高中数学解三角形课件
高中数学新人教A版必修5课件:第一章解三角形1.1.1正弦定理3

所以 cos B=cos 105°=cos(45°+60°)=
2- 4
6,
b=cssiinnCB= 2ssinin4150°5°=2sin 105°=2sin(45°+60°)
=
6+ 2
2 .
解析:选 C.由正弦定理得sina A=sinb B=sinc C,又coas A=cobs B
=cocs C,得csions AA=csions BB=csions CC,即 tan A=tan B=tan C,
所以 A=B=C,即△ABC 为等边三角形.
2.在△ABC 中,角 A,B,C 的对边分别是 a,b,c,若 c
C.2<x<2 2
D.2<x<2 3
解析:选 C.由 asin B<b<a,得 22x<2<x,所以 2<x<2 2.
判断三角形的形状
已知在△ABC 中,角 A,B 所对的边分别是 a 和 b,若
acos B=bcos A,则△ABC 一定是( )
A.等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
【解析】 由正弦定理得:acos B=bcos A⇒sin Acos B=sin Bcos A⇒sin(A-B)=0,由于-π<A-B<π,故必有 A-B =0,A=B,即△ABC 为等腰三角形. 【答案】 A
1.若把本例条件变为“bsin B=csin C”,试判断△ABC 的形 状. 解:由 bsin B=csin C 可得 sin2B=sin2C,因为三角形内角和 为 180°, 所以 sin B=sin C.所以 B=C.故△ABC 为等腰三角形.
3.正弦定理的变形
若 R 为△ABC 外接圆的半径,则
2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式
北师大高中数学必修第二册2.6.1.3用余弦定理、正弦定理解三角形【课件】

解析:(1)因为 m∥n,所以 asin B- 3bcos A=0, 由正弦定理,得 sin Asin B- 3sin Bcos A=0. 因为 sin B≠0,所以 tan A= 3.因为 0<A<π,所以 A=3π. (2)由正弦定理得 3π=sin1 B,
sin3 得:sin B=12. 由 a>b 知 A>B,所以 B=π6, 所以 C=π-π3-6π=π2, ∴S△ABC=21ab= 23.
又山高为
a,则-
CF
=
hcos αsin β sin β-α
-
a
=
40×
23× 1
3 2 -35=60-35=25.故选
B.
=192,∴CD=8 3海里,即灯塔 C 与 D 处之间的距离为 8 3海里.
方法归纳 实际问题经抽象概括后,已知量与未知量全部集中在一个或几个 三角形中,可用余弦定理或正弦定理求解.
微点 2 测量高度问题 例 4 在学校每周一举行的升旗仪式上,从坡角为 15°的看台上, 同一列的第一排和最后一排分别测得旗杆顶部的仰角为 60°和 30°.若 同一列的第一排和最后一排之间的距离为 10 6米(如图所示),则旗杆 的高度为________米.
解析:如图所示,假设缉私船用 t(t>0)小时在 D 处追上走私船,两船 所用时间相等,则有 CD=10 3t,BD=10t.
由题意知 AB= 3-1,AC=2,∠BAC=120°. 在△ABC 中,由余弦定理得 BC2=AB2+AC2-2AB·ACcos ∠BAC= ( 3-1)2+22-2×( 3-1)×2×cos 120°=6,所以 BC= 6.
解析:如图所示,记看台上的一列为 BC,旗杆为 OP,
高中数学第一章解三角形第1节正弦定理和余弦定理第1课时正弦定理课件新人教A版必修53

45°=
23,
∴C=60°或 C=120°.
当 C=60°时,B=75°,
b=cssiinnCB= s6isnin607°5°= 3+1; 当 C=120°时,B=15°, b=cssiinnCB= s6insi1n2105°°= 3-1. ∴b= 3+1,B=75°,C=60°或 b= 3 -1,B=15°,C=120°.
代入已知式子得
cos ksin
AA=kcsoisn
BB=kcsoisn
CC.
∴csoins
AA=csoins
BB=csoins
C C.
∴tan A=tan B=tan C.
又∵A、B、C∈(0,π),
∴A=B=C.∴△ABC 为等边三角形.
法二:化边为角
由正弦定理得sina A=sinb B=sinc C.
提示:sina A=sinb B=sinc C
2.归纳总结,核心必记 (1)正弦定理 在一个三角形中,各边和它所对角的正弦的
比相等,即 (2)解三角形
一般地,把三角形的三个角 A,B,C 和它 们的对边 a,b,c 叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做 解三角形.
[问题思考] (1)在△ABC 中 sin A=sin B,则 A=B 成立 吗? (2)在△ABC 中,sin A∶sin B∶sin C=a∶b∶c 成立吗? (3)在△ABC 中,若 A>B,是否有 sin A>sin B? 反之,是否成立?
—————————[课堂归纳·感悟提升]————————— 1.本节课的重点是正弦定理的应用,难点是正
弦定理的推导.
2.本节课要牢记正弦定理及其常见变形:
(1)sina A=sinb B=sinc C=2R(其中 R 为△ABC 外
版高中数学 第一章 解三角形 1.1.1 正弦定理(一)课件 新人教B版必修5.pptx

跟踪训练1 如图,锐角△ABC的外接圆O半径为R,角A,B,C所对的 边分别为a,b,c.求证:sina A =2R. 证明
13
类型二 用正弦定理解三角形
例2 已知△ABC,根据下列条件,解三角形:a=20,A=30°,C= 45°. 解答 ∵A=30°,C=45°,∴B=180°-(A+C)=105°, 由正弦定理得 b=assiinnAB=20ssiinn3100°5°=40sin(45°+60°)=10( 6+ 2), c=assiinnAC=20sisnin3405°°=20 2, ∴B=105°,b=10( 6+ 2),c=20 2.
A.直角三角形 C.锐角三角形
√B.等腰三角形
D.钝角三角形
由sin A=sin C,知a=c,∴△ABC为等腰三角形.
1 2 3 247
3.在△ABC中,已知BC= 5 ,sin C=2sin A,则AB=_2__5___.
答案 解析
由正弦定理,得 AB=ssiinn CABC=2BC=2 5.
18
命题角度2 运算求解问题
例4
在△ABC中,A=
π 3
,BC=3,求△ABC的周长的最大值.
解答
19
反思与感悟
利用sina A=sinb B=sinc C=2R 或正弦定理的变形公式 a=ksin A,b= ksin B,c=ksin C(k>0)能够使三角形边与角的关系相互转化.
22
跟 踪 训 练 3 在 △ABC 中 , 角 A 、 B 、 C 的 对 边 分 别 是 a 、 b 、 c , 若 A∶B∶C=1∶2∶3,求a∶b∶c的值. 解答
23
当堂训练
25
1. 在△ABC中,一定成立的等式是 答案 解析
高中数学解三角形PPT课件

22
7.关于三角形面积问题
23
用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方 向的上空,分别测得气球的仰角是α和β,已知B、D间的距离为a,测 角仪的高度是b,求气球的高度.
6
7
考点2: 三角形中的三角变换
8
9
10
考点3 与三角形的面积相关的题
11
题型2:已知面积求线段长或角
12
13
2020/1/15
14
C
15
16
17
18
19
20
解三角形应用举例
1.已知两角和一边(如A、B、C),由A+B+C = π求C,由正弦定理 求a、b
2.已知两边和夹角(如a、b、c),应用余弦定理求c边;再应用正弦定 理先求较短边所对的角,然后利用A+B+C = π,求另一角.
3.已知两边和其中一边的对角(如a、b、A),应用正弦定理 求B,由A+B+C = π求C,再由正弦定理或余弦定理求c边,要 注意解可能有多种情况.
4.已知三边a、b、c,应用余弦定理求A、B,再由A+B+C = π, 求角C.
21
5.方向角一般是指以观测者的位置为中心,将正北或正南方向作 为起始方向旋转到目 标的方向线所成的角(一般指锐角),通常表达成.正北或正南, 北偏东××度, 北偏西××度,南偏东××度,南偏西××度.
第四章 解三角形
正弦定理和余弦定理 内角和定理:
1
面积公式: 3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.
高中数学第二章解三角形2.1.1正弦定理课件北师大版必修5

中,
sin
=
sin
=
.
sin
【做一做1】
在△ABC 中,若 3a=2bsin A,则角 B 等于
.
解析:根据已知条件及正弦定理可知 3sin A=2sin Bsin A⇔
3
π
2π
3=2sin B⇔sin B= 2 ,所以角 B 为3 或 3 .
π
2π
答案:3 或 3
知识拓展1.正弦定理的证明
Bcos A,又 sin B≠0,则 sin A= 3cos A,即 tan A= 3,又△ABC 为锐角三
π
角形,所以 A= .
3
答案:(1)7∶5∶3 (2)A
探究一
探究二
探究三
探究二
探究四
思维辨析
利用正弦定理解三角形
【例2】 在△ABC中,
(1)若A=45°,B=30°,a=2,求b,c与C.
(2)若B=30°,b=5, c=5 3 ,求A,C与a.
分析:先根据三角形中解的个数的判断方法得出解的情况,再求
出各元素的值.
解:(1)由三角形内角和定理得,
C=180°-(A+B)=180°-(45°+30°)=105°.
sin
由正弦定理得,b=
sin
1
=
sin 105°=sin(60°+45°)=
(5)在△ABC中,若 cos = 1 + cos2 ,则△ABC为等腰三角形或直
角三角形. (
)
答案:(1)
(2)
(3)× (4)× (5)
探究一
探究二
探究一
探究三
探究四
思维辨析
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解三角形(数学5必修)第一章:解三角形[基础训练A 组]一、选择题1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.若A 为△ABC 的内角,则下列函数中一定取正值的是( )A .A sinB .A cosC .A tanD .Atan 13.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( )A .直角三角形B .锐角三角形C .钝角三角形D .等腰三角形 4.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为( )A .2B .23C .3D .32 5.在△ABC 中,若B a b sin 2=,则A 等于( )A .006030或B .006045或C .0060120或D .0015030或 6.边长为5,7,8的三角形的最大角与最小角的和是( )A .090B .0120C .0135D .0150二、填空题1.在Rt △ABC 中,090C =,则B A sin sin 的最大值是_______________。
2.在△ABC 中,若=++=A c bc b a 则,222_________。
3.在△ABC 中,若====a C B b 则,135,30,200_________。
4.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________。
5.在△ABC 中,,26-=AB 030C =,则AC BC +的最大值是________。
三、解答题1. 在△ABC 中,若,cos cos cos C c B b A a =+则△ABC 的形状是什么2.在△ABC 中,求证:)cos cos (aA bB c a b b a -=-3.在锐角△ABC 中,求证:C B A C B A cos cos cos sin sin sin ++>++。
4.在△ABC 中,设,3,2π=-=+C A b c a 求B sin 的值。
(数学5必修)第一章:解三角形[综合训练B 组] 一、选择题1.在△ABC 中,::1:2:3A B C =,则::a b c 等于( )A .1:2:3B .3:2:1C .2D .2 2.在△ABC 中,若角B 为钝角,则sin sin B A -的值( ) A .大于零 B .小于零 C .等于零 D .不能确定 3.在△ABC 中,若B A 2=,则a 等于( )A .A b sin 2B .A b cos 2C .B b sin 2D .B b cos 24.在△ABC 中,若2lg sin lg cos lg sin lg =--C B A ,则△ABC 的形状是( ) A .直角三角形 B .等边三角形 C .不能确定 D .等腰三角形 5.在△ABC 中,若,3))((bc a c b c b a =-+++则A = ( ) A .090 B .060 C .0135 D .01506.在△ABC 中,若1413cos ,8,7===C b a ,则最大角的余弦是( ) A .51- B .61- C .71- D .81-7.在△ABC 中,若tan 2A B a ba b--=+,则△ABC 的形状是( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .等腰三角形或直角三角形二、填空题1.若在△ABC 中,060,1,ABC A b S ∆∠==则CB A cb a sin sin sin ++++=_______。
2.若,A B 是锐角三角形的两内角,则B A tan tan _____1(填>或<)。
3.在△ABC 中,若=+=C B C B A tan tan ,cos cos 2sin 则_________。
4.在△ABC 中,若,12,10,9===c b a 则△ABC 的形状是_________。
5.在△ABC 中,若=+===A c b a 则226,2,3_________。
6.在锐角△ABC 中,若2,3a b ==,则边长c 的取值范围是_________。
三、解答题1. 在△ABC 中,0120,,ABC A c b a S =>=V ,求c b ,。
2. 在锐角△ABC 中,求证:1tan tan tan >⋅⋅C B A 。
3. 在△ABC 中,求证:2cos 2cos 2cos 4sin sin sin C B A C B A =++。
4. 在△ABC 中,若0120=+B A ,则求证:1=+++ca b c b a 。
5.在△ABC 中,若223cos cos 222C A ba c +=,则求证:2a c b +=(数学5必修)第一章:解三角形[提高训练C 组] 一、选择题1.A 为△ABC 的内角,则A A cos sin +的取值范围是( ) A .)2,2( B .)2,2(- C .]2,1(- D .]2,2[-2.在△ABC 中,若,900=C 则三边的比cba +等于( ) A .2cos 2B A + B .2cos 2B A - C .2sin 2B A + D .2sin 2BA -3.在△ABC 中,若8,3,7===c b a ,则其面积等于( )A .12B .221C .28D .364.在△ABC 中,090C ∠=,00450<<A ,则下列各式中正确的是( )A .sin cos A A >B .sin cos B A >C .sin cos A B >D .sin cos B B >5.在△ABC 中,若)())((c b b c a c a +=-+,则A ∠=( ) A .090 B .060 C .0120 D .01506.在△ABC 中,若22tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形二、填空题1.在△ABC 中,若,sin sin B A >则A 一定大于B ,对吗填_________(对或错) 2.在△ABC 中,若,1cos cos cos 222=++C B A 则△ABC 的形状是______________。
3.在△ABC 中,∠C 是钝角,设,cos cos ,sin sin ,sin B A z B A y C x +=+== 则z y x ,,的大小关系是___________________________。
4.在△ABC 中,若b c a 2=+,则=+-+C A C A C A sin sin 31cos cos cos cos ______。
5.在△ABC 中,若,tan lg tan lg tan lg 2C A B +=则B 的取值范围是_______________。
6.在△ABC 中,若ac b =2,则B B C A 2cos cos )cos(++-的值是_________。
三、解答题)sin()()sin()(2222B A b a B A b a +-=-+2. 如果△ABC 内接于半径为R 的圆,且,sin )2()sin (sin 222B b a C A R -=-求△ABC 的面积的最大值。
3. 已知△ABC 的三边c b a >>且2,2π=-=+C A b c a ,求::a b c4. 在△ABC 中,若()()3a b c a b c ac ++-+=,且tan tan 3A C +=+AB 边上的高为,,A B C 的大小与边,,a b c 的长(数学5必修)第一章 [基础训练A 组]一、选择题00tan 30,tan 302bb ac b c b a=====-= 0,sin 0A A π<<>cos sin()sin ,,22A A B A B ππ=->-都是锐角,则,,222A B A B C πππ->+<>作出图形012sin ,sin 2sin sin ,sin ,302b a B B A B A A ====或0150 设中间角为θ,则22200005871cos ,60,180601202582θθ+-===-=⨯⨯为所求 二、填空题 1.12 11sin sin sin cos sin 222A B A A A ==≤ 2.0120 22201cos ,12022b c a A A bc +-==-=3.26- 00sin 15,,4sin 4sin154sin sin sin a b b A A a A A B B ====== 4. 0120 a ∶b ∶c =sin A ∶sin B ∶sin C =7∶8∶13,令7,8,13a k b k c k === 22201cos ,12022a b c C C ab +-==-= 5. 4 ,,sin sin sin sin sin sin AC BC AB AC BC ABB AC B A C+===+AC BC +sin )cos22A B A BA B +-=+= max 4cos 4,()42A BAC BC -=≤+=三、解答题1. 解:cos cos cos ,sin cos sin cos sin cos a A b B c C A A B B C C +=+=sin 2sin 2sin 2,2sin()cos()2sin cos A B C A B A B C C +=+-= cos()cos(),2cos cos 0A B A B A B -=-+=cos 0A =或cos 0B =,得2A π=或2B π=所以△ABC 是直角三角形。
2. 证明:将ac b c a B 2cos 222-+=,bc a c b A 2cos 222-+=代入右边得右边2222222222()222a c b b c a a b c abc abc ab +-+--=-=22a b a b ab b a -==-=左边,∴)cos cos (AB c b a -=-3.证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A > ∴C B A C B A cos cos cos sin sin sin ++>++4.解:∵2,a c b +=∴sin sin 2sin A C B +=,即2sin cos 4sin cos 2222A C A CB B+-=,∴1sin cos 222B A C -==,而0,22B π<<∴cos 2B =∴sin 2sin cos 222B B B ===839参考答案(数学5必修)第一章 [综合训练B 组]一、选择题12,,,::sin :sin :sin :263222A B C a b c A B C πππ====== ,A B A B ππ+<<-,且,A B π-都是锐角,sin sin()sin A B B π<-= sin sin 22sin cos ,2cos A B B B a b B ===sin sin lg lg 2,2,sin 2cos sin cos sin cos sin A AA B C B C B C===sin()2cos sin ,sin cos cos sin 0,B C B C B C B C +=-= sin()0,B C B C -==,等腰三角形22()()3,()3,a b c b c a bc b c a bc +++-=+-=222222013,cos ,6022b c a b c a bc A A bc +-+-==== 2222cos 9,3c a b ab C c =+-==,B 为最大角,1cos 7B =-2cossinsin sin 22tan 2sin sin 2sin cos 22A B A BA B a b A B A B A Ba b A B +----===+-++, tan2tan ,tan 022tan 2A B A B A B A B ---==+,或tan 12A B += 所以A B =或2A B π+=二、填空题1.3392211sin 4,13,222ABC S bc A c c a a ∆==⨯====sin sin sin sin 32a b c a A B C A ++===++2.> ,22A B A B ππ+>>-,即sin()2tan tan()2cos()2B A B B πππ->-=-cos 1sin tan B B B ==,1tan ,tan tan 1tan A A B B>>3. 2 sin sin tan tan cos cos B CB C B C+=+sin cos cos sin sin()2sin 1cos cos sin sin 2B C B C B C AB C A A +++===4. 锐角三角形 C 为最大角,cos 0,C C >为锐角5. 060222231cos 22b c a A bc +-+-====6.222222222222213,49,594a b c c a c b c c c c b a c ⎧⎧+>>⎪⎪+>+><<<<⎨⎨⎪⎪+>+>⎩⎩三、解答题1.解:1sin 4,2ABC S bc A bc ∆=== 2222cos ,5a b c bc A b c =+-+=,而c b >所以4,1==c b2. 证明:∵△ABC 是锐角三角形,∴,2A B π+>即022A B ππ>>->∴sin sin()2A B π>-,即sin cos A B >;同理sin cos B C >;sin cos C A >∴sin sin sin sin sin sin cos cos cos ,1cos cos cos A B CA B C A B C A B C>>∴1tan tan tan >⋅⋅C B A3. 证明:∵sin sin sin 2sincos sin()22A B A BA B C A B +-++=++ 2sin cos 2sin cos2222A B A B A B A B+-++=+ 2sin (cos cos )222A B A B A B+-+=+2cos 2cos cos 222C A B=⋅4cos cos cos 222A B C=∴2cos 2cos 2cos 4sin sin sin CB AC B A =++即222a b c ab +-=而∵0120,A B +=∴060C =2222220cos ,2cos 602a b c C a b c ab ab ab+-=+-==∴原式成立。