高等代数第六章

合集下载

第六章 线性空间与线性变换

第六章 线性空间与线性变换
(7) (k + l)α=kα+lα , k,l ∈ F ; (8) k(lα )=(kl)α ,
其中α, β ,γ 是V 中的任意元素, k,l 是数域 F 中任意数.V 中适合(3)的元素 0 称为零元
素;适合(4)的元素 β 称为α 的负元素,记为 − α .
下面我们列举几个线性空间的例子.
例1 数域 F 上的所有 n 维列向量集 F n 算规则,它是数域 F 上的一个线性空间.特别 地,当 F=R 时,R n 称为 n 维实向量空间;当 F=C 时,C n 称为 n 维复向量
设α = x1ε1 + x2ε 2 + L+ xnε n = y1η1 + y2η2 + L+ ynηn ,则
⎜⎛ x1 ⎟⎞ ⎜⎛ y1 ⎟⎞
⎜ ⎜ ⎜⎜⎝
第 4 页 共 19 页
第六章 线性空间与线性变换
二、同构关系
1.映射
设 M,N 是两个集合.如果给定一个法则ϕ ,使 M 中的每个元素 a 都有 N 中的一
个唯一确定的元素 a' 与之对应,则称ϕ 是集合 M 到集合 N 的一个映射. a' ∈ N 称为 a 在
映射ϕ 下的像,而 a 称为 a' 在映射ϕ 下的原像.记作ϕ(a) = a' . M 中元素在ϕ 下像的全
2) 把(1)式形式地写为
⎜⎛ x1 ⎟⎞
α
=
(ε1,ε
2
,L,
ε
n
)
⎜ ⎜ ⎜⎜⎝
x2 M xn
⎟ ⎟ ⎟⎟⎠

(η1,η2 ,L,ηn ) = (ε1,ε 2 ,L,ε n )A.
第 6 页 共 19 页
第六章 线性空间与线性变换

高等代数课件(北大版)第六章线性空间§6.5

高等代数课件(北大版)第六章线性空间§6.5

例6
,2 , ,r V 设V为数域P上的线性空间, 1
令 W { k k k k P , i 1 , 2 , , r } 1 1 2 2 r r i
则W关于V的运算作成V的一个子空间.
, , , 即 的一切线性 1 2 r 组合所成集合.


2019/3/18
, W , k P , 其次, 3
( x y , x y , , x y , 0 ) W 则有 1 1 2 2 n 1 n 1 3
k ( k x , k x , , k x , 0 ) W 1 2 n 1 3
故,W3为V的一个子空间,且维W3 =n-1 ,
2019/3/18
数学与计算科学学院
2、线性子空间的判定
V 定理:设V为数域P上的线性空间,集合 W
(W ),若W对于V中两种运算封闭,即
W , k P ,有 kW
, W , 有 W ;
则W是V的一个子空间.
V ( W ) ,则 推论:V为数域P上的线性空间,W
, W ,, a b P , a b W . W是V的子空间
2019/3/18
数学与计算科学学院


证明:要证明W也为数域P上的线性空间, 即证W中的向量满足线性空间定义中的八条规则. 由于 WV ,规则1)、2)、5)、6)、7)、8) 是显然成立的.下证3)、4)成立.
2019/3/18
例4
n元齐次线性方程组
a a 1 1x 1 a 1 2x 2 1nx n 0 a a 2 1x 1 a 2 2x 2 2nx n 0 a x a x a x 0 sn n s1 1 s2 2

高等代数第六章

高等代数第六章

数域P上的线性空间.
例5 全体正实数R+,
1) 加法与数量乘法定义为: a, b R , k R

a b log
b a
k a ak
a , b R , k R 2) 加法与数量乘法定义为:
a b ab
k aa
k
判断 R+是否构成实数域 R上的线性空间 .
为数域 P上的次数小于 n 的多项式的全体,再添上 零多项式作成的集合,按多项式的加法和数量乘法
构成数域 P上的一个线性空间。
例3 线性空间 P mn
数域 P上 m n矩阵的全体作成的集合,按矩阵的乘法 和数量乘法,构成数域 P上的一个线性空间。
例4 任一数域 P 按照本身的加法与乘法构成一个
3)如果 σ 、τ都是双射,那么 g 也是双射,并且
g 1 ( ) 1 1 1
§2.线性空间的定义和简单性质
线性空间的定义 线性空间的简单性质
引例1 对于数域P上的n维向量空间Pn,定义了两个向 量的加法和数量乘法: (a1 , a2 , , an ) (b1 , b2 , , bn ) (a1 b1 , a2 b2 , , an bn )
定义:集合是一些事物汇集到一起组成的一个整
体;组成集合的这些事物称为集合的元素。
集合用大写字母A、B、C 等表示; 集合的元素用小写字母a、b、c 等表示.
Note “集合”概念没有一个严谨的数学定义,只是有一个 描述性的说明. 集合论的创始人--19世纪中期德国数学家康托尔 (Cantor)把集合描述为:所谓集合是指我们直觉 中或思维中确定的,彼此有明确区别的那些事物作为 一个整体来考虑的结果. 集合中的元素具有:确定性、互异性、无序性.

高等代数【北大版】6.4

高等代数【北大版】6.4

a2n

ann
则称矩阵
a11 a12
A
a21
a22
an1 an2
a1n
a2n
ann
为由基1, 2 , , n到基 1, 2 , , n 的过渡矩阵;
称 ① 或 ② 为由基 1, 2 , , n到基 1, 2 , , n
的基变换公式.
§6.4 基变换与坐标变换
2、有关性质
1)过渡矩阵都是可逆矩阵;反过来,任一可逆 矩阵都可看成是两组基之间的过渡矩阵.
并求矩阵 A
3 4
5 2
在基 F11, F12 , F21, F2下2 的矩阵.
§6.4 基变换与坐标变换
解:
F11 E11
F12 F21 F22
E11 E11 E11
E12 E12 E12
E21 E21
E22
1 1 1 1
(
F11
,
F12,
F21
,
F22
)
(
E11
,
E12,
任取V的一组基 1,2 , ,n ,
n
令 j aiji , j 1,2, , n
i 1
于是有, (1, 2 , , n ) (1,2 ,
, n ) A
§6.4 基变换与坐标变换
由A可逆,有 (1,2, ,n ) (1, 2, , n )A1
即,1,2 , ,n也可由 1, 2 , , n 线性表出.
2 1 0
1 1 1
2 1 1
1
0 1
1 1
0 1
2 2
1 1 2
3
1 2
§6.4 基变换与坐标变换
1 0 0 1

高代第六章

高代第六章

第六章二次型·合同矩阵例在直角坐标系{O; x, y}中,任一条中心在原点的有心二次曲线(centered conic)的方程均有如下形式22++=ax bxy dcyΓ225564x y xy +-=例在直角坐标系{O; x , y }中,设二次曲线的方程为该方程等号左端是x , y 的二次齐次多项式(quadratic homogeneous polynomial)。

45{};,'O x y '将坐标系逆时针旋转得到坐标系相应的坐标变换公式为45454545cos sin sin cos x x y y x y ⎧''=-⎪⎨''=+⎪⎩Γ221224x y ''+=,'x y '由此可得曲线的新方程为其等号左端是的二次齐次多项式。

例在前面讨论过的弹簧振动系统中,利用两质点偏离平衡位置的位移可得系统的动能T 与势能V21 ,x x 22121[()()]2dx dx T m dt dt=+2221212111()()222V kx k x x k x =+-+-记dtdx x dt dx x 2211 ,==∙∙,则221211()()22T m x m x ∙∙=+221212V kx kx kx x =+-12, x x ∙∙12, x x 上式中,T 是关于的二次齐次多项式,V 是关于的二次齐次多项式。

§6.1二次型和它的标准形1.二次型与线性替换K 定义系数在数域中的n 个变量的二次齐次多项式12211112121313112222232322233333 ()222 22 2 n n nn nn nf x x x a x a x x a x x a x x a x a x x a x x a x a x x =+++++++++++++,,,2nn na x称为数域K 上的一个n 元二次型(quadratic form)2ixj i x x 称为二次型的平方项,称为二次型的交叉项或混合项。

高等代数.第六章.线性空间.课堂笔记

高等代数.第六章.线性空间.课堂笔记
线性相关
α1 , α2 , … , α������ 线性无关 *.������ = ������ ⇐ { ������1 , ������2 , … , ������������ 线性无关 向量组等价 (4)向量组α1 , α2 , … , α������ 线性无关,α1 , α2 , … , α������ , ������线性相关,则������可由α1 , α2 , … , α������ 线性表出. 二、线性空间的维数、基与坐标: 1.维数: 定义 5 ①如果在线性空间������ 中有n个线性无关的向量,但任意n + 1个向量线性相关,定义������ 是一 个n维线性空间,记������������ ������(V) = ������. ②无限维线性空间; ③零空间维数为 0. 2.基与坐标: 定义 6 ①基:线性空间������ ,������������ ������(V) = ������,n个线性无关的向量组������1 , ������2 , … , ������������ 称为������ 的一组基; ②坐标:设������1 , ������2 , … , ������������ 称为������ 的一组基,α ∈ V, 若α = ������1 ������1 + ������2 ������2 + ⋯ + ������������ ������������ ,������1 , ������2 , … , ������������ ∈ ������,则数组������1 , ������2 , … , ������������ 就称为α在 基������1 , ������2 , … , ������������ 下的坐标,记为:(������1 , ������2 , … , ������������ ).

高等代数 第6章线性空间 6.6 子空间的直和与线性空间的同构

高等代数 第6章线性空间 6.6 子空间的直和与线性空间的同构

多个子空间的直和
设W1,W2,…,Wr都是线性空间V的子空间。如果 则称 W1+ W2+…+ Wr 为子空间 W1 , W2 , … , Wr 的直和,记为 W1+ W2+…+ Wr。
说明:一定要注意这里的条件是 ,不是Wi Wj ={0},初学者
很容易出错。 多个子空间的和构成直和的条件 设 W1,W2 ,…,Wr是线性空间V的子空间,则 W1+ W2+…+ Wr 构成直和的充要条件是下列之一成立:
n维线性空间
Vn
R
n
x1 1 x2 2 xn n
x ( x1 , x2 , , xn )
T
( 2)设
( x1 , x2 ,, xn )T ( y1 , y2 ,, yn )T
( x1 , x2 ,, xn ) ( y1 , y2 ,, yn )
T T
则有
( x1 , x2 ,, xn )
T
结论 1.数域 P上任意两个n 维线性空间都同 构. 2.同构的线性空间之间具有反身性、对称性 与传递性. 3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
定义 设U、V是两个线性空间,如果它们的元素 之间有一一对应关系 ,且这个对应关系保持线性 组合的对应,那末就称线性空间 U2 xn n x1 , x2 ,, xn R
与 n 维数组向量空间 R n 同构. 因为 T (1) Vn中的元素与R n中的元素( x1 , x2 ,, xn ) 形成一一对应关系;

高等代数考研复习[线性空间]

高等代数考研复习[线性空间]

1.2 常用线性空间
n P (1)n维向量空间: {(a1, a2,
, an ) | ai , P}
Pn 空间的基 1, 2 , , n 其中 i (0
n dim P n. 空间维数 P
1
i
0)
n
nm P (2)矩阵空间: Anm | A (aij ), aij P.
3 1 1 3 3 0 1 1 F1 , F2 , F3 , F4 . 1 1 1 1 2 1 0 2
(1)求由 F1, F2 , F3 , F4到 E11, E12 , E21, E22 的过渡矩阵.
1 线性空间概念、基维数与坐标
1.1
线性空间的定义: 设V是一个非空集合,P是一个数域.在V的元 素之间定义了两种运算:加法与数乘,并且 两种运算满足8条性质.则称集合V是数域P上 的线性空间. 简单地说:带有线性运算的集合,同时运算 满足8条性质的集合称为线性空间. 线性空间中的元素称为向量,线性空间也称 为向量空间.
y1 y 2 A . yn
(1 , 2 ,
y1 y , n ) 2 , yn
那么,
x1 x 2 xn
题型分析:1)确定空间的基与维数
nn V { A | A A , A P }, 求V的基与维数. 例1 设
过渡矩阵都是可逆的!并且由 1, 2 , , n 到
1 坐标变换:设 1, 2 , , n 与 1, 2 , , n 都是
n维空间V的基,对V中任一向量,有
x1 x , n ) 2 ( 1 , 2 , xn
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3)如果 σ 、τ都是双射,那么 g 也是双射,并且
g 1 ( ) 1 1 1
§2.线性空间的定义和简单性质
线性空间的定义 线性空间的简单性质
引例1 对于数域P上的n维向量空间Pn,定义了两个向 量的加法和数量乘法: (a1 , a2 , , an ) (b1 , b2 , , bn ) (a1 b1 , a2 b2 , , an bn )
2) M 中元素的象要唯一、且M´中每个元素都要有象.
3) M 中不同元素的象可能相同. 4) 函数可以看成是映射的一个特殊情形:任意一个 在实数集R上的函数 y=f(x)都是实数集R到自身 的映射. Ex
4. 映射的性质与运算
定义:映射的乘积
设映射 : M M ', : M ' M '' , 乘积 定义为: (a)=τ(σ(a)) a M
1. 若集合A有n个元素,则含有k(k<n)个元素的A 的子集有多少个? 2. 已知 M { Ann | A A}, N {Bnn | B B},求 M N , M N , M N
3.映射的定义
定义:映射指一个对应法则,
设M、M´是给定的两个非空集合,通过法则σ,有 对于 a M , | a M 与之对应,则称 σ为M到M´的4来自 上两种运算满足下列8条规则:
① ② ( ) ( )
③ 在V中有一个元素0,对 V , 有 0 (具有这个性质的元素0称为V的零元素) ④ 对 V , 都有V中的一个元素β ,使得
0 ;(β 称为 的负元素) ⑤ 1 ⑥ k (l ) (kl )
集合的表示方法
描述法:M={x | x具有性质P} 列举法:M={a1,a2,…,an}
元素与集合的关系 a A ; 1. a 属于A,记作: 2. a不属于A,记作: a A . 空集:φ
约定:空集是任意集合的子集合. {φ}≠φ {0}≠φ
2. 集合间的关系与运算
( ) ◇利用负元素,可以定义减法: 3、 0 0, k 0 0, (1)
4、k =0

k=0或 =0.
例7 证明:数域P上的线性空间V若含有一个非零
向量,则V一定含有无穷多个向量.
Note 只含一个向量—零向量的线性空间称为零空间. Ex
§3. 维数、基与坐标
基本概念 线性空间中向量之间的线性关系
线性空间的维数、基与坐标
1. 基本概念
V 是数域 P 上的一个线性空间 向量组 1 , 2 , , r 的一个线性组合: 1)
k11 k2 2 kr r 其中 1 , 2 , , r V (r 1), k1 , k2 , , kr P,
定义:集合是一些事物汇集到一起组成的一个整
体;组成集合的这些事物称为集合的元素。
集合用大写字母A、B、C 等表示; 集合的元素用小写字母a、b、c 等表示.
Note “集合”概念没有一个严谨的数学定义,只是有一个 描述性的说明. 集合论的创始人--19世纪中期德国数学家康托尔 (Cantor)把集合描述为:所谓集合是指我们直觉 中或思维中确定的,彼此有明确区别的那些事物作为 一个整体来考虑的结果. 集合中的元素具有:确定性、互异性、无序性.
例子(例题1中4)和5))
Note
① 是 M 到 M“ 的一个映射 ②对于任意映射 : M M ' ,有 IM IM
③映射的乘法不满足交换律,
④结合律 : M M ', : M ' M '', : M '' M ''' , ( ) ( ) 有
1. B是A的子集(B包含于A) ,记作 B A B A 当且仅当 x B x A 2. A与B相等,记作A=B . A=B当且仅当 A B且 B A 3. A与B的交: A B {x x A且x B}; 4. A与B的并: A B {x x A或x B} ; 显然有: A B A; A A B 5. A与B的差: A B {x | x A且x B; } 6. A与B的积 : A B {( x, y) | x A且y B}。 Ex
映射的性质
σ是M到M´的一个满射(或称 σ为映上的): 满射:
若 Im M ' (即对于任意 y M ',均存在 x M,使 y ( x) ),
单射: σ是M到M´的一个单射(或称σ为1—1的);
a1 , a2 M , 若a1 a2 , 则 (a1 ) (a2 )
例6 线性空间 V f ( A) f ( x ) R[ x ], A R nn


即n 阶方阵A的实系数多项式的全体,则V关于矩阵 的加法和数量乘法构成实数域R上的线性空间.
例7 收敛于0的实数无限序列对于极限的加法和
数乘能否构成线性空间.
2. 线性空间的性质
1、零元素是唯一的. 2、任意元素的负元素是唯一的,记为- .
向量及其运算的具体含义,把集合对加法和数量乘 法的封闭性及运算满足的规则抽象出来,就形成了 抽象的线性空间的概念,这种抽象将使我们进一步 研究的线性空间的理论可以在相当广泛的领域内得 到应用.
§1. 集合与映射
集合的定义 集合间的关系与运算
映射的定义 映射的运算与性质
1. 集合的定义
(σ-1)-1=σ.
例题
1 , x R ,问: 例2、令 f : x x, g : x x 1)g 是不是R+到R+的双射?g 是不是 f 的逆映射? 2)g是不是可逆映射?若是的话,求其逆.
g ,证明: 例3、设映射 : A B, : B C,令:
1)如果 g 是单射,那么 σ也是单射; 2)如果 g 是满射,那么 τ也是满射;
⑦ (k l ) k l ⑧ k( ) k k
Note
1. 凡满足以上八条规则的加法及数量乘法也 称为线性运算. 2.线性空间的元素也称为向量,线性空间也称 向量空间.但这里的向量不一定是有序数组. 3 .线性空间的判定:
若集合对于定义的加法和数乘运算不封闭,或者
k (a1 , a2 , , an ) ( ka1 , ka2 , , kan ), k P
而且这两种运算满足一些重要的规律,如

1 ( ) ( ) k ( l ) ( kl ) ( k l ) k l 0 k ( ) k k ( ) 0
: M M ' 或 一个映射,记做 M M'
象与原象: 称
a´为 a 在映射σ下的象,而 a´ 称为
a在映射σ下的原象,记作σ(a)=a´ 或 Note ① M在映射σ下的象,Imσ= 显然,Im M '
:a
a.
( M ) { (a) a M }
(或 a1 , a2 M , 若 (a1 ) (a2 ), 则a1 a2 ), (或称σ为 1—1对应) 双射: σ既是单射,又是满射。
Ex
Note :双射的乘积还是双射.
Note
① 对于有限集来说,两集合之间存在1—1对 应的充要条 件是它们所含元素的个数相同; ② 上结论不适用于无限集.如例1中的2)
运算封闭但不满足八条规则中的任一条,则此集合 就不能构成线性空间.
例1 引例1, 2中的 Pn, P[x] 均为数域 P上的线性空间.
例2 线性空间 P[x]n P[ x ]n { f ( x ) an1 x n1
a1 x a0 an1 , , a1 , a0 P }
②集合M 到M 自身的映射称为M 的一个变换.
例题1
1)M={a,b,c}、M´={1,2,3} σ:σ(a)=1,σ(b)=2, (不是) (不是) τ:τ(a)=3,τ(b)=2,τ(c)=2 ,τ(c)=3 2)M=Z,M´=2Z, σ:σ(n)=2n, n Z (是) (双) 3)M=Z,M´=Z+, σ:σ(n)=|n|, n Z (不是) (是) (满) n Z τ:τ(n)=|n|+1, nn 4)M= P ,M´=P,(P为数域) (是) (满) σ:σ(A)=|A|, A P nn nn 5)M=P,M´= P ,(P为数域) τ:τ(a)=aE, a ( (单) P E为n级单位矩阵) (是)
数域P上的线性空间.
例5 全体正实数R+,
1) 加法与数量乘法定义为: a, b R , k R

a b log
b a
k a ak
a , b R , k R 2) 加法与数量乘法定义为:
a b ab
k aa
k
判断 R+是否构成实数域 R上的线性空间 .
对于 , , P n , k , l P
引例2
数域P上的一元多顶式环P[x]中,定义了两个多 项式的加法和数与多项式的乘法, 而且这两种运算同样满足上述这些重要的规律:
f ( x) g( x) g( x) f ( x) ( f ( x) g( x)) h( x) f ( x) ( g( x) h( x)) f ( x) 0 f ( x) f ( x) ( f ( x)) 0 1 f ( x) f ( x)
定义:映射的逆
1 已知双射 : M M ', 定义 : M M 为其的逆 映射,满足对 a M ,当 (a) a时,有 -1 (a) a Note ①只有双射才是可逆映射.
相关文档
最新文档