结构非线性分析的有限单元法
非线性结构有限元分析概论

一、线性问题的基本方程
由复杂结构受力平衡问题的虚功方程有:
v T dv vuT qvdv suT qsds u0T R0
vmu
T
••
u dv
v
Du
T
•
u
dv
(10-1)
上式左端为内力的虚功,右端为外力的功。
由于: u N u Bu C
式中 u 为单元体内的位移; u为节点位移; N 形函数阵;
t t t
T
S t t t
dvt
W t t
(10-18)
返回
其中:
W tt o
tv
u
T
q tt tv
中推荐采用BFGS法。
程序对几何非线性的考虑可采用完全的拉格朗
日公式或改进的拉格朗日公式。在非线性动态分析
中采用隐式时间积分(Newmarli法和Wilson- 法) 或显式时间积分(中心差分法)的方法。隐式时间
积分通常用来分析结构的振动问题,显式时间积分
主要用来分析波传布现象。
返回
第一节 有限元基本方程
解此方程也用隐式时间积分,显式时间积分或振形迭加
法求解。
返回
二、非线性问题的基本方程
对于非线性问题通常不能用一步直接求解方案,必须分成
若干步加载,按各个阶段不同的非线性性质逐步求解,即增量求
解方案。
1.增量形式的平衡方程:
已知设:0,△t,2△t‥‥的位移和应力(各载荷步的)
要求出:t+△t步时的位移和应力。
ov oe T o
o e dv
ov
o
T
t o
SdvtW t o来自ovoe Tt o
S
dv
非线性结构有限元分析

在程序中,对增量方程求解的平衡迭代采用修正 的牛顿迭代法或BFGS法。 1. 修正的牛顿迭代法。它与完全的牛顿法的不同在 于迭代过程中系数矩阵保持不变,因此不需要重新形 成和分解刚度阵,从而大大减少了计算量。但是这样 又带来了收敛速度慢和发散问题,对此程序中加入了 加速收敛和发散处理的措施。这些措施并不明显地增 加求解的时间,但却会对修正的牛顿迭代法的性能有 所改进。 2. BFGS法。又称矩阵修正迭代,是拟牛顿法的一 种。它实际上是完全的牛顿法与修正的牛顿法之间的 一种折中方法。因为它在迭代过程中,并不重新形成
0 t t t k xi N k0 xik, xi N kt xik, xi N kt t x( i 10-28) k 1 k 1 k 1 n n n
0 k t k t t k 其中: xi , xi , xi 为节点k,i方向上在0,t, t+△t时刻的
返回
取位移插值函数为: n
t
写成矩阵形式:
t i
ui N u
k 1
t k k i
;
ui N k uik
k 1
n
(10-26) (10-27)
u [N ] u
t k i
;
ui [ N ]uik
其中:Nk为插值函数,[N]为形函数矩阵; t k ui ,uik 为k点i方向上t时刻的位移和位移增量; n为单元节点数。 取坐标变换为:
v
v s
{R} [ N ]T qv dv [ N ]T qs ds {R0}
{u}
外载荷阵 (10-6) 为节点位移对时间的二 次导数;
为节点位移对时间的一 次导数。
{u}
第9章 非线性问题的有限单元法

第9章非线性问题的有限单元法9.1 非线性问题概述前面章节讨论的都是线性问题,但在很多实际问题中,线弹性力学中的基本方程已不能满足,需要用非线性有限单元法。
非线性问题的基本特征是变化的结构刚度,它可以分为三大类:材料非线性、几何非线性、状态非线性。
1. 材料非线性(塑性, 超弹性, 蠕变)材料非线性指的是材料的物理定律是非线性的。
它又可分为非线性弹性问题和非线性弹塑性问题两大类。
例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。
2. 几何非线性(大应变, 大挠度, 应力刚化)几何非线性是有结构变形的大位移引起的。
例如钓鱼杆,在轻微的垂向载荷作用下,会产生很大的变形。
随着垂向载荷的增加,杆不断的弯曲,以至于动力臂明显减少,结构刚度增加。
3. 状态非线性(接触, 单元死活)状态非线性是一种与状态相关的非线性行为。
例如,只承受张力的电缆的松弛与张紧;轴承与轴承套的接触与脱开;冻土的冻结与融化。
这些系统的刚度随着它们状态的变化而发生显著变化。
9.2 非线性有限元问题的求解方法对于线性方程组,由于刚度方程是常数矩阵,可以直接求解,但对于非线性方程组,由于刚度方程是某个未知量的函数则不能直接求解。
以下将简要介绍借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。
1.迭代法迭代法与直接法不同,它不是求方程组的直接解,而是用某一近似值代人,逐步迭代,使近似值逐渐逼近,当达到允许的规定误差时,就取这些近似值为方程组的解。
与直接法相比,迭代法的计算程序较简单,但迭代法耗用的机时较直接法长。
它不必存贮带宽以内的零元素,因此存贮量大大减少,且计算中舍入误差的积累也较小。
以平面问题为例,迭代法的存贮量一般只需直接法的14左右。
在求解非线性方程组时,一般采用迭代法。
2. 牛顿—拉斐逊方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
非线性有限单元法在结构分析中的应用

Байду номын сангаас
第2 7卷第 l 期
20 06年 2月
华
北
水
利
水
电
学
院
学
报
V0 .7 No. I2 1
Ju a fN r hn ntueo a rC nevn ya dHy ree tcP w r o r lo ot C iaIstt fW t o sra c n d lcr o e n h i e o i
变. 其特 征是 在材 料 变形 过程 中 , 力 和应 变不 再具 应 有 一一 对应 关系 , 应变 的 大小 与加 载历 史有 关 , 与时 间无关 , 载过程 中 , 力 与应 变之 间按 材料 固有 的 卸 应 弹性 规 律 变 化 , 全 卸 载 后 有 不 可 恢 复 的 残 余 完
Fb20 e .0 6
文章 编号 : 0 —53 (06 0 —0 1 0 1 2 64 20 ) 1 02— 3 0
非线性有 限单元法在 结构分析 中的应 用
杨 剑 ,周 家新2 寇 国伟2 ,
(. I 河海大 学土木工程 学院 , 江苏 南京 209 ; . 一师。 10 8 2 农 新疆 阿克 苏 830 ) 400
1 材 料 非 线 性 问题
材料 非 线性 问题 的主要 特征是 材 料 的应 力 一应 变关 系 表现 为非 线 性 性 质 , 由于 本 构 方程 的非 线 即 性 引起 整个 问题解 的非 线性 .
1 1 材料 非线性 本 构关 系 .
弹 性应 变增 量 与应力 增 量成正 比 。 服从 虎 克定律 3 材 料产 生 的塑 性 应 变 , . 大小 取 决 于加 载历 史 和 约定 条件 , 假定 塑 性 变形符 合正 交 流动 法则 , 塑 即 性 变形 方 向与屈 服 面正 交 , 性应 变增 量 为 塑
非线性有限元分析

非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。
但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。
对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。
这类问题的解决通常有两种途径。
一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。
但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。
因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。
特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。
已经发展的数值分析方法可以分为两大类。
一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。
其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。
但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。
另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。
如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。
诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。
但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。
1960年,发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。
非线性结构有限元分析

t t t k xi N k0 xik, xi N kt xik, xi N kt t x( i 10-28) k 1 k 1 k 1
n
n
n
0 k t k t t k 其中: xi , xi , xi 为节点k,i方向上在0,t, t+△t时刻的 节点坐标值。
(10-25)
T T t T t t t e C e dv dv W e t tv t t t tv t tv t dv
此为改进的拉格朗日( U·L )公式。 三、非线性问题有限元基本方程 有了方程(10-19),(10-25)式,就可以按通常的方 法进行有限元离散,从而得到非线性问题的有限元基本方程。
第一节
有限元基本方程
一、线性问题的基本方程 由复杂结构受力平衡问题的虚功方程有:
T T T v v v s s
dv u q dv u q ds u R
T 0 0
mu u dv Du u dv
[M ]
t t
{u} [ D]
t t
{u} [ K ]t t {u} t t {R} (10-8)
解此方程也用隐式时间积分,显式时间积分或振形迭加 法求解。
二、非线性问题的基本方程 对于非线性问题通常不能用一步直接求解方案,必须分成 若干步加载,按各个阶段不同的非线性性质逐步求解,即增量求 解方案。 1.增量形式的平衡方程: 已知设:0,△t,2△t‥‥的位移和应力(各载荷步的) 要求出:t+△t步时的位移和应力。 ①全拉格朗日(T·L)公式 以t=0时刻状态为度量基准,求t+△t时刻的值。 由虚功方程: 其中:
悬索结构的非线性有限元分析

第9章-非线性问题的有限单元法

第9章非线性问题的有限单元法9.1 非线性问题概述前面章节讨论的都是线性问题,但在很多实际问题中,线弹性力学中的基本方程已不能满足,需要用非线性有限单元法。
非线性问题的基本特征是变化的结构刚度,它可以分为三大类:材料非线性、几何非线性、状态非线性。
1. 材料非线性(塑性, 超弹性, 蠕变)材料非线性指的是材料的物理定律是非线性的。
它又可分为非线性弹性问题和非线性弹塑性问题两大类。
例如在结构的形状有不连续变化(如缺口、裂纹等)的部位存在应力集中,当外载荷到达一定数值时该部位首先进入塑性,这时在该部位线弹性的应力应变关系不再适用,虽然结构的其他大部分区域仍保持弹性。
2. 几何非线性(大应变, 大挠度, 应力刚化)几何非线性是有结构变形的大位移引起的。
例如钓鱼杆,在轻微的垂向载荷作用下,会产生很大的变形。
随着垂向载荷的增加,杆不断的弯曲,以至于动力臂明显减少,结构刚度增加。
3. 状态非线性(接触, 单元死活)状态非线性是一种与状态相关的非线性行为。
例如,只承受张力的电缆的松弛与张紧;轴承与轴承套的接触与脱开;冻土的冻结与融化。
这些系统的刚度随着它们状态的变化而发生显著变化。
9.2 非线性有限元问题的求解方法对于线性方程组,由于刚度方程是常数矩阵,可以直接求解,但对于非线性方程组,由于刚度方程是某个未知量的函数则不能直接求解。
以下将简要介绍借助于重复求解线性方程组以得到非线性方程组解答的一些常用方法。
1.迭代法迭代法与直接法不同,它不是求方程组的直接解,而是用某一近似值代人,逐步迭代,使近似值逐渐逼近,当达到允许的规定误差时,就取这些近似值为方程组的解。
与直接法相比,迭代法的计算程序较简单,但迭代法耗用的机时较直接法长。
它不必存贮带宽以内的零元素,因此存贮量大大减少,且计算中舍入误差的积累也较小。
以平面问题为例,迭代法的存贮量一般只需直接法的14左右。
在求解非线性方程组时,一般采用迭代法。
2. 牛顿—拉斐逊方法ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 结构非线性分析的有限单元法简介
⑤ 重新计算位移增量,进而计算单元应变增量和等 效应变增量,依次修改相应的m值。重复以上④~⑤步骤 计算过程,一般修改m值2~3次即可 ⑥ 计算位移和应力增量,并将位移、应变、应力增 量迭加到增量作用前的水平上。 ⑦ 重复④~⑥步骤计算过程,直至完成所 有的增量步。
e v 1 2 E
粘 弹 性 元 件
式中
——粘性系数,
v ——蠕变应变。
粘弹性元件并联——开尔文 (Voigt— Kelvin)模型,一般描 述材料的蠕变特性。其特点
1 2 e v E
1
一般情况下,
故可得其解为
n1 n n1
图10-3 N—R迭代法的几何意义
图10-4 修正牛顿法迭代几何意义
7
第五章 结构非线性分析的有限单元法简介
5.2.3 载荷增量法
, K T P 0
对于应力已超过屈服应力的单元,单元刚度矩阵
返 回 章 节 目 录
k P 按弹塑性 刚度矩阵计算。
k P V B T DP B dV
一般过渡单元刚度矩阵为
kt V BT Dt B dV
18
第五章 结构非线性分析的有限单元法简介
式23
第五章 结构非线性分析的有限单元法简介
5.4.2 几何非线性有限元分析
由虚功原理
K P
10
第五章 结构非线性分析的有限单元法简介
(a) 非线性弹性问题
(b) 弹塑性问题
(c) 理想塑性问题
(d) 强化塑性问题
图10-6 材料非线性问题
11
第五章 结构非线性分析的有限单元法简介
(3)蠕变与应力松弛问题 在一定温度范围内,材料在固定温度和不变载荷作 用下,其变形随时间缓慢而增加的现象称之为蠕变。
,
为载荷因子,用来描述载荷变化的参数, 对应于
对应于 ,则 , 0
上式的泰勒展开式为
, ,
非线性方程组 0 在 n 附近的近似
n
F 0
线性方程组为
F n 0
n 1 F n n
第五章 结构非线性分析的有限单元法简介
5.1 非线性问题分类及求解 5.2 非线性问题求解方法 5.3 材料非线性 5.4 几何非线性 5.5 边界非线性 5.6 非线性弹性稳定性问题 5.7非线性分析特点 5.8 ANSYS非线性结构计算示例 5.9ANSYS稳定性计算示例
1
第五章 结构非线性分析的有限单元法简介
图10-8 几何非线性问题
第五章 结构非线性分析的有限单元法简介
几何非线性问题比线性问题复杂得多,非线性问题与 线性问题主要不同之处如下。 a.对于大位移、小应变问题,虽然应力应变关系是 线性关系,但计算应变位移关系时,位移的高阶导数项的 影响不能够忽略,因而应变与位移呈现非线性关系。 b.对于有限变形问题,即大位移、大应变的情况, 应力——应变关系也是非线性的。 c.几何非线性问题的平衡方程组,建立在结构变形 后的位形状态上,而这个位形状态在求解过程中总是变 动的。 d.随着有限位形的变化,材料的本构方程亦发生变 化。采用不同的参考位形将得出不同的本构方程式。
5.1.2 非线性问题求解
非线性问题用有限单元法求解的步骤和线性问题 基本相同,不过求解时需要多次反复迭代,基本三大 步骤如下: (1) 单元分析 非线性问题与线性问题的单元刚度矩阵不同,仅为材 料非线性时, 使用材料的非线性物理(本构)关系。 仅 为几何非线性时, 在计算应变位移转换矩阵[B]时, 应该 考虑位移的高阶微分的影响。 同时, 具有材料和几何非 线性的问题,受到两种非线性特性的藕合作用。
5.1 非线性问题分类及求解
5.1.1 非线性问题分类
当材料是线弹性体,结构受到载荷作用时,其产生 的位移和变形是微小的,不足以影响载荷的作用方向 和受力特点。静力平衡方程表示为:
K P
其基本方程的特点如下:
a.材料的应力与应变,即本构方程为线性关系。 b.结构应变与位移微小、即几何方程保持线性关系。 c.结构的平衡方程属于线性关系,且平衡方程建立于结 构变形前,即结构原始状态的基础之上。 d. 结构的边界(约束)条件为线性关系。
9
第五章 结构非线性分析的有限单元法简介
图10-5 载荷增量法的几何意义
5.3 材料非线性
5.3.1 材料非线性特征
材料非线性问题可划分为以下三种类型。 (1)非线性弹性问题 (2)弹塑性问题 有限单元法求解方程的形式相同,即表现为
D D
返 回 章 节 目 录
K BT D BdV
不同时满足上述条件的工程问题称为非线性问题。
2
第五章 结构非线性分析的有限单元法简介
习惯上将不满足条件a的称为材料非线性;不能够满 足条件b、c的称为几何非线性;不满足条件d的称为边界 非线性 。对于兼有材料非线性和几何非线性的问题称为 混合非线性问题 。 对于上述非线性问题总可归结为两大 类,即材料非线性和几何非线性。
将平衡方程写成如下迭代格式
返 回 章 节 目 录
KT n n1 P 0
具体迭代过程简述如下 取初始值 0
5
第五章 结构非线性分析的有限单元法简介
则得到
KT 0 KT 0
1 K T 0 1 P
3
第五章 结构非线性分析的有限单元法简介
(2) 整体刚度矩阵集成
整体刚度矩阵集成、平衡方程的建立以及约束处理, 与线性问题求解相似 。 (3) 非线性平衡方程求解 对于几何非线性问题,平衡方程必须建立在变形后 的位置,严格来讲是建立在结构的几何位置及变形状态 上,简称为位形状态。因而,非线性问题的平衡方程表 为 KT P
— —当 s时的瞬时应变
粘 塑 性 元 件
17
第五章 结构非线性分析的有限单元法简介
5.3.3 弹塑性问题有限元分析
(1) 单元刚度矩阵 单元刚度矩阵可分成三种情况来考虑,即弹性阶段、 过渡阶段和弹塑性阶段。
对于应力处于弹性阶段的单元,单元刚度矩阵 k e 按弹性问题处理
k e V B T DB dV
粘性 元件
高温环境下 的金属材料、 地壳岩石等。
t ——时间
理想塑性 塑性 元件 强化塑性 式中
s
s
s s H
( 0)
( 0) (>0)
——屈服应力,
H——塑性强化模量。
岩石在承受 的荷载超过 一定值时, 如较高的围 岩压力时表 现出理想塑 性特性。
14
第五章 结构非线性分析的有限单元法简介
弹塑性变形时总应变包括 两部分。
弹塑 性 元件
e p
式中 e ——弹性应变,
p ——塑性应变。 加载时使用增量理论。
应力足够大 时的金属、 岩石、土壤。
15
第五章 结构非线性分析的有限单元法简介
粘弹性元件串联——麦克斯韦 尔(Maxwll)模型,一般描述材 料的松弛特性。其特点
令 得 则有
KT KT ,
P
KT P 0
8
第五章 结构非线性分析的有限单元法简介
或为 K T 1 P 假设将载荷因子 分为m个增量,并设
0 0 1 2 m 1
KT P
按照增量法求解时,步骤如下。 ① 首先求出全部载荷向量 P 作用之下的弹性解 e
量
② 计算由于弹性解 e 产生的相应等效应力 e ,计算各单元由此产生的应变增 ③ 施加载荷增量 P
e
④ 根据每个单元的变形状态(弹性、塑性或弹塑过 渡区),计算其单元刚度矩阵,集成形成总体刚度矩阵。
⑧ 作卸载计算,求出残余应力和残余应变。 ⑨ 输出计算结果。
21
第五章 结构非线性分析的有限单元法简介
5.4 几何非线性
5.4.1 几何非线性特征
几何非线性问题又可分为两大类,即大位移、小应 变问题和大位移、大应变问题。
返 回 章 节 目 录
(a) 大位移、小应变问题
(b) 大位移、大应变问题
22
得到改进解
重复上述过程,总结得出近似递推公式
K T n K T n
n1 K T 1 P n
以一维非线性问题为例, 直接迭代法的几何意义见图 10-2。
图10-2 直接迭代法的几何意义
6
第五章 结构非线性分析的有限单元法简介
5.2.2 牛顿—拉裴逊(Newton—Raphson)法
n1 n
有 相应载荷为
n 1
m
n
1
Pn n P Pn Pn1 Pn n P
1
则方程组的迭代公式为 n K T n Pn
n1 n n
当满足收敛准则时,迭代终止。
求解时,一般是将非线性问题转化成一系列线性化逼 近的方法求之。即
K T P 0
求解的方法按照载荷的处理方式可分为全量法和增 量法两大类。
4
第五章 结构非线性分析的有限单元法简介
图10-1 位形描述示意图
5.2 非线性问题求解方法
5.2.1 直接迭代法
应力仅为应变的 函数,加卸载规 律相同。 在应力充分小的 { } D } { 情况下几乎包括 对于线弹性材料 所有材料例如, [D]]是常数,非 金属、岩石、玻 线弹性材料[D] 璃、木材。 是位移向量 的 函数。