯片技术的优 势与局限性
优势
高通量:一次可检测大量样本 高灵敏度:能够检测低浓度的生物分子 高特异性:能够准确区分不同的生物分子 自动化程度高:减少人工操作,提高工作效率
局限性
成本高昂:生物芯片技术的研发和生产成本较高,限制了其在某些领域的应用。
生物芯片技术在 药物研发中的应 用前景
生物芯片技术在 食品安全检测中 的应用前景
生物芯片技术在 环境保护和生态 监测中的应用前 景
Part Five
生物芯片技术的挑 战与对策
技术挑战
芯片制造技术:需要高精度、高稳定性的制造技术 数据分析技术:需要高效、准确的数据分析技术 生物样本制备技术:需要标准化、自动化的生物样本制备技术 生物芯片应用拓展:需要不断拓展生物芯片技术的应用领域
生物芯片技术

待测样品(用Cy3-dUTP 标记)
对照样品(Cy5-dUTP)
三、杂交与结果分析
(一)杂交反应:与传统的杂交方法类似
——是已标记的样品与芯片上的探针进行反应后产生一系 列信息的过程。
与传统的核酸分子杂交相同,但要求更高:
选择合适的反应条件、减少生物分子之间的错配率。 考虑杂交反应体系中盐浓度、探针GC含量和所带电荷、 探针与芯片之间连接臂的长度及种类、检测基因的二级结 构的影响。
第二节 蛋白质芯片
根据制作方法和应用的不同,蛋白质芯片分为两种: 1. 蛋白质功能芯片
细胞中的每一种蛋白质占据芯片上一个确定的 点,主要是高度平行地检测天然蛋白质活性 。 2. 蛋白质检测芯片 将能够识别复杂生物溶液(如细胞提取液)中 靶多肽的高度特异性配体进行点阵,这种芯片 能够高度并行的检测生物样品中的蛋白质 。
生物芯片技术(biochips)
生物芯片(biochips)
——指采用光导原位合成或微量点样等方法,将大量生物大
分子如核酸片段、多肽分子甚至组织切片、细胞等生物样 品有序地固化于支持物的表面,组成密集二维分子排列, 然后与已标记的待测生物样品中的靶分子杂交,通过特定
的仪器对杂交信号的强度进行快速、并行、高效地检测分
第十章 生物芯片技术
3.芯片实验室(labs-on-chip) • 高度集成化的集样品制备、基因扩增、核酸标记
及检测为一体的便携式生物分析系统 • 实现生化分析全过程集成在一片芯片上完成,从
而使生物分析过程自动化、连续化和微缩化 • 芯片实验室是生物芯片技术发展的最终目标
பைடு நூலகம்
蛋白质芯片的应用举例:
利用蛋白质芯片进行肿瘤诊断的一般原理程序
• 根据芯片的用途不同: 表达型芯片、测序芯片和芯片实验室
生物芯片技术

生物芯片技术生物芯片技术是一种集成了多种生物学功能的微型芯片,被广泛应用于医学、生物学研究和临床诊断等领域。
本文将探讨生物芯片技术的原理、应用和未来发展方向。
一、生物芯片技术的原理生物芯片技术基于生物与微电子学的交叉领域,使用微纳米加工技术在芯片上集成生物分子、细胞或组织等生物学实体。
生物芯片的核心是传感器,可以对复杂的生物过程进行高效、高通量的检测和分析。
在生物芯片中,常见的传感器包括光学传感器、电化学传感器和生物分子互作传感器等。
光学传感器利用光的特性进行信号检测,电化学传感器则基于电流和电位的变化,而生物分子互作传感器通过生物分子之间的互作反应来获得信号。
这些传感器与微流控系统等结合,实现了对样品的灵敏检测和操控。
二、生物芯片技术的应用1. 医学领域生物芯片技术可以应用于疾病的早期诊断、治疗监测和个性化医疗等方面。
例如,基于生物芯片的癌症早期诊断可以通过检测微量的肿瘤标志物来实现,提高了癌症的早期发现率。
另外,生物芯片还可用于药物筛选和临床药物监测,帮助医生选择合适的药物治疗方案。
2. 生物学研究生物芯片技术在基因组学、蛋白质组学和细胞生物学等领域也有广泛应用。
通过生物芯片可以快速高通量地检测上千个基因或蛋白质的表达水平,帮助揭示细胞信号传导、基因调控和蛋白质互作等机制。
此外,生物芯片还可以应用于病毒检测、疫苗研发和转基因技术等领域。
3. 环境监测生物芯片技术在环境监测中也有广泛应用。
通过将特定的生物传感器集成到芯片上,可以对水质、空气质量和土壤污染等进行实时监测和分析。
生物芯片的高灵敏度和高速度使得环境监测更加准确和高效。
三、生物芯片技术的未来发展随着技术的不断进步,生物芯片技术有望在以下几个方面得到进一步发展。
1. 单细胞分析目前的生物芯片多数是基于大量样本的分析,而随着单细胞技术的不断完善,未来的生物芯片有望实现对单个细胞进行高通量的分析。
这将有助于我们更好地了解细胞的异质性和发展过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物芯片
概
念
生物芯片是指包被在硅片、尼龙膜等固相支
持物上的高密度的组织、细胞、蛋白质、核 酸、糖类以及其它生物组分的微点阵。
芯片与标记的样品进行杂交,通过检测杂交
信号即可实现对生物样品的分析。
分类:基因芯片、蛋白质芯片、细胞芯片、组织芯片
元件型微阵列、通道型微阵列、生物传感芯片
分
类
基因芯片:reverse northern - dot blots
体质医学的研究
蛋白质与抗体芯片
蛋白质与抗体芯片
原理:
芯片上固定的分子是蛋白质如抗原或抗体等; 蛋白分子、蛋白与核酸、蛋白与其它分子的相互作用
应用:
蛋白质的结构功能研究;医学诊断和医疗; 新药开发;生物工业等
难点:
蛋白质的纯度;蛋白质的固定
发展趋势
降低所需费用 进一步提高自动化
扫描、数据分析等方面:软件开发
分析基因组中不同基因与性状或疾病的关系
3
疾病的诊断与治疗
遗传病相关基因的定位:产前筛查与诊断
肿瘤诊断 感染性疾病的诊断
4
药物研究中的应用
新药开发
发现药物的新功能
调查药物处理细胞后基因的表达情况 对药物进行毒性评价
5
基因芯片在中医学领域中的应用
药物筛选
中医“证”本质的研究
针灸原理研究
6
其它应用
环境化学毒物的筛选
合于大量不同靶DNA的分析,
模式二:将大量探针分子固定于支持物上,
适合对同一靶DNA进行不同探针序列的分
析。
基因芯片原理
将大量探针分子固定于支持物(substrate)上,
然后与标记的样品进行杂交,通过检测杂交信号 的强弱进而判断样品中靶分子的数量。
基因芯片流程
样品制备 杂交 芯片制备
杂交信号检测
基因芯片:检测基因突变
基因表达谱芯片:检测基因表达水平
蛋白质芯片:蛋白质在载体上的有序排列,依
据蛋白质分子、蛋白质与核酸相互作用的原理
进行杂交、检测和分析。
组织芯片:从不同的组织内进行活体解剖后取
出圆柱状的组织,然后包埋在受体区组内
基因芯片(DNA片、cDNA芯片、Genomic芯片 模式一:是将靶DNA固定于支持物上,适
数据分析
芯片样品制备
一般以一张芯片需要3ug mRNA的量来计算
因个体差异、匀浆、研磨损耗等原因,送检样
品应多1-2倍
注意:样品保存时应保证避免RNA酶的分解作用
基因芯片的应用
1 基因表达分析:
分析基因表达时空特征
检测基因差异表达
发现新基因 大规模测序
2
基因型、基因突变和多态性分析