第一章牛顿力学例题
高中物理必修1知识点汇总(带经典例题)

高中物理必修1运动学问题是力学局部的根底之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。
近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。
第一章运动的描述专题一:描述物体运动的几个根本本概念◎知识梳理1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。
2.参考系:被假定为不动的物体系。
对同一物体的运动,假设所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。
3.质点:用来代替物体的有质量的点。
它是在研究物体的运动时,为使问题简化,而引入的理想模型。
仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球那么不能视为质点。
’物体可视为质点主要是以下三种情形:(1)物体平动时;(2)物体的位移远远大于物体本身的限度时;(3)只研究物体的平动,而不考虑其转动效果时。
4.时刻和时间(1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末〞,“速度达2m/s时〞都是指时刻。
(2)时间是两时刻的间隔,是时间轴上的一段。
对应位移、路程、冲量、功等过程量.通常说的“几秒内〞“第几秒内〞均是指时间。
5.位移和路程(1)位移表示质点在空间的位置的变化,是矢量。
位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。
当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之那么相反。
(2)路程是质点在空间运动轨迹的长度,是标量。
在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。
(3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。
第一章 量子力学基础 例题与习题

第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。
解:(C)。
2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。
解:(E)。
3.计算能量为100eV光子、自由电子、质量为300g小球的波长。
( )解:光子波长自由电子300g小球。
4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。
解:。
5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。
解:6.设体系处于状态中,角动量和有无定值。
其值是多少?若无,求其平均值。
解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。
(2s+1) (1)二维方势箱中的9个电子。
(2)二维势箱中的10个电子。
(3)三维方势箱中的11个电子。
解:(1)2,(2)3,(3)4。
9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。
当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。
求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。
取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。
解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。
和是属于同一本征值得本征函数,证明常数。
大学物理简明教程_课后答案_1章

问题1.1 关于行星运动的地心说和日心说的根本区别是什么?答:地心说和日心说的根本区别在于描述所观测运动时所选取的参考系不同。
1.2 牛顿是怎样统一了行星运动的引力和地面的重力?答:用手向空中抛出任一物体,按照惯性定律,物体应沿抛出方向走直线,但是它最终却还会落到地面上。
这说明地球对地面物体都有一种吸引力。
平抛物体的抛速越大,落地时就离起点越远,惯性和地球吸引力使它在空中划出一条曲线。
地球吸引力也应作用于月球,但月球的不落地,牛顿认为这不过是月球下落运动曲线的弯曲度正好与地球表面的弯曲程度相同。
这样牛顿就把地球对地面物体的吸引力和地球对月球的吸引力统一起来了。
牛顿认为这种引力也作用在太阳和行星、行星与行星之间,称为万有引力。
并认为物体所受的重力就等于地球引力场的引力。
这样牛顿就统一了行星运动的引力和地面的重力。
1.3 什么是惯性? 什么是惯性系?答:任何物体都有保持静止或匀速直线运动状态的特性,这种特性叫惯性。
我们把牛顿第一定律成立的参考系叫惯性系。
而相对于已知惯性系静止或做匀速直线运动的参考系也是惯性系。
1.4 人推动车的力和车推人的力是作用力与反作用力,为什么人可以推车前进呢?答:人推动车的力和车推人的力是作用力与反作用力,这是符合牛顿第三定律的。
但这两两个力是分别作用在两个物体上的。
对于车这个研究对象来说,它就只受到人推动车的力(在不考虑摩擦力的情况下),所以人可以推车前进。
1.5 摩擦力是否一定阻碍物体的运动?答:不一定。
例如汽车前进时,在车轮与路面之间实际上存在着两种摩擦力:静摩擦和滚动摩擦。
前者是驱使汽车前进的驱动力,后者是阻碍汽车前进的阻力。
再如,拖板上放上一物体,拉动拖板,物体可以和拖板一起运动,其原因就是拖板给予了物体向前的摩擦力。
1.6 用天平测出的物体的质量,是引力质量还是惯性质量?两汽车相撞时,其撞击力的产生是源于引力质量还是惯性质量?1答:用天平测出的物体的质量和引力有关,是地球对物体和砝码的引力对天平刀口支撑点力矩平衡测出的质量,所以是引力质量。
大学物理2牛顿运动定律

解:分析受力:mg B R ma
v dv tK d v K ( v v ) T 运动方程变为: 0 d t 0 vT v m dt m
d v mg B Kv 加速度 a dt m mg B 极限速度为:vT K
B R
m
mg
vT v K ln t vT m
x
g sin a2 arc tg g cos
例题2-3 一重物m用绳悬起,绳的另一端系在天花板上,
绳长l=0.5m,重物经推动后,在一水平面内作匀速率圆 周运动,转速n=1r/s。这种装置叫做圆锥摆。求这时绳 和竖直方向所成的角度。
2 2Biblioteka 解: T sin m r m l sin T cos mg 角速度: 2n T 拉力:T m 2l 4 2 n 2 ml
1.电磁力
电磁力:存在于静止电荷之间的电性力以及 存在于运动电荷之间的磁性力,本质上相互联系, 总称为电磁力。 分子或原子都是由电荷系统组成,它们之间 的作用力本质上是电磁力。例如:物体间的弹力、 摩擦力,气体的压力、浮力、粘滞阻力。
2.强力
强力:亚微观领域,存在于核子、介子和超 子之间的、把原子内的一些质子和中子紧紧束缚 在一起的一种力。 15 15
F
N 1
i
i
3、矢量性:具体运算时应写成分量式
dv x Fx ma x m dt 直角坐标系中: F ma m dv y y y dt
dvz Fz maz m dt
dv 自然坐标系中: F m dt
F
n
m
v
2
4、惯性的量度: 质量
三. 牛顿第三定律
大学物理 第1-3章 经典力学部分归纳总结

运用
分
和
dv dv dx dv a= = ⋅ =v dt dx dt dx
3
知识点回顾
第二章 质点动力学
2、牛顿三定律? 、牛顿三定律?
r ∑Fi = ma
i →
—— 为什么动? 为什么动? 力?
功是能量交换或转换的一种度量
v v 2、变力作功 、 元功: 元功: dW = F ⋅ dr = Fds cosθ b b v v b W = ∫ F cosθ ds = ∫ F ⋅ dr = ∫ (Fxdx + Fy dy + Fz dz)
a( L) a( L) a( L)
3、功率 、
v v dW F ⋅ dr v v P= = = F ⋅ v = Fv cosθ dt dt
隔离木块a在水平方向绳子张力t和木块b施于的摩擦力?根据牛顿第二定律列出木块a的运动方程?同样隔离木块b分析它在水平方向受力情况列出它的运动方程为17一个质量为m的梯形物体块置于水平面上另一质量为m的小物块自斜面顶端由静止开始下滑接触面间的摩擦系数均忽略不计图中hh均为已知试求m与m分离时m相对水平面的速度及此时m相对于m的速度
15
•解:以地面为参考系。隔离木块A,在水平方向 解 以地面为参考系。隔离木块 , 绳子张力T 和木块B施于的摩擦力 绳子张力 和木块 施于的摩擦力
v t2 v v v v v 动量定理: 动量定理: I = ∫ ∑ F dt = ∑ p2 − ∑ p1 = ∑ mv2 − ∑ mv1
t1
v v v v 角动量定理: 角动量定理: M ⋅ dt = dL = d ( r × mv )
陈世民理论力学简明教程(第二版)课后答案

第零章 数学准备一 泰勒展开式 1 二项式的展开()()()()()m23m m-1m m-1m-2f x 1x 1mx+x x 23=+=+++!!2 一般函数的展开()()()()()()()()230000000f x f x f x f x f x x-x x-x x-x 123!''''''=++++!!特别:00x =时, ()()()()()23f 0f 0f 0f x f 0123!x x x ''''''=++++!!3 二元函数的展开(x=y=0处)()()00f f f x y f 0x+y x y ⎛⎫∂∂=++ ⎪∂∂⎝⎭,22222000221f f f x 2xy+y 2x x y y ⎛⎫∂∂∂++ ⎪ ⎪∂∂∂∂⎝⎭!评注:以上方法多用于近似处理与平衡态处的非线性问题向线>性问题的转化。
在理论力问题的简单处理中,一般只需近似到三阶以内。
二 常微分方程1 一阶非齐次常微分方程: ()()x x y+P y=Q通解:()()()P x dx P x dx y e c Q x e dx -⎛⎫⎰⎰=+ ⎪⎝⎭⎰注:()()(),P x dxP x dx Q x e dx ⎰±⎰⎰积分时不带任意常数,()x Q 可为常数。
2 一个特殊二阶微分方程2y A y B =-+ 通解:()02B y=K cos Ax+Aθ+注:0,K θ为由初始条件决定的常量 3 ,4 二阶非齐次常微分方程 ()x y ay by f ++=通解:*y y y =+;y 为对应齐次方程的特解,*y 为非齐次方程的一个特解。
非齐次方程的一个特解 (1) 对应齐次方程0y ay by ++=设x y e λ=得特征方程2a b 0λλ++=。
解出特解为1λ,2λ。
*若12R λλ≠∈则1x 1y e λ=,2x 2y e λ=;12x x 12y c e c e λλ=+*若12R λλ=∈则1x 1y e λ=,1x 2y xe λ=; 1x 12y e (c xc )λ=+*若12i λαβ=±则x 1y e cos x αβ=,x 2y e sin x αβ=;x 12y e (c cos x c sin x)αββ=+(2) "(3) 若()2000x f a x b x c =++为二次多项式*b 0≠时,可设*2y Ax Bx C =++ *b 0≠时,可设*32y Ax Bx Cx D =+++注:以上1c ,2c ,A,B,C,D 均为常数,由初始条件决定。
质点的瞬时速度满足叠加原理

t0 t t0 t dt dt d t
瞬时速度的大小被称为瞬时速率,简称速率。
速率还可以表示为
v v
vx2
v
2 y
vz2
23
速度
瞬时速度和瞬时速率的关系
v
dr dt
ds dt
dr ds
r(t) 0
et
s r
r(t+t)
ds dt
et
v
et
平均速度大小
v
r
t
x 2
y
2
t t
平均速率 v S t
vx2 vy2
19
平均速度的极限是瞬时速度
y
. r(trr(t(t1t)2t3)t)
B
v dr
dt
1r2rv1v2vA33r
zk
r x2 y2 z2
P1 r P2
r1 r2 r
O
z
x
Δr x22 y22 z22 x12 y12 z12
r r, d r d r
17
速度
概念:质点位置矢量对时间的变化率。
在t 时间内,质点位移为
r r(t t) r(t)
z r
cos2 cos2 cos2 1
11
位置矢量
位置矢量 r的性质:
1. 矢量性:r有大小,有方向。
2. 瞬时性:r(t )是t 的函数。
r1
O
P1
r2
P2
3. 相对性:与参照点的位置 相关。
力学题库1(例题与作业)

第一章质点运动学例1、质点沿x轴正向运动,加速度a=-kv,k为常数。
设从原点出发时速度为v0,求运动方程x=x(t)与速度—位移关系v=v(x)。
例2、已知斜抛运动的抛射角为θ,初速度为v0。
求其轨迹方程。
例3、如图,小船在绳子的匀速v0牵引下运动,已知h。
求θ位置时船的速度与加速度大小。
(两种方法)例4、有一轮以匀角速ω旋转,一质点自轮心沿水平轮轴以匀速v0向轮边移动。
求质点的轨迹方程,以及t时刻质点的速度和加速度大小。
*例5、一只狼沿着半径为R的圆形岛边缘按逆时针方向匀速跑动,当狼经过某点时,一只猎犬以相同的速率从岛中心出发追逐狼。
设追逐过程中犬、狼、岛中心始终在一直线上,求猎犬的轨迹和追上狼时的位置。
*例6、(上海高考题改编)下图为平静海面上拖船A、B拖着驳船C运动的示意图。
已知A、B的速度分别沿缆绳CA、CB方向,且A、B、C不共线。
以下说法正确的是()(多选)(A)C的速度大小可能介于A、B的速度大小之间(B)C的速度一定不小于A、B的速度(C)C的速度方向可能在CA、CB的夹角之外(D)C的速度方向一定在CA、CB的夹角之内**例7、已知点P0(l,0)处有一小船,以长为l的线,拉着小船从原点向上走,小船沿着绳运动,PQ为P点切线,Q点恒在y轴上。
(1)以图中θ为参数,求P点的轨迹方程。
(曳物线)(2)若Q 点以匀速u 向上运动,求θ位置处P 点的加速度。
练习题1、一质点沿x 轴运动,其速度—时间关系为⎪⎭⎫ ⎝⎛+=t t v 6sin 23ππ,式中各量均取国际单位。
已知当t =0时质点在x =-2m 处。
求:(1)2s 时质点的位置;(2)0s 至2s 质点的位移;(3)0s 和2s 两时刻质点的加速度。
2、一质点以初速度v 0=5i 开始离开原点,其运动加速度为a =-i -j 。
求:(1)质点到达x 坐标最大值时的速度;(2)上述时刻质点的位置。
3、如图所示,长为l 的棒的一端A 靠在墙上,另一端B 搁在地面上,A 端以恒定速率u 向下运动。