(完整版)高考导数题型归纳
高考导数题型及方法总结(思维导图)

函数极值最值
和差型导函数 积商型导函数 指数e^x混合型 幂次x^n混合型
逆构造解不等式
求函数零点个数 求函数极值最值
抽象导函数问题பைடு நூலகம்
导数
恒成立求参
参变分离 分离函数 必要性探路 端点效应 分类讨论求最值 隐极值代换 双任意双存在问题
不等式证明
一元不等式证明
指对处理技巧 基本放缩 隐零点代换 凹凸反转
直线与曲线最短距离 对称曲线最短距离 公共切点 不同切点
在点切线 过点切线 距离最值
公切线问题
导数的几何意义
一次型
因式分解型 不能因式分解
二次型
二次求导
可以参变分离
几何意义 函数性质
不能参变分离
常见函数图像 含参讨论单调性 已知单调性求参
函数单调性
求函数极值最值 已知极值最值求参 极值最值范围问题
双重最值问题
二元不等式证明
主元法 同构法
齐次式法
极值点偏移问题 数列不等式证明
对称构造 比值代换\差值代换 对数均值\指数均值 切线构造
函数零点问题
求函数零点个数 已知零点个数求参
找点技巧
高考导数题型大全及答案.doc

第三讲导数的应用研热点(聚焦突破)类型一利用导数研究切线问题导数的几何意义(1)函数y=f(x)在x=x0处的导数f′(x)就是曲线y=f(x)在点(x,f(x))处的切线的斜率,即k=f′(x);(2)曲线y=f(x)在点(x0,f(x))处的切线方程为y-f(x)=f′(x)(x-x).[例1] (2012年高考安徽卷改编)设函数f(x)=a e x+1aex+b(a>0).在点(2,f(2))处的切线方程为y=32x,求a,b的值.[解析]∵f′(x)=a e x-1 aex,∴f′(2)=a e2-1ae2=32, 解得a e2=2或a e2=-12(舍去),所以a=2e2,代入原函数可得2+12+b=3, 即b=12, 故a=2e2,b=12.跟踪训练已知函数f(x)=x3-x.(1)求曲线y=f(x)的过点(1,0)的切线方程;(2)若过x轴上的点(a,0)可以作曲线y=f(x)的三条切线,求a的取值范围.解析:(1)由题意得f′(x)=3x2-1.曲线y=f(x)在点M(t,f(t))处的切线方程为y-f(t)=f′(t)(x-t),即y=(3t2-1)·x-2t3,将点(1,0)代入切线方程得2t3-3t2+1=0,解得t=1或-,代入y=(3t2-1)x-2t3得曲线y=f(x)的过点(1,0)的切线方程为y=2x-2或y=-x+.(2)由(1)知若过点(a,0)可作曲线y=f(x)的三条切线,则方程2t3-3at2+a=0有三个相异的实根,记g(t)=2t3-3at2+a.则g′(t)=6t2-6at=6t(t-a).当a>0时,函数g(t)的极大值是g(0)=a,极小值是g(a)=-a3+a,要使方程g(t)=0有三个相异的实数根,需使a>0且-a3+a<0,即a>0且a2-1>0,即a>1;当a=0时,函数g(t)单调递增,方程g(t)=0不可能有三个相异的实数根;当a<0时,函数g(t)的极大值是g(a)=-a3+a,极小值是g(0)=a,要使方程g(t)=0有三个相异的实数根,需使a<0且-a3+a>0,即a<0且a2-1>0,即a<-1.综上所述,a的取值范围是(-∞,-1)∪(1,+∞).类型二利用导数研究函数的单调性函数的单调性与导数的关系在区间(a,b)内,如果f′(x)>0,那么函数f(x)在区间(a,b)上单调递增;如果f′(x)<0,那么函数f(x)在区间(a,b)上单调递减.[例2] (2012年高考山东卷改编)已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间. [解析] (1)由f (x )=ln x +kex, 得f ′(x )=1-kx -xln xxex ,x ∈(0,+∞).由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=(1-x -x ln x ),x ∈(0,+∞). 令h (x )=1-x -x ln x ,x ∈(0,+∞), 当x ∈(0,1)时,h (x )>0; 当x ∈(1,+∞)时,h (x )<0.又e x >0,所以当x ∈(0,1)时,f ′(x )>0; 当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).跟踪训练若函数f (x )=ln x -12ax 2-2x 存在单调递减区间,求实数a 的取值范围. 解析:由题知f ′(x )=1x -ax -2=-ax2+2x -1x ,因为函数f (x )存在单调递减区间,所以f ′(x )=-ax2+2x -1x≤0有解.又因为函数的定义域为(0,+∞),则应有ax 2+2x -1≥0在(0,+∞)上有实数解.(1)当a >0时,y =ax 2+2x -1为开口向上的抛物线,所以ax 2+2x -1≥0在(0,+∞)上恒有解; (2)当a <0时,y =ax 2+2x -1为开口向下的抛物线,要使ax 2+2x -1≥0在(0,+∞)上有实数解,则Δ=>0,此时-1<a <0;(3)当a =0时,显然符合题意.综上所述,实数a 的取值范围是(-1,+∞). 类型三 利用导数研究函数的极值与最值 1.求函数y =f (x )在某个区间上的极值的步骤 (1)求导数f ′(x );(2)求方程f ′(x )=0的根x 0; (3)检查f ′(x )在x =x 0左右的符号; ①左正右负⇔f (x )在x =x 0处取极大值; ②左负右正⇔f (x )在x =x 0处取极小值.2.求函数y =f (x )在区间[a ,b ]上的最大值与最小值的步骤(1)求函数y=f(x)在区间(a,b)内的极值(极大值或极小值);(2)将y=f(x)的各极值与f(a),f(b)进行比较,其中最大的一个为最大值,最小的一个为最小值.[例3] (2012年高考北京卷)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有大众切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.[解析](1)f′(x)=2ax,g′(x)=3x2+b,因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有大众切线,所以f(1)=g(1),且f′(1)=g′(1).即a+1=1+b,且2a=3+b.解得a=3,b=3.(2)记h(x)=f(x)+g(x).当b=14a2时,h(x)=x3+ax2+14a2x+1,h′(x)=3x2+2ax+14a2.令h′(x)=0,得x1=-a2,x2=-a6.a>0时,h(x)与h′(x)的变化情况如下:0 0所以函数h(x)的单调递增区间为(-∞,-2)和(-6,+∞);单调递减区间为(-2,-6).当-a2≥-1,即0<a≤2时,函数h(x)在区间(-∞,-1]上单调递增,h(x)在区间(-∞,-1]上的最大值为h(-1)=a-14a2.当-a2<-1,且-a6≥-1,即2<a≤6时,函数h(x)在区间(-∞,-a2)上单调递增,在区间(-a2,-1]上单调递减,h(x)在区间(-∞,-1]上的最大值为h(-a2)=1.当-a6<-1,即a>6时,函数h(x)在区间(-∞,-a2)上单调递增,在区间(-a2,-a6)上单调递减,在区间(-a6,-1]上单调递增,又因为h(-a2)-h(-1)=1-a+14a2=14 (a-2)2>0,所以h(x)在区间(-∞,-1]上的最大值为h(-a2)=1.跟踪训练(2012年珠海摸底)若函数f (x )=⎩⎨⎧2x3+3x2+1(x ≤0)eax (x>0),在[-2,2]上的最大值为2,则a 的取值范围是( )A .[12ln 2,+∞)B .[0,12ln 2]C .(-∞,0]D .(-∞,12ln 2]解析:当x ≤0时,f ′(x )=6x 2+6x ,易知函数f (x )在(-∞,0]上的极大值点是x =-1,且f (-1)=2,故只要在(0,2]上,e ax ≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x 在(0,2]上恒成立,故a ≤12ln 2. 答案:D析典题(预测高考)高考真题【真题】 (2012年高考辽宁卷)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切. (1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9x x +6. 【解析】 (1)由y =f (x )过(0,0)点,得b =-1.由y =f (x )在(0,0)点的切线斜率为32,又y ′⎪⎪x =0=(1x +1+12x +1+a )⎪⎪x =0=32+a ,得a =0.(2)证明:证法一 由均值不等式,当x >0时, 2(x +1)·1<x +1+1=x +2,故x +1<x2+1. 记h (x )=f (x )-9x x +6, 则h ′(x )=1x +1+12x +1-54(x +6)2=2+x +12(x +1)-54(x +6)2<x +64(x +1)-54(x +6)2 =(x +6)3-216(x +1)4(x +1)(x +6)2.令g (x )=(x +6)3-216(x +1), 则当0<x <2时,g ′(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数. 又由g (0)=0,得g (x )<0,所以h ′(x )<0. 因此h (x )在(0,2)内是递减函数. 又h (0)=0,得h (x )<0.于是当0<x <2时,f (x )<9x x +6. 证法二 由(1)知f (x )=ln(x +1)+x +1-1.由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2,故x +1<x 2+1.① 令k (x )=ln(x +1)-x ,则k(0)=0,k′(x)=1x+1-1=-xx+1<0,故k(x)<0,即ln(x+1)<x.②由①②得,当x>0时,f(x)<32 x.记h(x)=(x+6)f(x)-9x,则当0<x<2时,h′(x)=f(x)+(x+6)f′(x)-9<32x+(x+6)·(1x+1+12x+1)-9=12(x+1)[3x(x+1)+(x+6)·(2+x+1)-18(x+1)]<12(x+1)[3x(x+1)+(x+6)·(3+x2)-18(x+1)]=x4(x+1)(7x-18)<0.因此h(x)在(0,2)内单调递减.又h(0)=0,所以h(x)<0,即f(x)<9xx+6.【名师点睛】本题主要考查导数的应用和不等式的证明以及转化与化归能力,难度较大.本题不等式的证明关键在于构造函数利用最值来解决.考情展望高考对导数的应用的考查综合性较强,一般为解答题,着重考查以下几个方面:一是利用导数的几何意义来解题;二是讨论函数的单调性;三是利用导数研究函数的极值与最值.常涉及不等式的证明、方程根的讨论等问题名师押题【押题】已知f(x)=ax-ln x,x∈(0,e],g(x)=ln xx,其中e是自然常数,a∈R.(1)讨论a=1时,f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)>g(x)+1 2;(3)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值;若不存在,请说明理由.【解析】(1)由题知当a=1时,f′(x)=1-1x=x-1x,因为当0<x<1时,f′(x)<0,此时f(x)单调递减,当1<x<e时,f′(x)>0,此时f(x)单调递增,所以f(x)的极小值为f(1)=1.(2)证明因为f(x)的极小值为1,即f(x)在(0,e]上的最小值为1.令h(x)=g(x)+12=ln xx+12,h′(x)=1-ln xx2,当0<x<e时,h′(x)>0,h(x)在(0,e]上单调递增,所以h(x)max=h(e)=1e+12<12+12=1=f(x)min,所以在(1)的条件下,f(x)>g(x)+1 2.(3)假设存在实数a,使f(x)=ax-ln x(x∈(0,e])有最小值3,f′(x)=a-1x=ax-1x.①当a≤0时,因为x∈(0,e],所以f′(x)<0,而f(x)在(0,e]上单调递减,所以f(x)min=f(e)=a e-1=3,a=4e(舍去),此时f(x)无最小值;②当0<1a <e 时,f (x )在(0,1a )上单调递减,在(1a ,e]上单调递增,所以f (x )min =f (1a )=1+ln a =3,a =e 2,满足条件;③当1a≥e 时,因为x ∈(0,e],所以f ′(x )<0,所以f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,a =4e (舍去)此时f (x )无最小值.综上,存在实数a =e 2,使得当x ∈(0,e]时,f (x )有最小值3.知识改变命运。
高中数学导数题型分类非常全

导数1.导数公式:'0C = '1()n n x nx -= '(sin )cos x x = '(cos )sin x x =-'()x x e e = '()ln x x a a a = '1(ln )x x = '1(log )ln a x x a = 2.运算法则:'''()u v u v +=+ '''()u v u v -=- '''()uv u v uv =+ '''2()u u v uv v v-= 3.复合函数的求导法则:(整体代换)例如:已知2()3sin (2)3f x x π=+,求'()f x 。
4.导数的物理意义:位移的导数是速度,速度的导数是加速度。
5.导数的几何意义:导数就是切线斜率。
6.用导数求单调区间、极值、最值、零点个数:对于给定区间[,]a b 内,若'()0f x >,则()f x 在[,]a b 内是增函数;若'()0f x <,则()f x 在[,]a b 内是减函数。
【题型一】求函数的导数 1(1)ln x y x = (2)2sin(3)4y x π=- (3)2(1)x y e x =- (4)3235y x x =-- (5)231x x y x -=+ (6)2211()y x x x x =++ 2.已知物体的运动方程为223s t t=+(t 是时间,s 是位移),则物体在时刻2t =时的速度为 。
【题型三】导数与切线方程(导数的几何意义的应用)3.曲线32y x x =+-在点(2,8)A 处的切线方程是 。
4.若(1,)B m 是32y x x =+-上的点,则曲线在点B 处的切线方程是 。
5.若32y x x =+-在P 处的切线平行于直线71y x =+,则点P 的坐标是 。
高考压轴题:导数题型及解题方法总结很全.

注意:“函数 f ( x) 在 m, n 上是减函数”与“函数 f ( x) 的单调减区间是 a, b ”的区别是前者是后者的子集。
例 已知函数 f (x) x2 a ln x + 2 在 1, x
(利用极值点的大小关系、及极值点与区间的关系分类)
1,2 的极小值。
二.单调性问题
题型 1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。分类的方法有:
ቤተ መጻሕፍቲ ባይዱ
( 1)在求极值点的过程中,未知数的系数与
0
的关系不定而引起的分类; (2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与
切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线 y x2 与曲线 y 2eln x 的公切线方程。 (答案 2 ex y e 0 )
三.极值、最值问题。
题型 1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数 f (x) ex x (k 1) ex 1 x 2 kx 1 ,求在 x 2
3. 对 x1 m, n , x2 m, n , f ( x1 ) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) min 。
4. 对 x1 m, n , ,恒成立 4. 对 x1 m, n , x2 5. 对 x1 m, n , x2
f ( x1) g (x1) 。转化 f (x1) g(x1) 0 恒成立 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) min g (x2 )min 。 m, n , f (x1) g( x2 ) 成立。则 f ( x1 ) max g( x2 ) max
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。
(完整版)高考导数专题(含详细解答)

导数及其应用导数的运算1. 几种常有的函数导数:①、 c( c 为常数); ②、( x n )( n R ); ③、 (sin x) = ;④、 (cos x) =;⑤、( a x ); ⑥、 ( ex); ⑦、 (log a x ) ; ⑧、 (ln x ).2. 求导数的四则运算法规:(u v)u v ; (uv) u vu'u v ' uv 'u ( v0 ) 注:① u, v 必定是可导函数 .uv ; (u)vuvvvv 223. 复合函数的求导法规:f x ( ( x))f (u) ? ( x) 或 y xy u ? u x一、求曲线的切线(导数几何意义)导数几何意义: f (x 0 ) 表示函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 的斜率;函数 y f (x) 在点 ( x 0 , f (x 0 ) )处切线 L 方程为 y f (x 0 )f (x 0 )(x x 0 )1. 曲线在点 处的切线方程为( )。
A:B:C:D:答案详解 B 正确率 : 69%, 易错项 : C解析 :本题主要观察导数的几何意义、导数的计算以及直线方程的求解。
对 求导得,代入 得 即为切线的斜率, 切点为,因此切线方程为即。
故本题正确答案为B 。
2.3. 设函数f ( x) g( x) x2,曲线 y g(x) 在点 (1,g(1)) 处的切线方程为 y 2x 1,则曲线 y f ( x) 在点 (1, f (1))处切线的斜率为( )A .41C.21B . D .4 24. 已知函数 f ( x) 在R上满足 f ( x) 2 f (2 x) x28x 8,则曲线y f (x) 在点 (1, f (1)) 处的切线方程是()A . y2x 1 B. y x C. y3x 2 D. y2x 3变式二:5. 在平面直角坐标系xoy 中,点P在曲线C : y x310 x 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为.6. 设曲线 yx n 1 (n N * ) 在点( 1,1)处的切线与 x 轴的交点的横坐标为 x n ,令 a n lg x n ,则 a 1 a 2 L a 99 的值为.7. 已知点 P 在曲线 y=4 上, 为曲线在点 P 处的切线的倾斜角,则的取值范围是e x1, 3]D 、 [ 3,A 、 [0, )B 、 [, ) C 、 ( )44 22 4 4变式三:8. 已知直线y =x+ 1 与曲线y ln( x a) 相切,则α的值为( )A . 1 B. 2 C. - 1 D. - 29. 若存在过点 (1,0)的直线与曲线 yx 3 和 y ax 2 15 x 9 都相切,则 a 等于4( )A . 1或 -25B . 1或21C . 7 或 - 25D .7或 76444 6441 110. 若曲线 yx 2 在点 a, a 2 处的切线与两个坐标围成的三角形的面积为18,则 aA 、64B 、 32C 、 16D 、811. (本小题满分 13 分) 设 f ( x)ae x 1b( a 0) . ( I )求 f ( x) 在 [0, ) 上的最小值;ae x3x ;求 a,b 的值 .( II )设曲线 yf ( x) 在点 (2, f (2)) 的切线方程为 y212. 若曲线 f x ax2Inx 存在垂直于y轴的切线,则实数 a 的取值范围是.二、求单调性或单调区间1、利用导数判断函数单调性的方法:设函数y f (x) 在某个区间 D 内可导,若是 f ( x) >0,则y f (x) 在区间D上为增函数;若是 f ( x) <0,则y f (x) 在区间 D 上为减函数;若是 f ( x) =0恒成立,则y f (x) 在区间 D 上为常数 .2、利用导数求函数单调区间的方法:不等式 f ( x) >0的解集与函数y f (x) 定义域的交集,就是y f ( x) 的增区间;不等式 f ( x) <0的解集与函数y f (x) 定义域的交集,就是y f (x) 的减区间 .1、函数f (x) ( x 3)e x的单调递加区间是( )A . ( ,2) B. (0,3) C. (1,4) D . (2, )2. 函数f (x)x315x233x 6 的单调减区间为.3. 已知函数,,谈论的单调性。
(完整word版)高考导数题型分析及解题方法.docx

高考导数题型分析及解题方法本知识单元考查题型与方法:※※与切线相关问题(一设切点,二求导数= 斜率 = y2y1,三代切点入切线、曲x2x1线联立方程求解);※※其它问题(一求导数,二解 f ' (x) =0的根—若含字母分类讨论,三列3行n列的表判单调区间和极值。
结合以上所得解题。
)特别强调:恒成立问题转化为求新函数的最值。
导函数中证明数列型不等式注意与原函数联系构造,一对多涉及到求和转化。
关注几点:恒成立:(1 )定义域任意 x 有f (x)>k, 则f ( x)min>常数 k ;(2)定义域任意x有f ( x)<k,则f (x)max<常数k恰成立:(1 )对定义域内任意 x有 f ( x)g( x) 恒成立,则【 f ( x)-g (x)】min 0,(2)若对定义域内任意 x 有f (x) g(x):恒成立,则【f ( x)-g(x) max0】能成立:( 1 )分别定义在 [a,b]和[c,d]上的函数 f ( x)和 g ( x) ,对任意的 x1[ a, b], 存在x2 [c, d ], 使得 f (x1 ) g(x2) ,则 f ( x)max g( x)max(2 )分别定义在 [a,b]和[c,d]上的函数 f ( x)和 g( x) ,对任意的 x1[ a,b], 存在 x2 [ c, d],使得 f (x1) g(x2) ,则 f ( x)min g (x)min一、考纲解读考查知识题型:导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值;证明不等式、求参数范围等二、热点题型分析题型一:利用导数研究函数的极值、最值。
1. f (x)x33x22在区间1,1上的最大值是 22.已知函数yf ( x)x(x c)2在 x2处有极大值,则常数c= 6;题型二:利用导数几何意义求切线方程1.曲线y 4xx 3 在点1, 3处的切线方程是y x 22.若曲线f ( x)x 4x在 P 点处的切线平行于直线 3x y,则 P 点的坐标为(1, 0)3.若曲线y x4的一条切线 l 与直线x4 y8 0垂直,则l的方程为4x y 3 04.求下列直线的方程:( 1)曲线y x3x 2 1在 P(-1,1) 处的切线;( 2)曲线yx 2过点 P(3,5) 的切线;解:( 1) 点P( 1,1)在曲线yx 3 x 21上,y / 3x 22 xk y /| -1 3-21x所以切线方程为 y 1 x 1 ,即 x y 2 0( 2)显然点 P (3, 5)不在曲线上,所以可设切点为A( x 0, y 0 ),则 yx 0 2 ①又函数的导数为y /2 x ,k/ |x x 02x 02 x 0 y 0 5A(x , y )A( x , y )x 3所以过0 点的切线的斜率为 y,又切线过 、P(3,5) 点,所以有②,由①②联0 0x 01 或 x 0 5k2 x 2;立方程组得, y 01 y 0 25,即切点为( 1, 1)时,切线斜率为 ;当切点为( 5, 25)时,切线斜1 0率为k22x 010;所以所求的切线有两条,方程分别为y 1 2( x1)或y25 10( x 5),即y2x 1或 y 10x25题型三:利用导数研究函数的单调性,极值、最值1.已知函数f ( x) x 3ax 2 bx c,过曲线 y f (x)上的点 P(1, f (1)) 的切线方程为 y=3x+1(Ⅰ)若函数 f ( x)在 x2处有极值,求f (x)的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数 yf (x)在 [ - 3, 1] 上的最大值;(Ⅲ)若函数 yf ( x)在区间 [ -2, 1] 上单调递增,求实数b 的取值范围解:( 1)由 f ( x)x 3ax 2bx c,求导数得 f ( x)3x 2 2ax b.过 yf ( x)上点 P(1, f (1)) 的切线方程为:yf (1)f (1)( x 1),即 y (a b c1) (3 2a b)( x1).而过yf ( x)上 P[1, f (1)]的切线方程为 y3x 1.3 2a b 3即 2ab 0 ①故 ac 3a c3②∵yf ( x)在 x2时有极值 ,故 f ( 2)0,4a b12 ③f ( x)322 f ( x)2第 2 页共 9 页当2x 时, f ( x)0. f ( x)极大 f (2)1331又 f (1)4,f ( x)在 [ - 3, 1]上最大值是 13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考压轴题:导数题型及解题方法(自己总结供参考)一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。
答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。
2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )练习 1.求曲线2x y =与曲线2)1(--=x y 的公切线方程。
(答案012=--y x 或0=y )2.设函数,ln 2)1()(x x x p x f --=2)(x x g =,直线l 与函数)(),(x g x f 的图象都相切,且与函数)(x f 的图象相切于(1,0),求实数p 的值。
(答案1=p 或3)二.单调性问题题型1 求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。
分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。
注意分类时必须从同一标准出发,做到不重复,不遗漏。
例 已知函数x a x x a x f )1(21ln )(2+-+= (1)求函数)(x f 的单调区间。
(利用极值点的大小关系分类)(2)若[]e x ,2∈,求函数)(x f 的单调区间。
(利用极值点与区间的关系分类)练习 已知函数121)1()(2++-+-=kx x e k x e x f x x ,若()2,1-∈x ,求函数)(x f 的单调区间。
(利用极值点的大小关系、及极值点与区间的关系分类)题型2 已知函数在某区间是单调,求参数的范围问题。
方法1:研究导函数讨论。
方法2:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立问题,方法3:利用子区间(即子集思想);首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子集。
注意:“函数)(x f 在()n m ,上是减函数”与“函数)(x f 的单调减区间是()b a ,”的区别是前者是后者的子集。
例 已知函数2()ln f x x a x =++x2在[)+∞,1上是单调函数,求实数a 的取值范围. (答案[)+∞,0)练习 已知函数232)1(31)(x k x x f +-=,且)(x f 在区间),2(+∞上为增函数.求实数k 的取值范围。
(答案:31-<k )题型3 已知函数在某区间的不单调,求参数的范围问题。
方法1:正难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。
方法3:直接研究不单调,分情况讨论。
例 设函数1)(23+++=x ax x x f ,R a ∈在区间⎪⎭⎫⎝⎛1,21内不单调,求实数a 的取值范围。
(答案:()3,2--∈a ))三.极值、最值问题。
题型1 求函数极值、最值。
基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。
例 已知函数121)1()(2++-+-=kx x e k x e x f x x ,求在()2,1-∈x 的极小值。
(利用极值点的大小关系、及极值点与区间的关系分类)练习 已知函数32()2f x x mx nx =++-的图象过点(1,6)--,且函数()()6g x f x x '=+的图象关于y 轴对称.若0a >,求函数()y f x =在区间(1,1)a a -+内的极值.(答案:当01a <<时,()f x 有极大值2-,无极小值;当13a <<时,()f x 有极小值6-,无极大值;当1a =或3a ≥时,()f x 无极值.)题型2 已知函数极值,求系数值或范围。
方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。
方法2.转化为函数单调性问题。
例 函数1)1(21)1(3141)(234+----+=x p p px x p x x f 。
0是函数)(x f 的极值点。
求实数p 值。
(答案:1)练习 已知函数2()ln ,.f x ax x x a =--∈R 若函数()f x 存在极值,且所有极值之和大 15ln 2-,求a 的取值范围。
(答案:()+∞,4)题型3 已知最值,求系数值或范围。
方法:1.求直接求最值;2.转化恒成立,求出范围,再检验。
例 设a ∈R ,函数233)(x ax x f -=.若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. (答案:⎥⎦⎤ ⎝⎛∞-56,)练习 已知函数x x a ax x f ln )2()(2++-=, 当0>a 时,函数)(x f 在区间[]e ,1上的最小值是2-,求实数a 的取值范围。
(答案:[)+∞,1)四.不等式恒成立(或存在性)问题。
一些方法1.若函数()n m x f ,)(值域,a >)(x f 恒成立,,则n a ≥2.对任意()()n m x n m x ,,,21∈∈,)()(21x g x f ≥恒成立。
则≥min 1)(x f max 2)(x g 。
3.对()()n m x n m x ,,,21∈∃∈∃,)()(21x g x f ≥成立。
则≥max 1)(x f min 2)(x g 。
4.对(),,1n m x ∈,恒成立)()(11x g x f ≥。
转化0)()(11≥-x g x f 恒成立4. 对()()n m x n m x ,,,21∈∃∈∀,)()(21x g x f ≥成立。
则≥min 1)(x f min 2)(x g 。
5. 对()()n m x n m x ,,,21∈∀∈∃,)()(21x g x f ≥成立。
则≥max 1)(x f max 2)(x g6. 对()()n m x n m x ,,,21∈∈,a x x x f x f ≥--2121)()(成立。
则构造函数ax x f x t -=)()(。
转化证明)(x t 在()n m ,是增函数。
题型1 已知不等式恒成立,求系数范围。
方法:(1)分离法:求最值时,可能用罗比达法则;研究单调性时,或多次求导。
(2)讨论法: 有的需构造函数。
关键确定讨论标准。
分类的方法:在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。
分类必须从同一标准出发,做到不重复,不遗漏。
(3)数形结合:(4)变更主元解题思路 1.代特值缩小范围。
2. 化简不等式。
3.选方法(用讨论法时,或构造新函数)。
方法一:分离法。
求最值时,可能用罗比达法则;研究单调性时,或多次求导。
例 函数a x x e x f x +-=)ln ()(2。
在[]e x ,1∈e x f ≥)(恒成立,求实数a 取值范围。
(方法:分离法,多次求导答案:[)+∞,0)练习 设函数2)1()(ax e x x f x --=,若当x ≥0时)(x f ≥0,求a 的取值范围。
(方法: 分离法,用罗比达法则答案:(]1,∞-)方法二:讨论法。
有的需构造函数。
关键确定讨论标准。
分类的方法:在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);极值点的大小关系不定而而引起的分类;极值点与区间的关系不定而引起分类。
分类必须从同一标准出发,做到不重复,不遗漏。
例 设函数f(x)=21x e x ax ---.若当x ≥0时f(x)≥0,求a 的取值范围.(答案:a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦)练习 1.设函数x ex f --=1)( ,0≥x 时,1)(+≤ax x x f ,求实数a 的取值范围 (答案:⎥⎦⎤⎢⎣⎡21,0)2.函数xx a x f 1ln )(+=,当.0>a 对x ∀>0,1)ln 2(≤-x ax ,求实数a 取值范围。
(多种方法求解。
(答案:()1,0-e))方法三:变更主元例:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--,若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. (答案:2)练习 设函数x x x f ln )(=。
证明:当a >3时,对任意0>x ,x e a f x a f ⋅<+)()(成立。