电压互感器高压熔断器熔断原因分析与预防措施
电压互感器高压侧熔断器熔断的处理方法

电压互感器高压侧熔断器熔断的处理方法一、电压互感器高压侧熔断器熔断的原因分析电压互感器是电力系统中常用的测量设备,用于将高压侧的电压转换为低压侧的电压,以供仪表或保护装置使用。
然而,在运行过程中,电压互感器高压侧熔断器可能会发生熔断现象。
导致电压互感器高压侧熔断器熔断的原因主要有以下几点:1. 过电流:电力系统中可能会出现短路故障或过负荷情况,导致电流超过熔断器的额定电流,从而引发熔断。
2. 过温:长时间工作或环境温度过高,会导致熔断器温度升高,超过熔断器的额定温度,从而引发熔断。
3. 电压过高:如果电力系统中出现电压突升现象,超过熔断器的耐压能力,也会导致熔断器熔断。
二、电压互感器高压侧熔断器熔断的处理方法当电压互感器高压侧熔断器熔断时,需要采取相应的处理方法,以确保系统的安全稳定运行。
具体处理方法如下:1. 检查熔断器:首先,需要检查熔断器是否真正熔断,可以通过目视检查或使用测试仪器进行检测。
如果确认熔断器已熔断,需要将其更换为新的熔断器。
2. 分析熔断原因:在更换熔断器之前,需要对电压互感器高压侧熔断器熔断的原因进行分析。
可以通过检查系统的负荷情况、电流和电压波形、环境温度等因素,找出导致熔断的具体原因。
3. 排除故障:根据熔断原因的分析结果,采取相应的措施来排除故障。
例如,如果是由于过电流引起的熔断,可以检查系统的保护装置是否正常工作,是否存在短路故障等。
如果是由于过温引起的熔断,可以检查电压互感器的冷却系统是否正常工作,是否存在过载情况等。
4. 更换熔断器:在确定故障已经排除的情况下,可以将熔断器更换为新的熔断器。
在更换熔断器时,需要确保选择的熔断器符合电压互感器的额定电流和额定电压要求。
5. 预防措施:为了避免电压互感器高压侧熔断器再次发生熔断,可以采取一些预防措施。
例如,加强对电力系统的监测和维护,定期检查熔断器和保护装置的工作状态,及时处理系统中的故障,确保系统运行在正常工作范围内。
电压互感器高压侧熔断器熔断的处理方法

电压互感器高压侧熔断器熔断的处理方法电压互感器高压侧熔断器熔断的处理方法引言电压互感器是电力系统中常用的重要设备之一,它用于将高压较大容量的电量变换成低压较小容量的电量,以便测量、保护等用途。
然而,在工作过程中,由于各种原因,高压侧熔断器偶尔会发生熔断现象。
本文将详细说明关于电压互感器高压侧熔断器熔断的处理方法。
方法一:检查熔断器本身问题1.关断电源:首先,为了确保安全,必须切断与熔断器相关的电源。
2.观察指示灯:有些高压熔断器设备会配备指示灯,若发现指示灯变暗或无亮光,可能说明熔断器损坏。
3.检查熔断丝:仔细检查熔断丝是否损坏,如断裂或松动。
如果有熔断丝损坏的情况出现,可以尝试更换新的熔断丝。
4.清理灰尘:清除熔断器上的可见灰尘或污渍,确保设备表面干净。
5.测试熔断器:可以使用相应的测试仪器对熔断器进行电气性能测试,以验证熔断器是否正常工作。
方法二:检查电压互感器以外的问题1.检查电源供应:确保电源供应正常,并检查是否存在电压过高或过低的情况。
2.检查负载:检查互感器的负载情况,确定负载是否在正常范围内。
过大的负载可能导致熔断器过载而发生熔断。
3.检查接线端子:检查电压互感器的接线端子是否松动或接触不良,确保连接可靠。
4.检查环境温度:过高的环境温度可能会导致熔断器过热而发生熔断,因此需要检查环境温度是否适宜。
方法三:寻求专业帮助1.联系供应商:如果以上方法都未能解决问题,建议联系电压互感器供应商或厂家,寻求他们的帮助和建议。
2.专业维修人员:如果供应商无法提供解决方案,可以考虑请专业维修人员进行维修和检测。
结论当电压互感器高压侧熔断器发生熔断时,我们可以首先检查熔断器本身是否存在问题,例如熔断丝的损坏或灰尘的污染。
如果熔断器本身没有问题,我们还应该检查电压互感器以外的因素,例如电源供应、负载和接线端子等。
如果以上措施都未能解决问题,我们应该寻求专业帮助,联系供应商或请专业维修人员进行维修。
最终目标是确保电压互感器的正常运行,以保障电力系统的稳定和安全。
35KV电压互感器保险熔断原因分析

35KV电压互感器保险熔断原因分析摘要:采用一种非线性电阻,其冷态电阻仅有几欧,在投入100V工频电压时,经2~3秒后阻值缓慢上升到100欧左右,这样既保证可靠消谐,又能满足互感器容量要求。
采用计算机控制可控硅方式,检测到开口电压大于设定值(25V)时,先认为是谐振,可控硅导通5秒左右消谐,若仍存在开口电压则认为是单相接地,可控硅不导通,并入100欧电阻解决此问题。
关键词:中性点,电压互感器,熔断器,谐振Abstract: using a nonlinear resistance, its the cold resistance, only a few Europe, in the investment 100 V power frequency voltage, the 2 ~ 3 seconds, then slowly rise to 100 the resistance of the left and right sides, such already to ensure reliable away harmonic, and to meet the transformer capacity requirements. Controlled by computer control way, detected voltage is greater than the opening set value (25 V), to think that is resonant, conduction 5 seconds away harmonic, if still exists and is considered opening voltage is single-phase grounding, silicon controlled not conduction, incorporated into 100 Europe resistance to solve this problem.Keywords: neutral, voltage transformer, fuse, resonance中图分类号:TM714.2文献标识码:A 文章编号:我厂35KV室内配电室35KV电压互感器高压熔断器频繁发生熔断现象,严重影响电气设备的安全运行,另一方面,熔断器熔断影响仪表监视、有可能造成保护误动作,特别是在系统单相接地和过电压时,进行停运电压互感器更换熔断器操作,很容易造成运行人员伤害,查清互感器高压侧熔断器熔断原因,杜绝非正常情况下熔丝熔断显得非常重要。
10kV大工业用户计量电压互感器高压熔断器熔断故障分析

10kV 大工业用户计量电压互感器高压熔断器熔断故障分析摘要:电压互感器作为客户配电室中重要电气设备,兼具保护及计量作用,对于客户安全经济运行起着至关重要的作用。
但近年来在用电检查工作中,笔者发现电压互感器高压熔断器频繁熔断,供电公司只能通过事故后按照理论计算追捕理论上的电量电费,这不仅造成了严重的经济损失,而且也影响到正常的保护和计量工作。
本文笔者将从今年来故障用户的行业分类和用电负荷性质等方面入手,分析发生故障的原因,并针对大工业用户谐波影响等主要原因,提出可行的解决方案和对策。
关键词:电压互感器;高压熔断器;谐波引言大部分 10kV 高压专变用户采用高供高计的计量方式,因此电压互感器是必不可少的电气设备。
为防止电压互感器过载或短路,在一次侧我们会串接入高压熔断器。
但笔者在用电检查实际工作中发现,计量高压电压互感器熔断器熔断事故时有发生,将会造成计量表计一相或两相失压,电表少计量或不计量。
计量电压互感器高压熔断器熔断并不会影响用户的正常生产经营活动,所安装的表计及负控装置也只会有失压报警,故用户发生该类故障一般供电公司工作人员难以及时发现,这将造成用户计量装置故障无法得到及时有效处理,影响了正确电费的按时收缴。
事后,用电检查人员会及时追捕电费,但对于计量装置失压期间客户所用的电量只得依据理论计算获得,这势必与实际情况有一定偏差。
为解决此类用户高压熔断器熔断问题,下面笔者将结合南京市 2022年以来 10kV 高压用户出现的高压熔断器熔断故障实例,从“故障用户用电负荷情况统计”、“主要故障原因分析”、“解决方案及对策”等方面做分析与探讨。
1故障用户用电负荷情况统计为分析计量电压互感器高压熔断器熔断频发的原因,笔者统计了南京市2022年上半年发生的10kV高压用户计量电压互感器高压熔断器熔断情况及用户用电负荷性质基本情况,如下表所示。
表12022年上半年南京市10kV高压用户计量电压互感器熔断器熔断统计表高压电压互感器熔断器熔断除了自身原因,即内部绝缘老化、制造工艺差及用户平时运行维护管理水平低等常见原因外,根据表1,同时查阅大量资料,笔者发现有两点值得注意:(1)表1中发生故障的用户以金属制品、锻造、热处理加工居多,此类用户负载多为非线性负载,在生产过程中起动、制动频繁,所产生的冲击电流较其他高压用户要大;(2)其中戴莫尔金属制品(南京)有限公司,半年内熔断器熔断故障发生2次,在更换熔断器时,了解到客户自2022年以来,由于行业产能过剩,其生产调整周期较为频繁,且通过检查发现其厂内有大量的变频器、弧焊机等非线性电气设备。
电压互感器(PT)熔断器熔断现象及分析

电压互感器(PT)熔断器熔断现象及分析电压互感器(PT)熔断器熔断现象及分析1、电压互感器(PT) 的作⽤及特点1.1 电压互感器(PT)的作⽤:a.将⼀次回路的⾼电压、转为⼆次回路的标准低电压(通常为1OOV),监视运⾏中的电源母线及电⼒设备运⾏状况,并提供测量仪表、继电保护及⾃动装臵所需电压量,保证系统正常运⾏。
是电⼒系统中供测量和保护⽤的重要设备。
b.使⼆次回路可采⽤低电压控制电缆,且使屏内布线简单,安装⽅便,可实现远⽅控制和测量。
c.使⼆次回路不受⼀次回路限制。
接线灵活,维护、调试⽅便。
d.使⼆次与⼀次⾼压部分隔离,且⼆次可设接地点。
确保⼆次设备和⼈⾝安全。
1.2 电压互感器(PT)的⼯作特点是:a.电压互感器(PT )的⼯作原理与变压器相似,⼀次绕组并联于被测回路的⼀次系统电路之中。
⼀次测的电压为电⽹运⾏电压,不受互感器⼆次侧负荷的影响,电压互感器相当于⼀个副边开路的变压器。
b.相对于⼆次侧(简称⼆次)的负载来说,电压互感器的⼀次内阻抗较⼩,以⾄可以忽略.可以认为电压互感器是⼀个电压源。
c.⼆次侧绕组与测量仪表或继电器的电压线圈并联。
阻抗较⼤,通过⼆次回路的电流很⼩,所以正常情况下电压互感器在接近于空载状态下运⾏。
d.电压互感器在运⾏中,电压互感器⼆次侧可以开路。
但不能短路。
如⼆次侧短路,除了可能产⽣共振过电压外,还会产⽣很⼤的短路电流,将电压互感器烧坏。
e.电压互感器正常⼯作的磁通密度接近饱和值,系统故障时电压下降,磁通密度下降。
2、电压互感器熔断器熔断的原因:原绕组与被测电路之间经熔断器连接,熔断器即是原绕组的保护元件,⼜是控制电压互感器是否接⼊电路的控制元件。
运⾏中的电压互感器⼆次绕组基本维持在额定电压值上下,如果⼆次回路中发⽣短路,必然会造成很⼤的短路电流。
为了及时切断⼆次的短路电流,在电压互感器⼆次回路内也必须安装熔断器或⼩型空⽓⾃动开关。
作为⼆次侧保护元件。
所以在⼩接地短路电流系统中,电压互感器⼀、⼆次侧都通过熔断器和系统及负荷相连接的。
电压互感器高压熔断器熔断原因及处理

2.电压 互感 器 高压熔 断 器熔 断 的现 象
振 动要 比其它相略大一 些,于 是试着在墙 体外侧加 固熔 断 器底座 ,加 固
当电压 互感器高压熔 丝熔 断时,熔断相 二次电压降 低,两相 电压 应 后观察振 动幅值 没有太大 变化 ,但振 动频率 比之前 小一 些 ,从此后 主变
保持 断相 出现在 互感器高压侧 ,互感器 出现零序 电压 ,导致起 动接地 装 10KV01,JPT-次保险再频繁熔 断过 ,分析 一次保险频 繁熔断 的原 因应该
二次低 压熔断 器以下 回路发生短 路故障 时熔断 ,将 故障切除 ,一般情况 行 ,未再 出现PT一次保 险熔 断事 故,但随 着发 电机并 网运 行PT一次保
下,二次保 险以下 回路的故 障高压保险不能熔断。
险再次 熔断 ,此时 熔断 相固定 为C相 ,仔 细检查 发现 C相 的一次保 险座
弧光接地 、电压互感 器突然合 闸时绕组 内产生 巨大涌 流等。导致 电压 互 感器熔 丝熔 断。
5.结束语 很 多情况下高 压熔 断器熔 断是谐 振过 电 压引起 ,低频 对互感 器线
3.2低频饱 和电流可 引起 电压互 感器一次熔 丝熔断
圈设备 造成 影 响 ,使 母线 上 的其它薄 弱环 节 的绝缘 击穿 ,造成 短 路事
【关键词 l电压 ;熔 断器铁磁谐振过 ;饱和 电流
发现并不像短 路烧断 ,没有熔 丝的熔化 现象 ,螺旋保 险丝堆积在保 险下
侧 ,
电压 互感 器经常 出现 高压熔 断器 的两 相熔 断情况 ,造成 电能表 的
我 厂主变 IOKV侧 电压互 感器就 曾经出现过 振动 引起的P,I一 次保
4.2退 出备 自投保护,主变 电压保护,防止误动作 。
35kV母线电压互感器熔断器频繁熔断的原因分析及处理方法

35kV母线电压互感器熔断器频繁熔断的原因分析及处理方法摘要:在我国社会经济和科学技术协同发展背景下,人们对电网运行安全性、稳定性和可靠性也提出了更高的要求。
然而,在当前35kV变电站母线电压互感器高压熔断器频频出现熔断的现象,对整个电网运行造成严重的影响。
在本文中,结合电压互感器熔断器频繁出现熔断故障统计和分析,探讨导致其出现熔断现象的根本原因,并在此基础上提出具有针对性的处理方法,以确保电网系统运行安全、稳定运行。
关键词:35kV;电压互感器;高压熔断器;原因分析;处理方法;探讨在现代科学技术推动下,电力系统自动化水平也得到进一步发展,无人值班的运行模式也成为变电站运行的主要模式。
在这一背景下,变电站在其运行过程中出现故障,主要原因在于电压出现异常的情况,即母线TV一次侧熔断器熔断以后导致变电站的电压不够稳定,在传统运行管理模式下,一旦出现这一故障可以进行及时的处理,并且将影响力控制在一定范围内,在现代采用无人管理运行模式以后,这类故障的发生无法实现及时的处理,一旦电压出现不稳的情况还会导致其他一连串问题发生,如:继电保护误动[1]。
对这一情况进行妥善处理,就需要加大对不同运行条件、环境下发生的熔断现象原因进行细致分析,才能够采取具有针对性的处理方法解决问题。
基于此,对35kV母线电压互感器熔断器频繁熔断的原因及处理方法进行分析。
1不同情况下的熔断器熔断现象分析由于电压互感器在不同运行环境、运行方式及采用的接线方式下,出现熔断器熔断的现象和形成原因也会不同,在下文中就不同情况下的熔断器熔断现象展开详细的分析。
案例1:某供电局110kV变电站发35kVI段母线TV断线,相关操作人员及时赶到现场组织对现场进行勘查,发现35kV母线TV发出断线的信号,经过现场人员的仔细检查、分析之后,认为是母线TV高压熔断器C相熔断,通过对C相熔断器进行更换之后可以实现正常运行[2]。
案例2:某供电局110kV变电站35kV电压超过了上限值,而下级的变电站35kV电压保持在正常的范围内,现场出现了35kVII段母线TV断线情况,经过检修人员现场检查和分析之后,得出初步的结论:认为是母线TV高压熔断器B相熔断,可以通过对该段母线进行检修,并且对B相熔断器进行更换,可以恢复到正常状态[2-3]。
10千伏电压互感器高压侧保险熔断分析及处理

10千伏电压互感器高压侧保险熔断分析及处理摘要:现场运行经验反映,10kV电压互感器(简称TV)高压保险熔断及TV烧毁等故障现象频繁发生。
针对该问题,研究其故障原因,并提出相应治理措施,对10kV配电网的安全可靠运行,具有重大的现实意义。
关键词:10KV;电源互感器高压保险;熔断引言在实际运行过程中,10kV配电网中的TV经常发生高压保险熔断的故障,导致TV二次侧失压,零序电压异常升高。
这样,将造成电能计量误差,或者引起系统虚假接地报警,零序电压保护继电器误动作,运行人员采取错误的处理措施,扩大事故范围。
另一方面,TV高压保险的更换较为麻烦,增加了人力物力开支。
上述情况都不利于配电网的安全、可靠、稳定、经济运行,亟需改善。
因此,对10kV配电网中TV保险熔断故障的研究具有非常重要的现实意义。
1TV高压保险熔断的原因分析1.1铁磁谐振经验表明,如果满足一定的条件,具有饱和特性的电感回路中还会出现高频谐振或者分频谐振。
此时,回路压降由工频分量和谐波分量两部分组成。
谐波能量是由饱和电感从工频电源转化而来,但具体转化过程有待进一步研究。
在10kV 配电网中,由TV饱和引起的铁磁谐振最为频繁,经常造成TV高压保险熔断,甚至TV本身烧毁。
1.2低频非线性振荡10kV配电网属于中性点不接地系统,线路发生单相接地,非故障相升高为线电压,线路对地电容充以对应的电荷,通过接地点,在大地和导线之间流通,形成电弧。
单相接地消除,各相电压都恢复正常运行水平,非故障相对地电容中的一部分电荷就失去了电压支撑,成为自由电荷,通过TV高压绕组流入大地。
由于TV高压绕组是一个非线性电感,与线路对地电容形成振荡回路,所以,自由电荷的释放是一个周期性振荡放电过程,振荡频率较低且幅值和频率均快速衰减,称之为低频非线性振荡。
同时,由于放电回路电阻相对较小,振荡衰减很慢,这样便反复冲击TV高压绕组,导致其反复出现过电流,造成TV高压保险熔断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电压互感器高压熔断器熔断原因分析与预防措施
【摘要】电压互感器(PT)是电力系统中重要的测量和保护用设备。
在电压互感器与电气主接线之间,一般有高压熔断器作为保护。
高压熔断器具有结构简单,便于检修维护等优点,被广泛的应用。
在中性点不接地系统中,当系统中的电容电流较大时,容易引发PT一次高压熔断器熔断的事故,会使电量计费,保护工作等受到影响,而且更换PT一次高压熔断器本身也会对人力、物力造成浪费,影响设备的安全稳定运行。
因此,研究PT一次熔断器熔断原因和解决办法就尤为重要了。
【关键词】电压互感器;高压熔断器;PT一次高压熔断器熔断;铁磁谐振
0 引言
2014年12月24日15:26分,某XX机组DCS监视画面发电机出口电压UAB和UBC两相较正常运行时20kV有所降低,其值下降为19.3kV。
通知继保人员后对变送器屏的相关电压量进行测量,发现A相、C相二次电压为57.7V,B相电压下降为55.3V左右。
检查PT就地端子箱相应PT后发现从PT根部电位就已经降低,判断为PT一次侧高压熔断器熔断,待将B相PT小车拉出来后检查高压熔断器,发现B相高压熔断器熔断。
更换新高压熔断器后恢复PT小车,电压显示恢复正常。
本文结合此次PT一次高压熔断器熔断的事故分析和处理过程,对PT一次高压熔断器熔断后的故障现象进行分析,并对PT一次高压熔断器熔断的原因和预防措施进行探究。
1事故发生机组电气系统概况
1.1呼热电气系统主接线概述
事故发生机组共有2台发电机,电压等级为20kV,容量为300MW,分别通过两台升压变将电压等级升至220kV后接入220kV变电站。
1.2发电机机端电压互感器配置概况
机组的发电机出口有3组电压互感器,第三组电压互感器变比为20kV/57.7V/57.7V/33.3V以下简称3PT。
3PT为匝间保护专用PT,有3个二次绕组,分别为3TV01、3TV02、3TV03,其中第一个绕组3TV01,供给发变组保护A屏、B屏,用于发电机匝间保护。
3TV02供给变送器屏和励磁调节器的B通道。
3TV03为开口三角形绕组,为发电机匝间保护提供零序电压。
3TV02这组电压量引至变送器屏后,用于引接3个电压变送器,5个有功变送器,1个无功变送器,2个频率变送器,电压并联引接。
电压变送器输出提供给DCS系统,为监视和机组同期并列所用。
5个功率变送器,其中1个输出送至DCS,为监视所用;3个输出送往DEH系统,参与功率电调逻辑;1个送往
DEH系统,参与功率协调逻辑。
2发电机机端PT一次高压熔断器熔断事故发生过程
2.1事故发生前工况
2014年12月24日15时27分2号机组有功负荷244MW,无功123MVar;发电机机端电压UAB 20.2kV,UBC 20.2kV,UCA 20.2kV。
此后,发电机机端电压UAB 和UBC下降为19.2kV,无功功率上升为136.3 MVar。
2.2事件发生经过
2014年12月24日,由运行人员发XX机组DCS监视画面发电机出口电压UAB和UBC两相较正常运行时20kV有所降低,其值下降为19.3kV,即通知继保人员。
由于DCS监视画面的电压量取自发变组变送器屏,于是继保人员对变送器屏的相关电压量进行测量,发现A相、C相二次电压均为57.7V,B相电压为55.3V左右。
继续往PT电缆来的上一级PT就地端子箱处检查,发现此组PT的B相在就地端子箱处电压就已经下降至55V,至此可以排除电缆绝缘不良和接线松动等原因。
继续深入检查后发现,此组PT为发电机机端的第三组PT的第二组绕组即3TV02与此组PT处于同一组的另外两个绕组3TV01、和3TV03的B相电压也都降低为55V。
由于PT为分相PT,而除了3PT B相所带绕组电压下降以外,其他几组PT每相均正常。
经检查发现3TV01和3TV03为发变组保护的匝间保护所取得电压量,如果任其电压继续下降可能引起匝间保护误动,造成跳机等严重事故。
3TV02所带的负荷有变送器屏和励磁调节器的B通道。
其中变送器屏的电压变送器为电压监视作用,没有影响,但功率变送器的输出送往DEH系统,参与了电调和协调逻辑,如果电压继续下降则会导致测量功率下降,导致功率误调节,可能引发发电机过流,过负荷等不良运行状态。
另一组送往励磁调节器的B 通道,此时,励磁调节柜运行在A通道上,A通道电压正常,没有影响,但如果此时A通道发生故障,切至B通道,随着电压的降低,励磁调节器会加大励磁电流来升高发电机机端电压,可能会引发发电机过电压,过励磁等故障,造成发电机的非停。
2.3事故处理经过及现象分析
在初步确认为电压互感器一次侧高压熔断器熔断后,准备将3PT的B相从柜中拉出进行检查处理。
由于此PT涉及到发变组匝间保护、励磁调节、有功功率的电调和协调等重要逻辑回路。
所以,事故处理的技术措施尤为重要,略有差错便会引发机组非停、降出力等严重事故。
事故处理技术措施:
1、将发变组A、B屏的匝间保护退出运行,防止处理过程中产生零序电压使匝间保护误动。
2、确认励磁调节器运行于A通道,B通道故障处理时不影响正常运行,但要对励磁调节器的工作进行严密监视,防止由于其他原因发生通道切换引起励磁调节异常。
3、对变送器屏送往DEH的有功功率参与的调节逻辑进行确认,保证其在故障处理时不参与功率调节逻辑。
在安全措施实施完毕后,将3PT的B相小车拉出,取下其高压熔断器后进行检查,发现熔断器已熔断。
符合之前推断的结论。
在PT小车拉出时刻,由于PT的二次侧为Y—Y—△接线,正常两相A、C 相电压通过开口三角TV03绕组感应到一次侧,再通过铁芯感应到星形绕组上,在TV01和TV02上产生33V左右的感应电压。
发变组A、B屏的匝间保护电压B相位33V,励磁调节器B通道的B相电压显示也为33V。
此刻,机组有功功率从240MW下降到160MW,符合理论计算值。
在为PT做高压试验之前,将PT本体的二次接线拆除后,33V的感应电压消失,B相电压下降为0,有功功率下降为正常功率的一半120MW,符合理论计算值。
2.4 事故处理结束
在更换PT一次高压熔断器后,将PT小车恢复后,检查PT就地端子箱处3TV电压ABC三相均恢复为57.7V。
检查发变组保护A、B屏匝间保护电压恢复为57.7V,励磁调节器B通道电压恢复正常,DCS显示发电机机端电压UAB UBC UCA均恢复为20kV。
至此故障处理完毕,恢复之前推退出运行的匝间保护,恢复强制的功率调节逻辑。
3原因分析
根据现场经验及相关资料所知,目前国内已有PT一次熔断器熔断防止措施有
1、在不接地系统中性点装设消弧线圈,可以有效的减小谐振,消除谐振过电压。
2、在PT高压侧中性点串接电阻,或一次消谐装置,安装在PT一次绕组中性点与地之间的高容量非线性原件,起到阻尼与限流作用。
3、PT二次开口三角处接入消谐装置。
作用原理是在发生铁磁谐振时,由消谐装置控制将开口三角绕组短接,在强烈的阻尼作用下谐振迅速消失。
4、限制同一网络中PT的中性点接地的数量。
增大网络的等值电感,破坏
谐振条件,减少谐振发生的可能性。
5、严格控制设备的性能和质量。
在PT选型时采用励磁特性较好的PT。
PT 的伏安特性良好,便不容易进入饱和区,从而不容易形成谐振。
另一方面,要控制PT一次高压熔断器的质量,产品的熔断时间-电流特性曲线要合格,直阻要合格,安装时要保证其解除良好。
4结语
电压互感器(PT)是电力系统中重要的测量和保护用设备。
PT一次高压熔断器熔断的事故,会使电量计费,保护工作等受到严重影响。
所以要结合实际情况,选取合适的防止PT一次高压熔断器熔断的措施便极为重要。
在上述5条措施中,第三条PT二次开口三角处接入消谐装置和第五条严格控制设备的性能和质量,不改变系统一次运行参数,可以有效的减少PT一次高压熔断器熔断次数。
建议逐步将此措施实施,已减少PT一次高压熔断器熔断次数,提高设备运行的可靠性。
同时应增加PT一次高压熔断器熔断报警功能,因为PT一次高压熔断器熔断后,表现到二次电压的下降并不明显,若不能及发现故障,将可能引发更严重事故。
影响设备的安全稳定运行。
参考文献:
[1]解广润,电力系统过电压[M],北京,水利水电出版社,1985.
[2]毛锦庆,电力系统继电保护实用技术问答[M],北京,中国电力出版社,2000.
[3]李润先,中压电网接地实用技术[M],北京,中国电力出版社,2002.
[4]徐亮,谐振接地系统故障分析[硕士学位论文],昆明,昆明理工大学,2006.。