E物质的磁性
第二章 磁学性能

电子的自旋运动产生自旋磁矩,电子自旋磁矩大小为
eh s s 2s B 2mc
式中,s为电子自旋磁矩角动量。
电子自旋磁矩在外磁场方向上的分量恰为一个玻 尔磁子,即 sz=B
式中,符号取决于电子自旋方向,一般取与外磁 场方向z一致的为正,反之为负。
原子中电子的轨道磁矩和电子的自旋磁矩构成了 原子固有磁矩,即本征磁矩。理论计算证明,如
反映磁化强度随磁场变化的速率。 量纲为1,其值可正、 可负,它表征物质本身的磁化特性。
将磁矩p放入磁感应强度为B的磁场中,它将受到磁场力的 作用而产生转矩,其所受力矩为L=p×B
此转矩力图使磁矩 p处于势能最低的方向。磁矩与外加磁场 的作用能称为静磁能。处于磁场中某方向的磁矩,所具有的 静磁能为 E= -p · B 在讨论材料的磁化过程和微观磁结构时,经常要考虑磁 体中存在的几种物理作用及其所对应的 能量,其中包括静磁 能。单位体积中的静磁能,即静磁能密度EH EH = -M· B = -MHcos 式中,为磁化强度M与磁场强度H的夹角。通常静磁能密度 EH在习惯上简称为静磁能。
抗磁体的磁化率与温度无关或变化极小。
凡是电子壳层被填满了的物质都属于抗磁性物质。 惰性气体,离子型固体(如氯化钠)等; 共价键的碳、硅、锗、硫、磷等通过共有电子而填满了 电子层,故也属于抗磁性物质; 大部分有机物质属于抗磁性物质。 金属中属于抗磁性物质的有铋、铅、铜、银等。
三、顺磁性
• 材料的顺磁性来源于原子的固有磁矩。
磁滞:从饱和磁化状态A点降低磁 场H时,磁感应强度B将不沿着原 磁化曲线下降而是沿AC缓慢下降。 剩余磁感应强度:当外磁场降为0 时,得到不为零的磁感应强度Br 矫顽力:将B减小到零,必须加的 反向磁场-Hc
铁磁性和亚铁磁性Ferri的种类...

=2m
r
洛伦兹力=-eB e0H
离心力的增加应该等于磁场增加引起的洛伦兹力(Lorentz force) 。
2m
r
e0H
既拉莫进动:
L
r
e0
2m
H
I ef e 2 r
a.弱抗磁体
从电磁学环路定律可知
EZ ds
2 rEZ
r20
dH dt
这里EZ是沿着切线上的电场,r是运动半径。
EZ
0
2
r
dH dt
所以电子将被加速,速度υ随着磁场增加△H,
=- eEZ t e0 rH
m
2m
外场H施加后电子的运动形状不发生变化,但是旋转轴向会与外加磁场H方
向成一定角度做拉莫进动(Larmor Precession),如图所示。拉莫运动角频
率ωL和电流I分别是:
L
r
0e
2m
H
I ef e 2 r
上述结果的前提是假设磁矩可在空间任意方向取向的,
然而从量子力学可知,在磁场中的磁矩的取向和大小是量子
化的。
gBJz
其中的Jz仅能取Jz=J,J-1,,,,-(J-1),-J。所以磁矩的平均 也只能对这些取向按以下形式进行:
M
Ng B
J Jz J
Jz
exp
gB
kT
HJ z
J Jz J
exp
2) 顺磁体 Paramagnetism
虽然大多数物质具有抗磁性,但含有铁族元素, 稀土元素的化合物,以及大多数金属,合金的磁化强 度与外界的磁场方向的平行,大小与磁场成正比。
M 0H 40H emu cm3 M
κ>0
M 4
磁学基础知识

磁现象及磁学物理量
pm
0 m
pe ql
pm qm l
m
iS
电偶极矩 磁偶极矩 磁矩
0 : 真空磁导率
4 107 H / m (SI )
1 (CGS)
磁化强度M 磁极化强度J
M
m
V
J
p
V
J 0M
(ESU)
kC kA c2
(EMU) 电流的定义式
CGS单位制(cm, g, s):高斯和韦伯发展起来
磁矩:emu(electric magnetic unit)
1emu 1Biot1cm2 10 A 1cm2 103 Am2
磁化强度M:高斯(G)
1G
1emu 1cm3
原子磁矩的来源: 电子自旋和电子运动
0
抗磁性
交换作用 拉莫尔进动
交换作用
交换作用是一种量子力学效应,
Eij 2Ji j Si S j
Ji j 称为交换积分
我们把这种交换作用等价为磁场Hm,称之为外斯分子场。
分子场的数量级大约在1000T左右! 交换作用是一种短程相互作用。
Ji j 0 铁磁性
(1 sin2 )
2
K sin2 c
一维纳米线:
K
0
M
2 s
2
Em
0
M
2 s
4
sin2
感生各向异性 磁场感生各向异性
应力感生各向异性
Ku
3 2
E磁性物理的基础-磁畴与技术磁化

H d NI
N称为退磁因子。对于形状规则的样品,N由样品 的几何形状和大小来决定。对于一个椭球样品, 在直角坐标系中,磁化强度在三个轴方向上的分 量为Ix ,Iy ,Iz , 则退磁因子N为 Hdx=-NxIx ,Hdy=-NyIy ,Hdz=-NzIz Nx+Ny+Nz=1 ( 4 [ CGS ] ) ( 4/3 ) ( 2 ) ( 4 ) 对于球形样品:a=b=c , Nx=Ny=Nz=N0=1/3 对于长园柱样品:a≫b=c,Nx=0,Ny=Nz=1/2 对于极薄园盘样品:a≪b,c,Ny=Nz=0,Nx=1
二、磁畴的形成
在铁磁体中,交换作用使整个晶体自发磁化到饱和,磁化强度的方向沿着晶体 内的易磁化轴,这样就使铁磁晶体内交换能和磁晶各向异性能都达到极小值。但 因晶体有一定的大小与形状,整个晶体均匀磁化的结果,必然产生磁极,磁极的 退磁场,增加了退磁能(1/2)NIS2。 例如对一个单轴各向异性的钴单晶。( a )图是整个晶体均匀磁化,退磁场能 最大( 如果设Is103高斯,则退磁能106尔格/厘米3 )。从能量的覌点出发,分为 两个或四个平行反向的自发磁化的区域( b ),( C )可以大大减少退磁能。 如果分为n个区域(即n个磁畴),能量约可减少 1/n,但是两个相邻的磁畴间的畴壁的存在,又增加 了一部分畴壁能。因此自发磁化区域(磁畴)的形成 不可能是无限的,而是畴壁能与退磁场能的和为极 小值为条件。 形成如图d,e的封闭畴将进一步降低退磁能,但 是封闭畴中的磁化强度方向垂直单轴各向异性方向, 因此将增加各向异性能。
U 2 JSi S j 2M B H m S j
j 1 j 1 z z
如果总共z个近邻值中有p个自旋值1/2,而q个自旋取值-1/2,则
物质的磁性与磁场效应

物质的磁性与磁场效应磁性是物质特性中的一种,指的是物质在外加磁场作用下表现出的磁性行为。
磁性的存在和磁场的效应是物质世界中一项重要的研究内容。
本文将探讨物质的磁性以及磁场对其产生的效应。
一、什么是磁性?磁性是指物质在外加磁场作用下表现出的吸铁、排斥、磁导率改变等现象。
在理论上,物质的磁性可以归结为微观电流的存在。
当物质内部存在电流时,会形成一个微小的磁矩,即磁化强度。
当外加磁场作用于物质时,磁矩会与外磁场相互作用,进而导致物质磁化。
二、物质的磁性分类根据物质对磁场的敏感程度,可将物质的磁性分为顺磁性、抗磁性和铁磁性。
1. 顺磁性:顺磁性物质在外加磁场作用下,磁矩与磁场方向相同,即被磁化,常见的有锰、铝等。
2. 抗磁性:抗磁性物质在外加磁场作用下,磁矩与磁场方向相反,即逆磁化,常见的有铜、银等。
3. 铁磁性:铁磁性物质在外加磁场作用下,磁矩与磁场方向相同,且磁矩较大,常见的有铁、镍等。
三、磁场对物质的效应磁场对物质的效应主要表现在磁介质、磁导体和磁远效应三个方面。
1. 磁介质:磁介质是能够产生磁化的物质。
当一个磁介质置于外加磁场中时,其分子或原子的磁矩会与外磁场相互作用,导致磁介质整体磁化。
这种磁化可以消失,即磁介质在去除外磁场的作用下,会恢复到原始状态。
磁介质常用于电磁设备中,如磁铁、磁卡、磁带等。
2. 磁导体:磁导体是对磁场具有强烈响应的物质。
当一个磁导体置于外加磁场中时,由于其导电性能,电子会受到洛伦兹力的作用,产生电流,进而产生磁场。
这个磁场与外磁场相互作用,导致磁导体内部的电子运动受到限制,进而产生电磁阻力,这就是磁场对磁导体的效应。
磁导体广泛应用于电动机、发电机等设备中。
3. 磁远效应:磁远效应是指磁场作用于物质后,在物质内部产生一系列的电磁效应。
例如在变压器中,磁场作用于铁芯上,产生感应电流,进而导致铁芯内部磁场的改变,实现电能传输和转换。
四、物质的磁性与应用物质的磁性不仅仅是一种自然现象,也是工程技术和科学研究的基础。
物质的磁性

物质的磁性
1物质的磁性
物质的磁性是指物质对磁场的反应能力,是理解物质结构和性质的重要体现。
从根本上讲,一个物质的磁性取决于它的原子的构成,原子的构成又取决于它的每个原子的电子的构型。
自古以来,物质的磁性一直被认为是影响物理和化学性质的重要因素,是研究化学性质和物理性质的一个核心内容。
1.1物质的磁性来源
早期,物质的磁性是由看不到的磁子的粒子性质以及电带的位置引起的。
此外,磁性也可以由由电子的自旋导致的。
科学家认为,电子在原子轨道上运动时,电子的積極性及自旋的存在,会令原子具有磁性。
另外,原子的结构以及原子的相互作用也会影响物质的磁性。
1.2物质的磁性相互作用
物质的磁性在微观与宏观方面都发挥着极其重要的作用。
在微观层面,物质的磁性会影响到原子分子的结构和电子的运动,从而影响到原子分子的化学反应;在宏观层面,物质的磁性会面对磁场而产生磁力,控制物质的形态结构,同时也影响到热效应,力学效应与化学反应。
总之,物质的磁性是统计物质结构与性质的重要性质之一,影响着物质在磁场中对有效力矢量的响应,影响物理性质和化学性质,与物质的结构有着直接联系,在物理与化学领域均占据着重要地位。
大学物理 第十五章 磁介质的磁化

临界温度Tc。在Tc以上,铁磁性完全消失而 成为顺磁质,Tc称为居里温度或居里点。不 同 的 铁 磁 质 有 不 同 的 居 里 温 度 Tc 。 纯 铁 : 770ºC,纯镍:358ºC。
居里
装置如图所示:将悬挂着的镍片移近永 久磁铁,即被吸住,说明镍片在室温下 具有铁磁性。用酒精灯加热镍片,当镍 片的温度升高到超过一定温度时,镍片 不再被吸引,在重力作用下摆回平衡位 置,说明镍片的铁磁性消失,变为顺磁 性。移去酒精灯,稍待片刻,镍片温度 下降到居里点以下恢复铁磁性,又被磁 铁吸住。
第15章 磁介质的磁化
§15.1 磁介质的磁化 磁化强度矢量 §15.2 磁场强度 有磁介质时的安培环路定理 §15.3 铁磁质 §15.4 磁路定理
作业:练习册 选择题:1 — 5 填空题:1 — 6 计算题:1 — 4
1
§1 磁介质的磁化 磁化强度矢量
1. 磁介质 磁介质:实体物质在磁场作用下呈现磁性,该物体称磁介质。 磁化:磁介质在磁场中呈现磁性(在磁场的作用下产生附加 磁场)的现象称为磁化。
B B0 B
I
I
磁介质
抗磁质: r 1, B B0
B与B0 反方向,
如氮、水、铜、银、金、铋等。
I
I
铁磁质: r 1, B B0 B与B0 同方向,
如铁、钴、镍等,
超导体是理想的抗磁体。
B0 B
3
2.分子电流模型和分子磁矩
原子中电子参与两种运动:自
pm B
旋及绕核的轨道运动,对应有轨道
矢量和为零。
极化、位移极化。
4
加外磁场时 : M Pm B
B B0 B
当外磁场存在时,各分子固有磁矩受磁场力矩的作用,或
磁场的磁势能与磁场强度

磁场的磁势能与磁场强度磁场是物理学中重要的概念之一,对于物体的运动和相互作用有着重要的影响。
磁场的磁势能和磁场强度是研究磁场性质的重要指标,本文将围绕这两个概念展开讨论。
一、磁场的基本概念磁场是指周围带有磁性物质的区域内存在的力场。
磁场通常由磁铁或电流所产生,根据磁感线的方向可以分为南北极。
磁场是矢量场,它具有方向和大小,可以用磁场强度来表示。
二、磁场的磁势能磁场中存在磁势能,指的是物体在磁场中由于运动而具有的能量。
磁场的磁势能与物体的位置有关,当物体在磁场中发生位移时,磁势能的大小会发生变化。
磁场中的物体具有磁性,受到磁场的作用力,类似于重力对物体的作用。
当物体由低势能区域移动到高势能区域时,它会受到磁场的吸引力;而当物体由高势能区域移动到低势能区域时,会受到磁场的排斥力。
磁场中的磁势能可以用以下公式来计算:E = -m · B其中,E表示磁势能,m表示磁矩,B表示磁场强度。
根据这个公式可以看出,磁势能的大小与磁矩和磁场强度有关。
三、磁场强度的定义和计算磁场强度是磁场的物理量,用H表示,是指单位磁场中所含的能量的大小。
磁场强度的计算公式为:H = B/μ0其中,B表示磁感应强度(也称磁感度),μ0表示真空中的磁导率。
磁场的强弱可以通过磁场强度来计量,磁感应强度B和磁场强度H之间的关系是通过磁导率来确定的。
在相同的磁场中,磁感应强度和磁场强度的数值大小是不同的,但它们之间存在着确定的关系。
四、磁场的应用与意义磁场在现实生活中有着广泛的应用,尤其是在电磁技术和磁共振成像方面。
磁场的作用可以使电流通过导线产生磁感应强度,从而实现电能到机械能的转换。
在磁共振成像中,利用磁场和射频场相互作用的原理,可以对人体组织进行非侵入式的成像,具有高分辨率和无辐射的优势。
同时,磁场也广泛应用于电动机、发电机和变压器等电磁设备中,提高了电能转换的效率和稳定性。
五、总结磁场的磁势能和磁场强度是研究和描述磁场性质的重要指标。