(完整版)高考导数题型归纳

(完整版)高考导数题型归纳
(完整版)高考导数题型归纳

高考压轴题:导数题型及解题方法

(自己总结供参考)

一.切线问题

题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .

(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )

(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--)

练习 1. 已知曲线x x y 33

-=

(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x )

(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。

2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)

题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。

例 求曲线2x y =与曲线x e y ln 2=的公切线方程。(答案02=--e y x e )

练习 1.求曲线2x y =与曲线2)1(--=x y 的公切线方程。(答案012=--y x 或0=y )

2.设函数,ln 2)1()(x x x p x f --=2

)(x x g =,直线l 与函数)(),(x g x f 的图象都相切,且与函数

)(x f 的图象相切于(1,0)

,求实数p 的值。(答案1=p 或3)

二.单调性问题

题型1 求函数的单调区间。

求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。

例 已知函数x a x x a x f )1(2

1ln )(2+-+= (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)

(2)若[]e x ,2∈,求函数)(x f 的单调区间。(利用极值点与区间的关系分类)

练习 已知函数12

1)1()(2++-+-=kx x e k x e x f x x ,若()2,1-∈x ,求函数)(x f 的单调区间。(利用极值点的大小关系、及极值点与区间的关系分类)

题型2 已知函数在某区间是单调,求参数的范围问题。

方法1:研究导函数讨论。

方法2:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立问题,

方法3:利用子区间(即子集思想);首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子集。

注意:“函数)(x f 在()n m ,上是减函数”与“函数)(x f 的单调减区间是()b a ,”的区别是前者是后者的子集。

例 已知函数2()ln f x x a x =++

x

2在[)+∞,1上是单调函数,求实数a 的取值范围. (答案[)+∞,0)

练习 已知函数232

)1(31)(x k x x f +-=,且)(x f 在区间),2(+∞上为增函数.求实数k 的取值范围。(答案:31-

题型3 已知函数在某区间的不单调,求参数的范围问题。

方法1:正难则反,研究在某区间的不单调

方法2:研究导函数是零点问题,再检验。

方法3:直接研究不单调,分情况讨论。

例 设函数1)(23+++=x ax x x f ,R a ∈在区间??

?

??1,21内不单调,求实数a 的取值范围。 (答案:()3,2--∈a ))

三.极值、最值问题。

题型1 求函数极值、最值。

基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。

例 已知函数12

1)1()(2++-+-=kx x e k x e x f x x ,求在()2,1-∈x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类)

练习 已知函数32

()2f x x mx nx =++-的图象过点(1,6)--,且函数()()6g x f x x '=+的图象关于y 轴对称.若0a >,求函数()y f x =在区间(1,1)a a -+内的极值.

(答案:当01a <<时,()f x 有极大值2-,无极小值;当13a <<时,()f x 有极小值6-,无极大值;当1a =或3a ≥时,()f x 无极值.)

题型2 已知函数极值,求系数值或范围。

方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。

方法2.转化为函数单调性问题。

例 函数1)1(2

1)1(3141)(234+----+=

x p p px x p x x f 。0是函数)(x f 的极值点。求实数p 值。(答案:1)

练习 已知函数2()ln ,.f x ax x x a =--∈R 若函数()f x 存在极值,且所有极值之和大 15ln 2

-,求a 的取值范围。(答案:()+∞,4)

题型3 已知最值,求系数值或范围。

方法:1.求直接求最值;2.转化恒成立,求出范围,再检验。

例 设a ∈R ,函数233)(x ax x f -=.若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. (答案:??

? ??∞-56,)

练习 已知函数x x a ax x f ln )2()(2

++-=, 当0>a 时,函数)(x f 在区间[]e ,1上的最小值是2-,求实数a 的取值范围。(答案:[)+∞,1)

四.不等式恒成立(或存在性)问题。

一些方法

1.若函数()n m x f ,)(值域,a >)(x f 恒成立,,则n a ≥

2.对任意()()n m x n m x ,,,21∈∈,)()(21x g x f ≥恒成立。则≥min 1)(x f max 2)(x g 。

3.对()()n m x n m x ,,,21∈?∈?,)()(21x g x f ≥成立。则≥max 1)(x f min 2)(x g 。

4.对(),,1n m x ∈,恒成立)()(11x g x f ≥。转化0)()(11≥-x g x f 恒成立

4. 对()()n m x n m x ,,,21∈?∈?,)()(21x g x f ≥成立。则≥min 1)(x f min 2)(x g 。

5. 对()()n m x n m x ,,,21∈?∈?,)()(21x g x f ≥成立。则≥max 1)(x f max 2)(x g

6. 对()()n m x n m x ,,,21∈∈,

a x x x f x f ≥--2

121)()(成立。则构造函数ax x f x t -=)()(。 转化证明)(x t 在()n m ,是增函数。

题型1 已知不等式恒成立,求系数范围。

方法:(1)分离法:求最值时,可能用罗比达法则;研究单调性时,或多次求导。

(2)讨论法: 有的需构造函数。关键确定讨论标准。分类的方法:在求极值点的过程中,

未知数的系数与0的关系不定而引起的分类;有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发,做到不重复,不遗漏。

(3)数形结合:

(4)变更主元

解题思路 1.代特值缩小范围。2. 化简不等式。3.选方法(用讨论法时,或构造新函数)。

方法一:分离法。

求最值时,可能用罗比达法则;研究单调性时,或多次求导。

例 函数a x x e x f x +-=)ln ()(2。在[]e x ,1∈e x f ≥)(恒成立,求实数a 取值范围。(方法:分离法,多次求导答案:[)+∞,0)

练习 设函数2)1()(ax e x x f x --=,若当x ≥0时)(x f ≥0,求a 的取值范围。(方法: 分离法,用罗比达法则答案:(]1,∞-)

方法二:讨论法。

有的需构造函数。关键确定讨论标准。分类的方法:在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。分类必须从同一标准出发,做到不重复,不遗漏。

例 设函数f(x)=21x e x ax ---.若当x ≥0时f(x)≥0,求a 的取值范围.

(答案:a 的取值范围为1,2??-∞ ???

练习 1.设函数x e

x f --=1)( ,0≥x 时,1)(+≤ax x x f ,求实数a 的取值范围 (答案:??????2

1,0)

2.函数x

x a x f 1ln )(+=,当.0>a 对x ?>0,1)ln 2(≤-x ax ,求实数a 取值范围。 (多种方法求解。(答案:()1,0-e

方法三:变更主元

例:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,

432

3()1262

x mx x f x =--,若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. (答案:2)

练习 设函数x x x f ln )(=。证明:当a >3时,对任意0>x ,x e a f x a f ?<+)()(成立。 (提示x e a f x a f ?<+)()(化为

a a x e a f e x a f )()(?<++),研究a e

a f a g )()(=的单调性。)

五.函数零点问题

题型1:判断函数零点的个数。

方法:方程法;函数图象法;转化法;存在性定理

例.设31,()(1)ln 3a R f x x ax a x ∈=-++-.若函数()y f x =有零点,求a 的取值范围. (提示:当1>a 时,0)1(>f ,0)3(

????+∞,31

练习.求过点(1,0)作函数x x y ln -=图象的切线的个数。(答案:两条)

题型2:已知函数零点,求系数。

方法:图象法(研究函数图象与x 轴交点的个数);方程法;转化法(由函数转化方程,再转化

函数,研究函数的单调性。)

例.函数3)1(1ln )(--+-=x a x x x f 在(1,3)有极值,求实数a 的取值范围。(答案??? ??-∞-181,)

练习:1.证明:函数x x f ln )(=的图象与函数ex e

x g x 21)(-=

的图象无公共点。

六.不等式证明问题

方法1:构造函数,研究单调性,最值,得出不等关系,有的涉及不等式放缩。

方法2:讨论法。

方法2.研究两个函数的最值。如证)()(x g x f ≥,需证)(x f 的最小值大于)(x g 的最大值即可。

方法一:讨论法 例:已知函数ln ()1a x b f x x x

=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。证明:

当0x >,且1x ≠时,ln ()1

x f x x >

-。

练习:.已知函数()(0)x

f x ax e a =->.当11a e ≤≤+时,.试讨论)(x f 与x 的大小关系。

方法二:构造函数 例:已知函数

2()(0)f x ax kbx x =+>与函数()ln ,、、g x ax b x a b k =+为常数,(1)若()g x 图

象上一点(2,(2))p g 处的切线方程为:22ln 220x y -+-=,设112212(,),(,),()A x y B x y x x <是

函数()y g x =的图象上两点,21021()y y g x x x -'=-,证明:102x x x <<

练习:1.设函数x x x f ln )(=。证明:当a >3时,对任意0>x ,x e a f x a f ?<+)()(成立。

方法三:构造函数,不等式放缩

例.已知函数)(ln )(2R m mx x x f ∈+=

(I);若m=0,A(a,f(a))、B(b ,f(b))是函数f(x)图象上不同的两点.且a>b>0, )(x f '为f(x)的导函数,求证:)()()()2(b f b

a b f a f b a f '<--<+'

(II)求证 :*)(1...31211)1ln(122...725232N n n n n ∈++++<+<+++++

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

2020高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>. 一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x .

所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令 以下分两种情况讨论: ①a 若> 3 2 ,则a 2-<2-a .当x 变化时,)()('x f x f ,的变化情况如下表: )(所以x f .3)2()2(2)(2a ae a f a f a x x f -=---=,且处取得极大值在函数 .)34()2()2(2)(2--=---=a e a a f a f a x x f ,且处取得极小值在函数 ②a 若<3 2 ,则a 2->2-a ,当x 变化时,)()('x f x f ,的变化情况如下表:

高考数学导数题型归纳(_好)

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2 ()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

高考数学导数题型归纳(文科)-

文科导数题型归纳 高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常 数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330 g m g m <-? ?<--

导数高考常见题型

导数的应用常见题型 一、常用不等式与常见函数图像 1、1+≥x e x x x ≤+)1ln( 1-ln 1-1x x x ≤≤ 2、常见函数图像 二、选择题中的函数图像问题 (一)新型定义问题 对与实数,a b ,定义运算“*”:a *b=22,,a ab a b b ab a b ì-??í?->?,设()(21)*(1)f x x x =--且关于x 的方程()()f x m m R =?恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围为 (二)利用导数确定函数图像 ①已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围为( ) A 、(2,)+? B 、(,2)-? C 、(1,)+? D 、(,1)-? ②设函数()f x =(21)x e x ax a --+,其中a 1,若存在唯一的整数0x ,使得0()f x 0,则a 的取值范围是( ) (A)[-32e ,1) (B)[-32e ,34) (C)[32e ,34) (D)[32e ,1) 三、导数与单调性

实质:导数的正负决定了原函数的单调性 处理思路:①求导,解不等式[0)('0)('<>x f x f 或] ②求解0)('=x f ,分段列表 ③根据)('x f y =的图像确定 (一)分段列表 ①已知函数()f x =2x x e e x --- (Ⅰ)讨论()f x 的单调性; (Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值; ②已知函数x x xe e x x f -+-=2)2()(,讨论函数的单调性 ③设函数mx x e x f mx -+=2)( (Ⅰ)证明:)(x f 在(-∞,0)单调递减,在(0,+∞+)单调递增; (Ⅱ)若对于任意]1,0[,21∈x x ,都有1)()(21-≤-e x f x f ,求m 的取值范围 (二)根据导函数图像确定 ①已知函数x x a ax x f ln )1(2 1)(2+-+-=,试讨论函数的单调性 ②已知函数a a ax x x a x x f +--++-=2222ln )(2)(,其中0>a .设)(x g 是)(x f 的导函数,讨论)(x g 的单调性

导数大题方法总结

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

高考导数压轴题型归类总结

高考导数压轴题型归类总结 一、导数单调性、极值、最值的直接应用 已知函数1()ln 1()a f x x ax a R x -=-+-∈ ⑴当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程; ⑵当1 2 a ≤时,讨论()f x 的单调性. 1. 已知函数221()2,()3ln .2 f x x ax g x a x b =+=+ ⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值; ⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。 2. (最值直接应用)已知函数)1ln(2 1)(2x ax x x f +--=,其中a ∈R . (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间; (Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围. 设函数221 ()(2)ln (0)ax f x a x a x +=-+ <. (1)讨论函数()f x 在定义域内的单调性; (2)当(3,2)a ∈--时,任意12,[1,3]x x ∈, 12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围. 3. (最值应用,转换变量) 4. (最值应用) 已知二次函数()g x 对x R ?∈都满足2(1)(1)21g x g x x x -+-=--且(1)1g =-,设 函数19 ()()ln 28 f x g x m x =+++(m R ∈,0x >). (Ⅰ)求()g x 的表达式; (Ⅱ)若x R +?∈,使()0f x ≤成立,求实数m 的取值范围;

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

2019《导数》题型全归纳

2019届高三理科数学《导数》题型全归纳 学校:___________姓名:___________班级:___________ 一、导数概念 29.函数,若满足,则__________. 二、导数计算(初等函数的导数、运算法则、简单复合函数求导) 1.下列式子不正确的是( ) A. B. C. D. 2.函数的导数为() A. B. C. D. 3.已知函数,则() A. B. C. D. 33.已知函数,为的导函数,则的值为______. 34.已知,则__________. 三、导数几何意义(有关切线方程) 31.若曲线在点处的切线方程为_________. 30.若曲线在点处的切线与曲线相切,则的值是_________. 32.已知,过点作函数图像的切线,则切线方程为__________. 4.已知曲线f(x)=lnx+在点(1,f(1))处的切线的倾斜角为,则a的值为()A. 1 B.﹣4 C.﹣ D.﹣1 1

5.若曲线y=在点P处的切线斜率为﹣4,则点P的坐标是() A.(,2) B.(,2)或(﹣,﹣2) C.(﹣,﹣2) D.(,﹣2) 6.若直线与曲线相切于点,则( ) A. 4 B. 3 C. 2 D. 1 7.如果曲线在点处的切线垂直于直线,那么点的坐标为()A. B. C. D. 8.直线分别与曲线交于,则的最小值为() A. 3 B. 2 C. D. 四、导数应用 (一)导数应用之求函数单调区间问题 9.函数f(x)=x-lnx的单调递减区间为( ) A. (0,1) B. (0,+∞) C. (1,+∞) D. (-∞,0)∪(1,+∞) 10.函数f(x)=2x2-ln x的单调递减区间是( ) A. B.和 C. D.和 11.的单调增区间是 A. B. C. D. 12.函数在区间上( ) A.是减函数 B.是增函数 C.有极小值 D.有极大值 13.已知函数在区间[1,2]上单调递增,则a的取值范围是

导数题型分类大全

导数题型分类(A ) 题型一:导数的定义及计算、常见函数的导数及运算法则 (一)导数的定义:函数)(x f y =在0x 处的瞬时变化率x x f x x f x y o x x ?-?+=??→?→?)()(lim lim 000称为函数)(x f y =在0x x =处的导数,记作)(0/ x f 或0/x x y =,即 x x f x x f x f x ?-?+=→?) ()(lim )(0000/ 如果函数)(x f y =在开区间),(b a 内的每点处都有导数,此时对于每一个),(b a x ∈,都对 应着一个确定的导数)(/ x f ,从而构成了一个新的函数)(/ x f 。称这个函数)(/ x f 为函数 )(x f y =在开区间内的导函数,简称导数,也可记作/y ,即)(/x f =/y = x x f x x f x ?-?+→?) ()(lim 导数与导函数都称为导数,这要加以区分:求一个函数的导数,就是求导函数;求函数)(x f y =在0x 处的导数0 / x x y =,就是导函数)(/ x f 在0x 处的函数值,即0 / x x y ==)(0/ x f 。 例1.函数()a x x f y ==在处的导数为A ,求 ()()t t a f t a f t 54lim +-+→。 例2.2 3 33 x y x x += =+求在点处的导数。 (二)常见基本初等函数的导数公式和运算法则 : +-∈==N n nx x C C n n ,)(; )(01''为常数; ;sin )(cos ;cos )(sin ''x x x x -== a a a e e x x x x ln )(;)(''==; e x x x x a a log 1)(log ;1)(ln ''== 法则1: )()()]()(['''x v x u x v x u ±=± 法则2: )()()()()]()([' ''x v x u x v x u x v x u += 法则3: )0)(() ()()()()(])()([2' ''≠-=x v x v x v x u x v x u x v x u (理)复合函数的求导:若(),()y f u u x ?==,则'()'()x y f x x ?'= 如,sin ()'x e =_______________;(sin )'x e =_____________ 公式1 / )(-=n n nx x 的特例:①=')x (______; ②=' ?? ? ??x 1_______, ③=')x (_________. 题型二:利用导数几何意义及求切线方程 导数的几何意义:函数)(x f y =在0x 处的导数是曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(0x f '存在,则曲线)(x f y =在点()(,00x f x )处的切线方程为______________________

导数大题 题型总结

导数大题 1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31 ()(10)10 V t H t =-(H 为常数) ,其图象如图所示. 记此堆雪从融化开始到结束的平均融化速度为 3(m /h)v . 那么瞬时融化速度等于3(m /h)v 的时刻 是图中的( ) (A )1t (B )2t (C )3t (D )4t 2.函数3()e x f x x =的极值点0x = ,曲线()y f x =在点00(,())x f x 处的切线方程是 . 3.已知函数2 ()ln f x a x bx =-,a ,b ∈R . (Ⅰ)若()f x 在1x =处与直线1 2 y =- 相切,求a ,b 的值; (Ⅱ)在(Ⅰ)的条件下,求()f x 在1[,e]e 上的 最大值; (Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞, 2(e,e ]x ∈都成立,求a 的取值范围. 解:(Ⅰ)()2a f x bx x '= -. 由函数()f x 在1x =处与直线1 2 y =- 相切,得(1)0,1(1).2f f '=???=-??即20,1.2 a b b -=?? ?-=-?? 解 得 a b ?? ??? (2) ,定义域为此时()f x x x '=-2=x x .令 ()0f x '>,解得01x <<,令()0f x '<,得 1x >. 所以()f x 在( 1 e ,1)上单调递增,在(1,e )上单调递减, 所以 ()f x 在1 [,e]e 上的最大值为 1 (1)2 f =-. …………………… …………8分 (Ⅲ)若不等式()f x x ≥对所有的 (,0]b ∈-∞,2(e,e ]x ∈都成立, 即 2ln a x bx x -≥对所有的 (,0]b ∈-∞,2(e,e ]x ∈都成立, 即2ln a x x bx -≥对所有的(,0]b ∈-∞, 2(e,e ]x ∈都成立, 即 ln 0 a x x -≥对 2(e,e ] x ∈恒成 立. …………………11分

相关文档
最新文档