第十二章 电磁感应电磁场(二)作业答案

合集下载

第十二章 电磁感应电磁场(一)作业答案

第十二章 电磁感应电磁场(一)作业答案

第十二章 电磁感应 电磁场(一)一.选择题[ A ]1.(基础训练1)半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ,当把线圈转动使其法向与B 的夹角为α=60︒时,线圈中已通过的电量与线圈面积及转动时间的关系是:(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间无关. (D) 与线圈面积成反比,与时间成正比. 【解析】[ D ]2.(基础训练3)在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为的正方向,则代表线圈内自感电动势随时间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个? 【解析】dt dI LL -=ε,在每一段都是常量。

dtdI [ B ]3.(基础训练6)如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B ϖ平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a – U c 为(A) =0,U a – U c =221l B ω (B) =0,U a – U c =221l B ω- (C) =2l B ω,U a – U c =221l B ω (D) =2l B ω,U a – U c=221l B ω-【解析】金属框架绕ab 转动时,回路中0d d =Φt,所以0=ε。

2012cL a c b c bc b U U U U v B d l lBdl Bl εωω→→→⎛⎫-=-=-=-⨯⋅=-=- ⎪⎝⎭⎰⎰[ C ]5.(自测提高1)在一通有电流I 的无限长直导线所在平面内,有一半经为r ,电阻为R 的导线环,环中心距直导线为a ,如图所示,且r a >>。

当直导线的电流被切断后,沿着导线环流过的电量约为:(A))11(220r a a R Ir +-πμ (B)ar a R Ir +ln 20πμ (C)aR Ir 220μ (D) rR Ia 220μ 【解析】直导线切断电流的过程中,在导线环中有感应电动势大小:td d Φ=εB ϖab clωaIroR q 21φφ-=感应电流为:tR Ri d d 1Φ==ε则沿导线环流过的电量为:∆Φ=⋅Φ==⎰⎰Rt t R t i q 1d d d 1daR Ir R r a I R S B 212120200μππμ=⋅⋅=⋅∆≈[ C ]6.(自测提高4)有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. 【解析】自感系数为l r n V n L 222πμμ==,磁能为221LI W m =[ B ]7.(附录C3)在圆柱形空间内有一磁感应强度为B ϖ的均匀磁场,如图所示,B ϖ的大小以速率dB/dt 变化。

大学物理B-第十二章 电磁感应

大学物理B-第十二章 电磁感应
法拉第电磁感应定律
电磁感应
产 生 机 理
i
d m dt
楞次定律 动生电动势
感生电动势
自感电动势
i (v B ) dl L B i dS S t
工业生产
12-3 自感和互感
互感电动势
一、自感电动势
自感系数 I(t) Φm
1.自感现象与自感系数 由于回路自身电流的变化,在回 路中产生感应电动势的现象。
N
ab a
I NIl a b ldr ln 2r 2 a
N B dS
s
dr
I
r
由互感系数定义可得互感为: Nl ab M ln I 2 a
l
a
b
I I I I
0
0
12-4磁场的能量与能量密度
I (t )
L
R
0
充电过程曲线
τ
t
I (t)
K2
麦克斯韦提出全电流的概念
I 全 I 传导 I D
全电流连续不中断的,构成闭合回路
ID

全电流安培环路定理
L H dl I 传导 I D dD d D dS D dS 位移电流 I D S t dt dt S
讨论: 1. 传导电流:电荷定向运动 2. 若传导电流为零
L
L
穿过S1 面 电流
穿过S2 面 电流
S1
I

+ + + +
S2
D
电流不连续 -
二、 全电流安培环路定理 S2 面电位移通量 D DS
极板间电位移矢量 D 位移电流

大学物理《普通物理学简明教程》第十二章 电磁感应 电磁场

大学物理《普通物理学简明教程》第十二章  电磁感应 电磁场

第十二章 电磁感应 电磁场问题12-1 如图,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,试确定在下列情况下,ABCD 上的感应电动势的方向:(1)矩形线圈在纸面内向右移动;(2)矩形线圈绕AD 轴旋转;(3)矩形线圈以直导线为轴旋转.解 导线在右边区域激发的磁场方向垂直于纸面向里,并且由2IB rμ0=π可知,离导线越远的区域磁感强度越小,即磁感线密度越小.当线圈运动时通过线圈的磁通量会发生变化,从而产生感应电动势.感应电动势的方向由楞次定律确定.(1)线圈向右移动,通过矩形线圈的磁通量减少,由楞次定律可知,线圈中感应电动势的方向为顺时针方向.(2)线圈绕AD 轴旋转,当从0o到90o时,通过线圈的磁通量减小,感应电动势的方向为顺时针方向.从90o到180o时,通过线圈的磁通量增大,感应电动势的方向为逆时针. 从180o到270o 时,通过线圈的磁通量减少,感应电动势的方向为顺时针.从270o到360o 时,通过线圈的磁通量增大,感应电动势的方向为逆时针方向. (2)由于直导线在空间激发的磁场具有轴对称性,所以当矩形线圈以直导线为轴旋转时,通过线圈的磁通量并没有发生变化,所以,感应电动势为零.12-2 当我们把条形磁铁沿铜质圆环的轴线插入铜环中时,铜环内有感应电流和感应电场吗? 如用塑料圆环替代铜质圆环,环中仍有感应电流和感应电场吗?解 当把条形磁铁沿铜质圆环的轴线插入铜环过程中,穿过铜环的磁通量增加,铜环中有感应电流和感应电场产生;当用塑料圆环替代铜质圆环,由于塑料圆环中的没有可以移动的自由电荷,所以环中无感应电流和感应电场产生.12-3 如图所示铜棒在均匀磁场中作下列各种运动,试问在哪种运动中的铜棒上会有感应电动势?其方向怎样?设磁感强度的方向铅直向下.(1)铜棒向右平移[图(a)];(2)铜棒绕通过其中心的轴在垂直于B 的平面内转动[图(b)];(3)铜棒绕通过中心的轴在竖直平面内转动[图(c)].CI解 在磁场中运动的导体所产生的感应电动势为()d Lε=⨯⎰v B l ⋅,在图(a)与(c)中的运动情况中,⨯v B 的方向与d l 方向垂直,铜棒中没有感应电动势.在图(b)中,铜棒绕中心轴运动,左右两段产生的感应电动势大小相等,方向相反,所以铜棒中总的感应电动势为零.12-4 有一面积为S 的导电回路,其n e 的方向与均匀磁场的B 的方向之间的夹角为θ.且B 的值随时间变化率为d d B t .试问角θ为何值时,回路中i ε的值最大;角θ为何值时,回路中i ε的值最小?请解释之.解 由i d d d cos S S dt dtεθ=--⎰B BS =⋅,可得当0θ=o 时,回路中i ε的值最大,当90θ=o 时,回路中iε的值最小.12-5 有人认为可以采用下述方法来测量炮弹的速度.在炮弹的尖端插一根细小的永久磁铁,那么,当炮弹在飞行中连续通过相距为r 的两个线圈后,由于电磁感应,线圈中会产生时间间隔为t ∆的两个电流脉冲.您能据此测出炮弹速度的值吗?如0.1m r =,4=210s t -∆⨯,炮弹的速度为多少?解 带有小磁铁的炮弹飞向线圈,线圈中会产生感应电流, 测得的两个电流脉冲产生的时间间隔即炮弹飞过这两个线圈间距所用的时间. 由题意可知, 炮弹的速度为1500m s rv t-==⋅∆12-6 如图所示,在两磁极之间放置一圆形的线圈,线圈的平面与磁场垂直.问在下述各种情况中,线圈中是否产生感应电流?并指出其方向.(1)把线圈拉扁时;(2)把其中B B B (a)(b)(c)ne Bθ一个磁极很快地移去时;(3)把两个磁极慢慢地同时移去时.解 这三种情况中, 通过的磁通量均减小,线圈中均会产生感应电流, 从上往下看, 感应电流的方向沿顺时针方向.12-7 如图所示,均匀磁场被限制在半径为R 的圆柱体内,且其中磁感强度随时间的变化率d d B t =常量,试问: 在回路1L 和2L 上各点的d d B t 是否均为零?各点的k E 是否均为零?1kd L ⋅⎰ÑEl 和2k d L ⋅⎰ÑE l 各为多少?解 由于磁场只存在于圆柱体内,在回路1L 上各点d d B t 为常量,在回路2L 上各点d d B t 为零.空间中各点的感生电场分布为r R < k d 2d r BE t=r R > 2k d 2d R BE r t=可见在回路1L 和2L 上各点的k E 均不为零.对于在回路1L11k d d d d d d L L S S t t⋅=-=-⎰⎰ÑB B E l S ⋅对于回路2L 22kd d 0d L tΦ⋅=-=⎰ÑE l12-8 一根很长的铜管铅直放置,有一根磁棒由管中铅直下落.试述磁棒的运动情况.解 长直铜管可以看作由许多铜线圈组成,当磁棒下落,每通过一个线圈,线圈中的磁通量都会发生变化,在下落过程中,铜管中始终会有感应电流产生,并且感应电流产生的磁场的方向与磁棒磁场方向相反,因此,磁棒始终受到铜管对它的阻碍作用.12-9 有一些矿石具有导电性,在地质勘探中常利用导电矿石产生的涡电流来发现它,这叫电磁勘探.在示意图中,A 为通有高频电流的初级线圈,B为次级线圈,并连接电流计G,从次级线圈中的电流变R2L 1L化可检测磁场的变化.当次级线圈B检测到其中磁场发生变化时,技术人员就认为在附近有导电矿石存在.你能说明其道理吗?利用问题12-9图相似的装置,还可确定地下金属管线和电缆的位置,你能提供一个设想方案吗?解 该检测方法利用的原理是电磁感应。

电磁感应同步练习二(含详解答案) doc

电磁感应同步练习二(含详解答案) doc

内化提升1.如图14所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是( )图14A .合上开关S 接通电路时,A 2先亮,A 1后亮,最后一样亮B .合上开关S 接通电路时,A 1和A 2始终一样亮C .断开开关S 切断电路时,A 2立即熄灭,A 1过一会儿才熄灭D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭解析:本题考查了对通电自感和断电自感现象的理解,以及纯电感线圈在电流稳定时相当于一根短路导线.通电瞬间,L 中有自感电动势产生,与L 在同一支路的灯A 1要逐渐变亮,而A 2和电源构成回路则立即亮;稳定后,A 1与A 2并联,两灯一样亮.断开开关瞬间,L 中有自感电动势,相当于电源,与A 1、A 2构成回路,所以两灯都过一会儿才熄灭.答案:AD图152.如图15所示,两根相距为l 的平行直导轨ab 、cd .b 、d 间连有一固定电阻R ,导线电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v (如图19)做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Bl v ,流过固定电阻R 的感应电流由b 到d B .U =12Bl v ,流过固定电阻R 的感应电流由d 到b C .U =Bl v ,流过固定电阻R 的感应电流由b 到dD .U =Bl v ,流过固定电阻R 的感应电流由d 到b解析:MN 切割磁感线产生感应电动势E =Bl v ,由于MN 两端电压指路端电压,而导体杆电阻也为R ,故U =12Bl v ;由右手定则可判定流过R 电阻的电流由b 到d ,因此A 正确. 答案:A3.如图16中半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的大小和方向是(金属圆盘的电阻不计)( )图16A .由c 到d ,I =Br 2ω/RB .由d 到c ,I =Br 2ω/RC .由c 到d ,I =Br 2ω/(2R )D .由d 到c ,I =Br 2ω/(2R )解析:金属圆盘在匀强磁场中匀速转动,可以等效为无数根长为r 的导体棒绕O 点做匀速圆周运动,其产生的感应电动势大小为E =Br 2ω/2,由右手定则可知其方向由外指向圆心,故通过电阻R 的电流I =B ωr 2/(2R ),方向由d 到c ,故选D 项.答案:D图174.(2009年济宁一中月考)如图17所示,平行导轨间距为d ,一端跨接一个电阻R ,匀强磁场的磁感应强度为B ,方向垂直于平行金属导轨所在平面.一根金属棒与导轨成θ角放置,金属棒与导轨的电阻均不计.当金属棒沿垂直于棒的方向以恒定的速度v 在金属导轨上滑行时,通过电阻R 的电流是( )A.Bd v RB.Bd v sin θRC.Bd v cos θRD.Bd v R sin θ解析:电流应等于感应电动势除以电阻R ,问题在于感应电动势应如何计算.能够引起感应电流的电动势是MN 间产生的电动势,所以有效切割长度应为MN .而MN 用已知参数表示应为d sin θ,所以有效切割长度l =d sin θ.则E =Bl v =Bd v sin θ,I =E R =Bd v R sin θ,所以选项D 正确. 答案:D5.如图18所示,两块竖直放置的金属板间距为d ,用导线与一匝数为n 的线圈连接.线圈内部分布有方向水平向左的匀强磁场.两板间有一个一定质量、电荷量为+q 的油滴在与水平方向成30°角斜向右上方的恒力F 的作用下恰好处于平衡状态.则线圈内磁场的变化情况和磁通量的变化率分别是( )图18A .磁场正在增强,ΔΦΔt =3dF 2qB .磁场正在减弱,ΔΦΔt=3dF 2nq C .磁场正在减弱,ΔΦΔt=3dF 2q D .磁场正在增强,ΔΦΔt =3dF 2nq 解析:本题涉及带电粒子在电场中的平衡及感应电动势两个问题.由于直流电不能通过电容器,因此,电容器两极板间电压为线圈上感应电动势的大小,带电油滴所受重力竖直向下,恒力F 与水平方向成30°斜向右上方,且带电油滴恰好处于平衡状态,则可知油滴所受电场力方向水平向左,电容器右极板带正电,由楞次定律可知磁场正在减弱;由带电粒子水平方向受力平衡可得F ·cos30°=n ΔΦΔtd ·q ,得ΔΦΔt =3dF 2nq. 答案:B图196.如图19所示是日光灯的结构示意图,若按图示的电路连接,关于日光灯发光的情况,下列叙述中正确的是( )A .S 1接通,S 2、S 3断开,日光灯就能正常发光B .S 1、S 2接通,S 3断开,日光灯就能正常发光C .S 3断开,接通S 1、S 2后,再断开S 2,日光灯就能正常发光D .当日光灯正常发光后,再接通S 3,日光灯仍能正常发光解析:当S 1接通,S 2、S 3断开时,电源电压220 V 直接加在灯管两端,达不到灯管启动的高压值,日光灯不能发光,选项A 错误.当S 1、S 2接通,S 3断开时,灯丝两端被短路,电压为零,日光灯不能发光,选项B 错误.当日光灯正常发光后,再接通S 3,则镇流器被短路,灯管两端电压过高,会损坏灯管,选项D 错误.只有当S 1、S 2接通,灯丝被预热,发出电子,再断开S 2,镇流器中产生很大的自感电动势,和原电压一起加在灯管两端,使气体电离,日光灯正常发光,故选项C 正确.答案:C图207.两块水平放置的金属板间的距离为d ,用导线与一个n 匝线圈相连,线圈电阻为r ,线圈中有竖直方向的磁场,电阻R 与金属板连接,如图20所示,两板间有一个质量为m 、电荷量+q 的油滴恰好处于静止.则线圈中的磁感应强度B 的变化情况和磁通量的变化率分别是( )A .磁感应强度B 竖直向上且正增强,ΔΦΔt =dmg nqB .磁感应强度B 竖直向下且正增强,ΔΦΔt =dmg nqC .磁感应强度B 竖直向上且正减弱,ΔΦΔt =dmg (R +r )nRqD .磁感应强度B 竖直向下且正减弱,ΔΦΔt =dmgr (R +r )nRq解析:油滴静止说明电容器下极板带正电,线圈中电流自上而下(电源内部),由楞次定律可以判断,线圈中的磁感应强度B 为向上的减弱或向下的增强.又E =n ΔΦΔt① U R =R R +r·E ② qU R d=mg ③ 由①②③式可解得:ΔΦΔt =mgd (R +r )nRq答案:C图218.如图21所示,一边长为L 的正方形金属框,质量为m ,电阻为R ,用细线把它悬挂在一个有界的磁场边缘.金属框的上半部处于磁场内,下半部处于磁场外,磁场随时间均匀变化且满足B =kt 规律,已知细线所能承受的最大拉力T =2mg ,求从t =0时刻起,经多长时间细线会被拉断.解析:2mg =mg +BIL依全电路欧姆定律,得I =E R 依法拉第电磁感应定律,得E =ΔΦΔt =ΔBS Δt =kL 22又B =kt ,由以上各式,得t =2mgR k 2L 3 答案:2mgR k 2L 3图229.如图22所示,在相距为L 的水平光滑导轨MN 、PQ 间,存在有竖直向上的匀强磁场,磁感应强度为B ,导轨上放着两根质量均为m 、电阻均为R 的金属棒a 、b .开始时,b 棒静止,a 棒以初速度v 0向右运动.设两棒始终不相碰,求在运动过程中通过a 棒上的总电荷量.解析:设棒稳定运动后的共同速度为v ,对系统从a 棒开始运动到两棒达到共同速度的过程,应用动量守恒定律有:m v 0=2m v设回路中的平均电流为I ,再对a 棒在上述过程中,应用冲量定理有:-BIL ·Δt =m v -m v 0又ΔQ =I ·Δt解得ΔQ =m v 02BL答案:m v 02BL10.(2009年许昌模拟)如图23甲所示为某同学研究自感现象的实验电路图,用电流传感器显示各时刻通过线圈L 的电流.电路中电灯的电阻R 1=6.0 Ω,定值电阻R =2.0 Ω,AB 间电压U =6.0 V ,开关S 原来闭合,电路处于稳定状态,在t 1=1.0×10-3 s 时刻断开开关S ,此时刻前后电流传感器显示的电流随时间变化的图线如图乙所示.图23(1)求出线圈L 的直流电阻R L .(2)在图甲中用箭头标出断开开关后通过电灯的电流方向.(3)在t 2=1.6×10-3 s 时刻线圈L 中的感应电动势的大小是多少?解析:(1)由图读出,开始时流过电感线圈L 的电流I 0=1.5 A由欧姆定律I 0=U R L +R解得:R L =U I 0-R =2.0 Ω (2)R 1中电流方向向左.(3)由图读出,t =1.6×10-3 s 时刻线圈L 的电流I =0.30 A线圈L 此时是一个电源,由全电路欧姆定律E =I (R L +R +R 1)解得E =3.0 V.答案:(1)2.0 Ω (2)向左 (3)3.0 V图2411.如图24所示,空间存在垂直于纸面的均匀磁场,在半径为a 的圆形区域内外,磁场方向相反,磁感应强度的大小均为B .一半径为b ,电阻为R 的圆形导线环放置在纸面内,其圆心与圆形区域的中心重合,在内、外磁场同时由B 均匀地减小到零的过程中,通过导线截面的电荷量q 为多少?解析:据法拉第电磁感应定律,圆环中的感应电动势为E =ΔΦΔt,据全电路欧姆定律,圆环中的电流强度为I =E R =ΔΦR ·Δt ,据电流强度的定义,有I =q Δt,由以上三式解得通过导线截面的电荷量为q =IΔt =ΔΦR在Δt 时间内穿过圆环的合磁通量变化量为ΔΦ=Bπ(2a 2-b 2)或ΔΦ=Bπ(b 2-2a 2)解得通过导线截面的电荷量q =Bπ(2a 2-b 2)R 或q =Bπ(b 2-2a 2)R答案:Bπ(2a 2-b 2)R 或Bπ(b 2-2a 2)R图2512.如图25所示,在磁感应强度B =2 T 的匀强磁场中,有一个半径r =0.5 m 的金属圆环,圆环所在的平面与磁感线垂直.OA 是一个金属棒,它沿着顺时针方向以20 rad/s 的角速度绕圆心O 匀速转动,且A 端始终与圆环相接触.OA 棒的电阻R =0.1 Ω,图中定值电阻R 1=100 Ω,R 2=4.9 Ω,电容器的电容C =100 pF ,圆环和连接导线的电阻忽略不计,则:图26(1)电容器的带电荷量是多少?哪个极板带正电?(2)电路中消耗的电功率是多少?解析:(1)画出等效电路图,如图26所示.导体棒OA 产生的感应电动势为E =BL v =Br r 2ω=5 V I =E R +R 2=55A =1 A 则q =C ·IR 2=4.9×10-10 C 根据右手定则,感应电流的方向由O →A ,但导体棒切割磁感线相当于电源,在电源内部电流从电势低处流向电势高处,故A 点电势高于O 点电势,又由于电容器上极板与A 点相接即为正极,电容器上极板带正电.(2)电路中消耗的电功率P 消=I 2(R +R 2)=5 W答案:(1)4.9×10-10C 上极板 (2)5 W图2713.半径为a 的圆形区域内有匀强磁场,磁感应强度B =0.2 T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,如图27所示,其中a =0.4 m ,b =0.6 m .金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω.一金属棒MN 与金属环接触良好,棒与环的电阻均不计.(1)若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径OO ′的瞬时,MN 中的电动势和流过L 1的电流.(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为ΔB Δt =4πT/s ,求L 1的功率. 解析:(1)棒滑过圆环直径OO ′的瞬时,垂直切割磁感线的有效长度为2a ,故在MN 中产生的感应电动势为:E 1=BL v =B ·2a ·v =0.2×2×0.4×5 V =0.8 V ,通过灯L 1的电流I 1=E 1R 0=0.82A =0.4 A. (2)撤去金属棒MN ,半圆环OL 2O ′以OO ′为轴向上翻转90°,根据法拉第电磁感应定律:E 2=ΔΦΔt =ΔB Δt ·πa 22=4π×πa 22=2×0.42 V =0.32 V ,则L 1的功率P 1=(E 22R 0)2R 0=E 224R 0=0.3224×2W =1.28×10-2 W.答案:(1)0.8 V 0.4 A (2)1.28×10-2 W。

第十二章电磁感应电磁场

第十二章电磁感应电磁场

第十二章电磁感应电磁场题12.1:如图所示,在磁感强度T 106.74-⨯=B 的均匀磁场中,放置一个线圈。

此线圈由两个半径均为3.7 cm 且相互垂直的半圆构成,磁感强度的方向与两半圆平面的夹角分别为 62和 28。

若在s 105.43-⨯的时间内磁场突然减至零,试问在此线圈内的感应电动势为多少? 题12.1分析:由各种原因在回路中所引起的感应电动势,均可由法拉第电磁感应定律求解,即⎰⋅-=-=Sd d d d d S B t t Φε但在求解时应注意下列几个问题: 1.回路必须是闭合的,所求得的电动势为回路的总电动势。

2.Φ应该是回路在任意时刻或任意位置处的磁通量。

它由⎰⋅=Sd S B Φ计算。

对于均匀磁场则有θcos d SBS Φ=⋅=⎰S B ,其中⊥=S S θcos 为闭会回路在垂直于磁场的平面内的投影面积。

对于本题,2211cos cos θθBS BS Φ+=中1θ和2θ为两半圆形平面法线n e 与B 之间的夹角。

3.感应电动势的方向可由tΦd d -来判定,教材中已给出判定方法。

为方便起见,所取回路的正向(顺时针或逆时针)应与穿过回路的B 的方向满足右螺旋关系,此时Φ恒为正值,这对符号确定较为有利。

题12.1解:迎着B 的方向,取逆时针为线圈回路的正向。

由法拉第电磁感应定律V 1091.4)cos cos (cos cos d d cos cos d d d d 4221122112211-⨯=+∆∆-=+-=+-=-=θθθθθθεS S tB S S t B BS BS t t Φ)()(0>ε,说明感应电动势方向与回路正向一致题12.2:一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φ)s 100s i n ()Wb 100.8(15--⨯=π,求在s 100.12-⨯=t 时,线圈中的感应电动势。

题12.2解:线圈中总的感应电动势t t ΦN )s 100cos()V 51.2(d d 1-=-=πε当 s 100.12-⨯=t 时, ε= 2.51 V 。

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论12-1将一条形磁铁插入一闭合线圈,线圈中将产生感应电动势。

问在磁铁与线圈相对位置相同的情况下,迅速插入和缓慢插入线圈中所产生的感应电动势是否相同?感应电流是否相同?因电磁感应所产生的总电量是否相同?答:迅速插入在线圈中产生的感应电动势大,缓慢插入线圈中产生的感应电动势小。

感应电流也不相同(因为I=Rε),但电磁感应所产生的总电量是相同的。

(因为11d q Idt dt dt R R dt RεΦ===-=-∆Φ⎰⎰⎰,∆Φ相同,所以q 相同)12-2一闭合圆形线圈在匀强磁场中运动,在下列情况下是否会产生感应电流?为什么? (1)线圈沿磁场方向平移; (2)线圈沿垂直于磁场方向平移;(3)线圈以自身的直径为轴转动,轴与磁场方向平行;(4)线圈以自身的直径为轴转动,轴与磁场方向垂直。

解:由d dt εΦ=-1d I R R dtεΦ==-(1)因为0d dt Φ=,所以没有电流产生(2)0d dtΦ= 也没有电流产生(3) 0Φ= 0d dtΦ= 没有电流产生(4)0d dt Φ≠ 若转动的角速度为,则2sin d R dtπωθΦ=(θ为线圈平台与之间的夹角)12-3在一环状铁芯上绕有两组线圈1和2,如题图所示,这样就构成了一个变压器。

当在线圈1中所通电流I 增大或减小时,在线圈2中都要感应电动势。

判断在这两种情况下,线圈2中的感应电流的方向。

答:(1)当I 增大,∆Φ增大,由楞次定律,I 产生的磁场应阻碍变化, 所以I 感的方向如图所示(从B 端流出)(2)当I 减小时,∆Φ减小,由楞次定律产生的磁场应阻碍变化 所以I 感的方向从A 端流出。

12-4将一条形磁铁插入电介质环中,环内会不会产生感应电动势?会不会产生感应电流?环内还会发生什么现象?(3) (4) AB答:不会产生感应电流,但会产生感应电动势(很小)。

环内还会产生极化现象,因为变化的磁场能产生电场,因此会使电解质极化。

大连理工物理答案12

大连理工物理答案12

作业12 电磁感应二1.用导线围成的回路(两个以O 点为圆心, 半径不同的同心圆, 在一处用导线沿半径方向相连), 放在轴线通过O 点的圆柱形均匀磁场中, 回路平面垂直于柱轴, 如图13-1所示。

如磁场方向垂直图面向里, 其大小随时间减小, 则(A ),(B) ,(C) ,(D) ,中正确表示涡旋电电场方向及感应电流的流向的是[ ]。

答: D解: 由楞次定律判断感应电流的方向。

由于磁场垂直于纸面向里, 并且减小, 所以, 感生电流产生的磁场垂直于纸面向里, 由此可以判断出: 回路中感生电流的方向是顺时针的。

注意:由于两环之间的导线上没有电动势, 所以不同环之间没有电流。

2.均匀磁场限制在圆柱形空间(如图13-2) 。

磁场中A,B 两点用直导线AB 连接, 或用弧导线AB 连接, 则[ ]。

A.直导线中电动势较大B.只有直导线中有电动势C.两导线中的电动势相等D.弧导线中电动势较大答: A解:连接 和 , 则由于感生电场是同心圆。

在 上, 线元 与感生的涡旋电场 垂直;在 上, 线元 与感生的涡旋电场 垂直。

因此, 和 上的电动势为零 0=⋅==⎰⎰OA iOA OAOA l d E d εε 0=⋅==⎰⎰OB iOB OB OB l d E d εε由法拉第电磁感应定律, 回路 上的感应电动势为OACBO OACBO ACBOB ACB OA BO ACB OA OACBO S t d dB t d d -=Φ-==-+=++=εεεεεεεε则弧线ACB 上的电动势为,弧线AB 上的电动势为22||ABO AB S dtdB =ε 回路OADBO 上的感应电动势为OADBO OADBO ADB OB ADB OA BO ADB OA OADBO S t d dB t d d -=Φ-==-+=++=εεεεεεεε则直线ADB 上的电动势为,由于 , 所以3.如图13-3所示,闭合线圈共50匝,半径r=4cm,线圈法线正向与磁感应强度之间的夹角 ,磁感应强度 。

电磁感应 电磁场 练习题参考答案

电磁感应 电磁场  练习题参考答案

22电磁感应 电磁场 练习题参考答案1(2124)(A ) 2(2145)(B ) 3(2491)(C ) 4(2493)(B ) 5(2495)(D ) 6(2123)(A ) 7(2146)(C ) 8(2686)(C ) 9(2809)(C ) 10(5493)(D ) 11(5677)(C )12(2114)t a rI ωμc o s 220π t RarI ωωμsin 220π13(2175) 等于 小于参考解:(1) 螺线管中仅有感应电动势,但无感应电流,故对磁铁下落运动没有影响.(2) 螺线管中有感应电流,根据楞次定律知∶磁铁进入螺线管中时,感应电流激发的磁场抵制磁铁进入;但当磁铁欲从管中漏出时感应电流激发的磁场又阻止磁铁从管中漏出. 14(2130) 8/32l B ω 23/8B l ω- 0 15(2318)θtg BLmgR aθtg BLmg 由b 向a16(2625) 9.6 J17(2117) 解:由题意,大线圈中的电流I在小线圈回路处产生的磁场可视为均匀的.2200223/2223/224()2()IRIRB R x R x μπμπ==++故穿过小回路的磁通量为220223/22()IR B S r R x μπΦ==+⋅ 22032r RI xμπ≈ 由于小线圈的运动,小线圈中的感应电动势为2204d 3d d 2d i r IRx txtμπεΦ==220432r R Ixμπ=v当x =NR 时,小线圈回路中的感应电动势为24203/(2)i r I N R εμπ=v18(2407) 解:长直带电线运动相当于电流()I t λ=⋅v .正方形线圈内的磁通量可如下求出d Φd 2I a x a xμπ=⋅+d Φln 222ax Ia Ia a xμμππ==⋅+⎰0d Φd ln 2d 2d i a I ttμεπ=-=0d ()ln 22d t atμλπ=v230d ()()ln 22d i t i t aRRtεμλπ==v19(2410) 解:带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带,环带内有电流 R t R I d )(d ωσ= d I 在圆心O 点处产生的磁场 0011d d /()d 22B I R t R μμσω==由于整个带电环面旋转,在中心产生的磁感应强度的大小为))((21120R R t B -=σωμ选逆时针方向为小环回路的正方向,则小环中20211Φ()()2t R R r μσωπ≈-221d Φd ()()d 2d i t r R R ttμωεπσ=-=--2021π()d ()2d i r R R t i R R tεμσω-==-⋅''方向:当d (t) /d >0t ω时,i 与选定的正方向相反.当d (t) /d <0t ω时,i 与选定的正方向相同.20(2737) 解:(1) 载流为I 的无限长直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ 以顺时针绕向为线圈回路的正方向,与线圈相距较远的导线在线圈中产生的磁通量为:300123d ln222dd IIdd r rμμππΦ=⋅=⎰与线圈相距较近的导线对线圈的磁通量为:2002d ln 222ddIIdd r rμμππΦ=-⋅=-⎰总磁通量 0124ln 23IdμπΦ=Φ+Φ=-感应电动势为: 00d 4d 4(ln)ln d 23d 23dI d tt μμεαππΦ=-== 由ε>0和回路正方向为顺时针,所以ε的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.21(2138) 解:在距O 点为l 处的d l 线元中的动生电动势为d ()d B l ε=⨯⋅vsin l ωθ=v∴ L1()d s i n ()c o s d2L B l B lεα=⨯=π⋅⎰⎰v v⎰⎰==ΛθωθθωLl l B l lB 02d sin sin d sinOB⨯v24θω22s i n 21BL =ε的方向沿着杆指向上端.22(2319) 解:在d l 处 )2/(0r I B π=μd ()d d cos 60B l B l ε=⨯=︒⋅v v但 ︒=30cos /d d r l ∴ d t g 30d B r ε=︒v21tg 30d r r B r ε=︒⎰v其中4/32l a r +=,4/31l a r -=ε=方向从1→2.23(2323) 解:(1) ab 所处的磁场不均匀,建立坐标ox ,x 沿ab 方向,原点在长直导线处,则x 处的磁场为 xiB π=20μ , i =I 0沿a →b 方向()d d b ba a B l B l ε=⨯=-⋅⎰⎰v v 01000d 2l l lIx x μπ+=-⎰v 00010ln 2I l l l μ+=-v π故 b a U U >(2) t I i ωc o s0=,以abcda 作为回路正方向, 2Φd Bl x =⎰0102d 2l l l il x xμπ+=⎰上式中2l t =v , 则有 0102d Φd (d )d d 2l l l il x ttxμεπ+=-=-⎰0001(ln)(sin cos )2I l l t t t l μωωωπ+=-v24(2513) 解∶动生电动势cos i Bl εθ=vcos iB l I RRεθ==v导线受到的安培力 lB I f m =ab 导线下滑达到稳定速度时重力和磁力在导轨方向的分力相平衡θθc o s s i n m f mg = c o ss i nc o s B l m g lB Rθθθ=v∴ 222sin cos m gR B l θθ=vI。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一. 选择题
[ A ] 1 (基础训练4)、两根很长的平行直导线,其间距离为a ,与电源组成闭合回路,如图12-18.
已知导线上的电流为I ,在保持I 不变的情况下,若将
导线间的距离增大,则空间的
(A) 总磁能将增大. (B) 总磁能将减少.
(C) 总磁能将保持不变.
(D) 总磁能的变化不能确定
【解答】
2
12
m W L I =,距离增大,φ增大,L 增大, I 不变,m W 增大。

[ D ]2(基础训练7)、如图12-21所示.一电荷为q 的点电荷,以匀角速度作圆周运动,圆周的半径为R .设t = 0 时q 所在点的坐标
为x 0 = R ,y 0 = 0 ,以i 、j
分别表示x 轴和y 轴上的单位矢量,则圆心处O 点的位移电流密度为: (A)
i t R q ωω
sin 42π (B) j t R
q ωωcos 42
π (C) k R q 24πω (D) )cos (sin 42
j t i t R
q ωωω
-π 图 12-21 【解答】设在0—t 的时间内,点电荷转过的角度为ωt ,此时,点电荷在O 点产生的电位移矢量为
0D E ε=, ()222
000cos sin ,444r
q
R q q E e ti tj R R R R ωωπεπεπε=-
=-=-+ 式中的r e 表示从O 点指向点电荷q 的单位矢量。

()2
sin cos 4d dD q J ti tj dt R ω
ωωπ∴=
=-。

[ C ] 3 (基础训练8)、 如图12-22,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强
度H 的环流与沿环路L 2的磁场强度H 的环流两者,必有: (A) >'⎰⋅1
d L l H ⎰⋅'2
d L l H . (B) ='⎰⋅1
d L l H ⎰⋅'2
d L l H .
(C) <'⎰⋅1
d L l H ⎰⋅'2
d L l H
. (D) 0d 1
='⎰⋅L l H .
【解答】
全电流是连续的,即位移电流和传导电流大小相等、方向相同。

另外,在忽略边界效应的情况下,位移电流均匀分布在电容器两极板间,而环路L1所包围的面积小于电容器极
图12-22
图12-18
)
R O
D
板面积,故选(C )。

[B] 4 (自测提高6)、如图12-31所示,空气中有一无限长金属薄壁圆筒,在表面上沿圆周方向均匀地流着一层随时间变化的面电流i (t ),则 (A) 圆筒内均匀地分布着变化磁场和变化电场. (B) 任意时刻通过圆筒内假想的任一球面的磁通量和电通量均为零. (C) 沿圆筒外任意闭合环路上磁感强度的环流不为零.
(D) 沿圆筒内任意闭合环路上电场强度的环流为零.
【解答】如图所示的载流圆筒等同于一长直螺线管。

在筒内产生
的时变磁场是空间均匀的,在筒外无磁场,所以(C )错;筒内的时变磁场将产生涡旋感生电场,涡旋电场在筒内不是均匀分布的(
d 2d r B
t
),所以(A )错;涡旋电场沿任意闭合回路的积分为感生电动势≠0,所以(D )错;磁场(无论是变化的还是稳恒的)与感生电场都是涡旋场,其相应的场线都是一些闭合曲线,故穿过任意闭合曲面的通量都为零,所以选(B )。

[B]5.(第十一章:基础训练8) 如图11-30所示的一细螺绕环,它由表面绝缘的
导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率r 为(真空磁导率0 =4×10-7 T ·m ·A -1) (A) 7.96×102 (B) 3.98×102
(C) 1.99×102 (D) 63.3 【解答】根据0r B nI nI μμμ==,代入数据可得答案。

二. 填空题
6 (基础训练11)、一个中空的螺绕环上每厘米绕有20匝导线,当通以电流I =3 A 时,环中磁场能量密度w = 22.6Jm -3 。

【解答】
螺绕环内部0B nI μ=,根据22230011
==22.622
B w n I J m μμ-=⋅⋅
7 (基础训练12)、反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为
⎰⎰⋅=V
S
V S D d d ρ
, ①
⎰⎰⋅⋅∂∂-=S
L S t B l E
d d , ② 0d =⎰⋅S
S B
, ③
图12-31 图11-30
⎰⋅⎰⋅∂∂+=S
L S t D
J l H
d )(d . ④
试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的.将你确定的方程式用代
号 填在相应结论后的空白处.
(1) 变化的磁场一定伴随有电场; _____② (2) 磁感线是无头无尾的; ③ (3) 电荷总伴随有电场; _①______ 8(基础训练13)、平行板电容器的电容C 为20.0 F ,两板上的电压变化率为d U /d t =1.50×105 V ·s -1,则该平行板电容器中的位移电流为 3A . 【解答】
d d d d d D J t t σ
=
= d()d d()d 3A d d d d d d S Q CU U
I SJ C t t t t σ======
9(自测提高11)、 图示12-35为一圆柱体的横截面,圆柱体内有一均匀电场E
,其方向垂直纸面向内,E
的大小随时间t 线性增加,P 为柱体内与轴线相距为r 的
一点则
(1)P 点的位移电流密度的方向为_垂直纸面向内里__. (2) P 点感生磁场的方向为__竖直向下___. 【解答】
(1)由于d /d 0d J E t ε=>,故d J 与E 同向, 垂直纸面向里。

(2)由安培环路定理
知:d J 与H 的关系与f J 与H 的关系一样,成右手螺旋关系,故P 点感生磁场的方向竖直向下。

10(自测提高12)、半径为r 的两块圆板组成的平行板电容器充了电,在放电时两板间的电场强度的大小为E = E 0e -t /RC ,式中E 0、R 、C 均为常数,则两板间的位移电流的大小为
2
00t RC
E r e
RC
επ-
,其方向与场强方向_相反 .
【解答】
0000d d d d t
RC d E D E
J e E t t RC RC
εεε-===-=-。

2=d d d I j S j r π=
11(第十一章: 自测提高15)、 如图11-54所示为三种不同的磁介
质的B ~H 关系曲线,其中虚线表示的是B = 0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:
a 代表_____铁磁质 __________的B ~H 关系曲线.
B
()d f d l s
H dl J J s
⋅=+⎰⎰⎰
图12-35
b 代表______顺磁质__________的B ~H 关系曲线.
c 代表______抗磁质__________的B ~H 关系曲线. 三. 计算题
12(自测提高20)、平行板空气电容器接在电源两端,电压为U ,如图12-43所示,回路电阻忽略不计.今将电容器的两极板以速率v 匀速拉开,当两极板间距为x 时,求电容器内位移电流密度. 【解答】
U Ex ==常数(电容器一直与电源相连)
,故 U
E x
=, 00U
D E x
εε==

则 02d dt d Uv
D J x
ε=
=。

位移电流密度矢量的方向与回路中传导电流方向相反。

13(自测提高21)、设一电缆,由两个无限长的同轴圆筒状导体所组成,内圆筒和外圆筒上的电流方向相反而强度I 相等,设内、外圆筒横截面的半径分别为R 1和R 2,如图12-38所示。

试计算长为l 的一段电缆内的磁场所储藏的能量。

【参考答案】
由安培环路定理知:
101220()()()20
()
r
r R I B r R r R r r R μμπ<⎧⎪⎪=≤≤⎨⎪>⎪⎩ 则磁能密度为
2
2
022
028r m r I B w r
μμμμπ== 则
2
1
22002
22
1
d 2d ln 84R r r m m V
R I I l R W w V rl r r R μμμμπππ==
=⎰
⎰。

图12-43
图12-44
r
μ。

相关文档
最新文档