全等三角形证明中考题精选(有答案)
全等三角形的判定中考题

全等三角形的判定中考题一、已知两个三角形两边及夹角分别相等,根据哪种全等判定定理可以确定这两个三角形全等?A. SSS(三边相等)B. SAS(两边及夹角相等)C. ASA(两角及夹边相等)D. AAS(两角及非夹边相等)(答案:B)二、在△ABC与△DEF中,若∠A=∠D,∠C=∠F,且AC=DF,则依据哪个判定定理可证明两三角形全等?A. SSSB. SASC. ASAD. AAS(答案:C)三、若△PQR与△STU中,PQ=ST,QR=TU,且∠Q=∠T,但∠Q并非PQ与QR的夹角,则根据哪个判定不能直接证明两三角形全等?A. SSSB. SASC. ASAD. 以上均不可(答案:D)四、两个三角形中,如果两个角和一条边分别相等,且这条边是这两个角的夹边,应使用哪个全等判定定理?A. SSSB. SASC. ASAD. AAS(答案:C)五、在△ABC与△MNP中,若AB=MN,BC=NP,且∠B=∠N,但∠B不是AB和BC的夹角,则不能直接通过哪个判定证明两三角形全等?A. SSSB. SASC. AASD. 以上都不是直接证明的依据(答案:B)六、若两个三角形的两个角及非夹边分别相等,应依据哪个全等判定定理来确定它们全等?A. SSSB. SASC. ASAD. AAS(答案:D)七、在△XYZ与△LMN中,若XY=LM,YZ=MN,且∠YZX=∠LMN,但∠YZX并非XY与YZ的夹角,则不能直接应用哪个全等判定?A. SSSB. SAS(答案)C. 这种情况无法判定三角形全等D. AAS八、已知△ABC与△DEF中,∠A=∠D,∠B=∠E,若要证明两三角形全等,还需满足以下条件中的哪一个?A. AB=DEB. AC=EF(非夹角对应的边)C. BC=DF(夹角对应的边,即SAS情况)(答案)D. ∠C=∠F(已有两角相等,再加一角无法判定全等)。
三角形全等的判定证明题-(含答案)

三角形全等的判定一、(SSS)1.如图,AD=AC ,BD=BC ,QA 求证:△ABC≌△ABD .证明:在△ABC 和ABD 中,⎩⎨⎧ AD =ACBD =BCAB =AB ,∴△ABC≌△ABD(SSS )2.如图,AB=AD ,CB=CD ,求证:△ABC≌△AD C .证明:∵在△ABC 和△ADC 中⎩⎨⎧ AB =ADBC =CDAC =AC,∴△ABC≌△ADC(SSS ).3.如图,A 、D 、B 、E 在同一直线上,AC=EF ,AD=BE ,BC=DF ,求证:∠C=∠F.证明:∵AD=BE∴AD+DB=BE+DB,即:AB=DE ,在△ABC 和△DEF 中,⎩⎨⎧ AC =EFAB =DEBC =DF ,∴△ABC≌△DEF(SSS ),∴∠C=∠F.4.如图,已知线段AB 、CD 相交于点O,AD 、CB 的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.解:连结OE 在△EAC 和△EBC 中OA OC EA EC OE OE ⎧⎪⎨⎪⎩===(已知)(已知)(公共边)∴△EAC ≌△EBC (SSS )∴∠A =∠C (全等三角形的对应角相等)二、(SAS )5.已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .6.如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB ,∴∠DCA+∠ACE=∠BCE+∠ACE ,∴∠DCE=∠ACB ,∵在△DCE 和△ACB 中,∴△DCE ≌△ACB (SAS )∴DE=AB .7. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .证明:∵AB =DC∴AC =DB∵EA ⊥AD ,FD ⊥AD∴∠A =∠D =90°在△EAC 与△FDB 中⎪⎩⎪⎨⎧=∠=∠=DBAC D A FDEA∴△EAC ≌△FDB (SAS )∴∠ACE =∠DBF .8. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB(SAS)∴DE=AB.三、(ASA)(AAS)9.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD.求证:AC=DF.证明:∵FB=CE,∴BC=EF.∵AB∥ED,∴∠B=∠E∵AC∥EF,∴∠ACB=∠DFE.在△ABC和△DEF中{∠B=∠EBC=EF∠ACB=∠DFE∴△ABC≌△DEF(ASA).∴AC=DF.10. 如图,在△AEC和△DFB中,∠E=∠F,点A,B,C,D在同一直线上,AE∥DF,AB=CD,求证:CE=BF。
全等三角形证明经典50题(含答案)

1.已知: AB=4 , AC=2 , D 是 BC 中点, AD 是整数,求 AD AB CD解:延长 AD 到 E,使 AD=DE ∵ D 是 BC 中点∴ BD=DC在△ ACD 和△ BDE 中 AD=DE ∠ BDE= ∠ ADCBD=DC ∴△ ACD ≌△ BDE∴AC=BE=2 ∵在△ ABE 中 AB-BE < AE <AB+BE ∵ AB=4 即4-2< 2AD < 4+21< AD < 3∴AD=22. 已知: D 是 AB 中点,∠ ACB=90 °,求证:CD 1 AB2ADC B延长 CD 与 P,使 D 为 CP 中点。
连接AP,BP∵DP=DC,DA=DB ∴ ACBP 为平行四边形又∠ ACB=90 ∴平行四边形 ACBP 为矩形∴AB=CP=1/2AB3.已知: BC=DE ,∠ B=∠ E,∠ C=∠ D ,F 是 CD 中点,求证:∠ 1=∠ 2A12B EC F D证明:连接 BF 和 EF∵ BC=ED,CF=DF, ∠ BCF= ∠ EDF∴三角形 BCF 全等于三角形 EDF( 边角边 )∴BF=EF, ∠CBF= ∠ DEF 连接 BE 在三角形 BEF 中 ,BF=EF∴∠EBF= ∠ BEF 。
∵ ∠ ABC= ∠ AED 。
∴ ∠ABE= ∠ AEB 。
∴AB=AE 。
在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF,∠ABF= ∠ ABE+ ∠ EBF= ∠ AEB+ ∠ BEF= ∠AEF∴三角形 ABF 和三角形 AEF 全等。
∴∠ BAF=∠ EAF (∠ 1=∠ 2) 4.已知:∠ 1=∠2, CD=DE , EF//AB ,求证: EF=ACA12FCDEB过 C 作 CG∥ EF 交 AD 的延长线于点G CG∥ EF,可得,∠ EFD= CGDDE= DC ∠ FDE=∠ GDC(对顶角)∴ △ EFD≌ △ CGD EF= CG ∠ CGD=∠ EFD 又, EF∥AB ∴,∠ EFD=∠ 1 ∠ 1= ∠2 ∴∠ CGD=∠ 2∴ △AGC 为等腰三角形,AC= CG 又 EF= CG∴ EF=AC5.已知: AD 平分∠ BAC ,AC=AB+BD ,求证:∠ B=2 ∠ C A证明:延长AB 取点 E,使 AE = AC ,连接 DE∵AD 平分∠ BAC∴∠ EAD =∠ CAD∵AE =AC , AD = AD∴△ AED ≌△ ACD(SAS)∴∠ E=∠ C∵AC =AB+BD ∴AE = AB+BD ∵AE = AB+BE ∴ BD =BE∴∠ BDE =∠ E∵∠ ABC =∠ E+ ∠ BDE∴∠ ABC = 2∠E∴∠ ABC = 2∠C6.已知: AC 平分∠ BAD ,CE⊥AB ,∠ B+ ∠ D=180 °,求证: AE=AD+BE证明:在AE 上取 F,使 EF=EB ,连接 CF∵ CE⊥ AB∴∠ CEB =∠ CEF= 90°∵ EB= EF, CE= CE,∴△ CEB ≌△ CEF∴∠ B =∠ CFE∵∠ B +∠ D= 180°,∠ CFE+∠ CFA = 180°∴∠ D =∠ CFA∵AC 平分∠ BAD∴∠ DAC =∠ FAC∵AC =AC∴△ ADC ≌△ AFC ( SAS)∴AD =AF∴AE = AF + FE= AD + BE 12.如图,四边形 ABCD 中, AB ∥ DC ,BE、CE 分别平分∠ ABC 、∠ BCD ,且点 E在AD 上。
全等三角形证明题及答案15道

证明:∵∠1=∠2,
∴∠1+∠BAD=∠2+∠BAD,
即:∠EAD=∠BAC,
在△EAD和△BAC中
∠B=∠E AB=AE
∠BAC=∠EAD ,
∴△ABC≌△AED(ASA),
∴BC=ED.
全等三角形的判定与性质.
如图,E、F是四边形ABCD的对角线BD上的两点,AE∥CF, AE=CF,BE=DF.求证:△ADE≌△CBF.
∴△BCF≌△CBD(ASA). 全等三角形的判定.
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,BE=CF. 求证:AD是△ABC的角平分线.
证明:∵DE⊥AB,DF⊥AC, ∴Rt△BDE=Rt△DCF=90°. BD=DC BE=CF , ∴Rt△BDE≌Rt△DCF(HL), ∴DE=DF, 又∵DE⊥AB,DF⊥AC, ∴AD是角平分线.
直角三角形全等的判定
如图,△ABC中,∠ABC=∠BAC=45°,点 P在AB上,AD⊥CP,BE⊥CP,垂足分别为D, E,已知DC=2,求BE的长.
∵∠ABC=∠BAC=45° ∴∠ACB=90°,AC=BC ∵∠DAC+∠ACD=90°,∠BCE+∠ACD=90° ∴∠DAC=∠BCE 又∵∠ADC=∠CEB ∴△ACD≌△CEB ∴BE=CD=2.
:∵AC平分∠BAD, ∴∠BAC=∠DAC, 在△ABC和△ADC 中, AB=AD ∠BAC=∠DAC AC=AC , ∴Fra bibliotekABC≌△ADC.
全等三角形的判定.
9.如图,已知点E,C在线段BF上,BE=CF, AB∥DE,∠ACB=∠F.求证:△ABC≌△DEF.
全等三角形证明中考题精选[有答案解析]
![全等三角形证明中考题精选[有答案解析]](https://img.taocdn.com/s3/m/abb0f9f733687e21ae45a9aa.png)
全等三角形证明中考题精选[有答案解析]七年级数学下---全等三角形证明题1如图,已知人。
是厶ABC勺中线,分别过点B、C作BEL AD于点E,CF丄AD交AD的延长线于点F,求证:BE=CF2•如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中/(1)操作发现:如图2,固定△ ABC使厶DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_____________②设△ BDC的面积为$,△ AEC的面积为S,则(2)猜想论证S与S2的数量关系是 _____________当厶DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍然成立,并尝试分别作出了△BDC ffiA AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究已知/ABC=60,点D是角平分线上一点,BD=CD=, DE// AB交BC于点E (如图4).若在射线BA 上存在点F,使S A DC=S BDE,请直接写出相应的BF的长.3.如图,把一个直角三角形ACB(/ACB=90 )绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F, G分别是BD BE上的点,BF=BG延长CF与DG交于点H. (1)求证:CF=DG (2)求出/ FHG勺度数.全等三角形证明中考题精选[有答案解析]4•如图所示,在△ ABC 中,D E 分别是AB AC 上的点,DE// BQ 如图①,然后将厶ADE 绕A 点顺 时针旋转一定角度,得到图②,然后将 BD CE 分别延长至M N,使DM=BD EN=CE 得到图③, 请解答下列问题:(1)若AB=AC 请探究下列数量关系:① 在图②中,BD 与CE的数量关系是_ _ ;② 在图③中,猜想AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,并证明你的猜想;(2)若AB=I?AC( k > 1),按上述操作方法,得到图④,请继续探究: AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,直接写出你的猜想,不必证明.4. (1)如图,在△ ABC ffiA ADE 中, AB 二AC AD=AE Z BAC K DAE=90 .① 当点D 在AC 上时,如图1,线段BD CE 有怎样的数量关系和位置关系? 直接写出你猜想的结论;② 将图1中的△ ADE 绕点A 顺时针旋转口角(O °VaV 90°),如图2,线段BD CE 有怎样的数量 关系和位置关系?请说明理由.(2)当厶ABC^P ^ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD CE 在(1)中的位置关系 仍然成立?不必说明理由.甲: AB AC=AD AE=1, / BAC K DA 字90°;乙:AB AC=AD AE M 1,K BAC K DAE=90 ;丙: 6. CD 经过/ BCA 顶点C 的一条直线,CA=CB E, F 分别是直线CD 上两点,且/ BEC K CFA Ka.(1)若直线CD 经过/ BCA 的内部,且E, F 在射线CD 上,请解决下面两个问题:①如图 1,若/ BCA=90 , Ka =90°,则 BE ______________ CF; EF ___________ |BE - AF| (填“〉”, “v”或“=”);②如图2,若0°<Z BCA : 180°,请添加一个关于Ka 与/ BCA 关系的条件—AB: AC=AD AE M 1,/ BAC K DAE^ 90E__________ ,使①中的两个结论仍然成立,并证明两个结论成立.7. 如图,已知 AB=AC (1)若 CE=BD 求证:GE=G ;⑵若CE=mBD (m 为正数),试猜想GE 与 GD 有何关系.(只写结论,不证明)8. (1)已知:如图①,在△ AOBf^A COD 中, OA=OJ 3OC=OD / AOB M COD=60,求证:① AC=BD ②/ APB=6(度;(2)如图②,在△ AOBf^A COD 中,若 OA=OBOC=O , / AOB M COD a ,贝U AC 与 BD 间的等量关系式为 _____________ ; Z APB 的大小为 _____________ ;(3)如图③,在△ AOBf^ACOD 中,若 OA=?OBOC=?OD(k > 1),Z AOB ZCOD a ,贝U AC 与 BD间的等量关系式为 10.已知:EG// AF, AB=AC DE=DF 求证:BE=CF参考答案与试题解析(2)如图3,若直线CD 经过/ BCA 的外部,/ a =Z BCA 请提出EF, BE AF 三条线段数量关系的 合理猜想(不要求证明)•Z APB 的大小为 _____2. 解:(1)①DEC绕点C旋转点D恰好落在AB边上,••• AC=CD:/ BAC=90 -Z B=90°- 30° =60°,二厶ACD是等边三角形,•••/ ACD=60,又TZ CDE Z BAC=60 ,:Z ACD Z CDE 二DE// AC;②T Z B=30°,Z C=90,二CD=AC=AB /• BD=AD=AC2根据等边三角形的性质,△ ACD的边AC AD上的高相等,•••△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S=S2;故答案为:DE// AC S=S;(2)如图,•「△ DEC是由厶ABC绕点C旋转得到,••• BC=CE AC=CD T Z ACN Z BCN=90,Z DCM Z BCN=180 - 90° =90°,•••Z ACN Z DCM T在厶ACNm DCM中,fZACM=ZDCHI ZCND=ZH=90°,[AC=CD•△ACN^A DCM( AAS, • AN=DM•△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S i=S2;3、解(1)证明:•••在厶CBF ft^ DBG K答.fBC=BD答《二,:BF=BG•△CBF^A DBG( SAS , • CF=DQ(2)解:•••△ CBF^A DBG •Z BCF Z BDG又T Z CFB Z DFH •Z DHF Z CBF=60 ,•Z FHG=180 -Z DHF=180 - 60°=120°.4、解答:解:(1)①结论:BD=CE BDL CE②结论:BD=CE BDL CE;理由如下:T Z BAC Z DAE=90• Z BAC-Z DAC Z DAE-Z DAC 即Z BAD Z CAE ft^ ABD与△ ACE中, AB=ACT*4皿ZCAE •△ABD^A ACE(SAS • BD=CEb AD=AE延长BD交AC于F,交CE于H.在厶ABF 与厶HCF 中,T Z ABF=/ HCF Z AFB=/ HFC •Z CHF Z BAF=90••• BDL CE(2)结论:乙.AB AC=AD AE / BAC K DAE=905.6.解答:解:(1)①IK BCA=90,/a =90°,.・.K BCE K CBE=90,/ BCE K ACF=90 , • K CBE K ACF v CA=CB K BEC K CFA •△ BCE^A CAF •- BE=CF EF=|BE- AF|. ②所填的条件是:Ka +K BCA=180 . I AE=AD 卩. 7 •••△ CAE^A BAD( SAS , AC 二 AB • / ACE K ABD v DM=BD EN=CE • BM=CN 在厶 ABM ffiA ACN 中, r 瓏二 CN ••• ZAC14=ZAbr 〔AB 二AC • △ ABMm ACN( SAS , • AM=AN •/ BAM K CAN 即K MAN K BAC (2)AM=?AN 在厶BADfy CAE 中 解答: / CAE=/ BAD K MAN K BAC全等三角形证明中考题精选[有答案解析]证明:在厶 BCE 中,/ CBE# BCE=180 -Z BEC=180 — /a. v/ BCA=180 —/a,•••/ CBE Z BCE Z BCA 又v/ ACF Z BCE Z BCA CBE Z ACF又v BC=CA / BEC Z CFA •△BCE^A CAF( AAS •- BE=CF CE=AF又v EF=C- CE, • EF=|BE- AF|.(2) EF=BE+AF7.解证明:(1)过D作DF// CE交BC于F,答: 贝UZ E=Z GDF v AB=AC •/ ACB Z ABC/ DF/ CE •/ DFB Z ACB•Z DFB Z ACB Z ABC • DF=DB v CE=BD •- DF=CE 在厶GDF^ GEC中, (ZE 二ZGDFI ZDGF=ZEGC ,[DF=EC•△GDF^A GEC(AAS. • GE=GD• / AOB Z BOC Z COD Z BOC 即:/ AOC Z BOD 答:又v OA=OB OC=OD •△ AOC^A BOD • AC=BD②由①得:/ OAC Z OBDv/ AEO Z PEB / APB=180 — (/ BEP+Z OBD, / AOB=180 —(/ OAC Z AEO , • Z APB Z AOB=60 .(2) AC=BD a(3) AC=?BD 180°—a.。
(完整版)初中数学全等三角形的证明题含答案

1. 已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD解:延长AD至U E,使AD=DE•/ D是BC中点••• BD=DC在厶ACD和厶BDE中AD=DE/ BDE= / ADCBD=DC•△ ACD ◎△ BDE•AC=BE=2•••在△ ABE 中AB-BE V AE V AB+BE•/ AB=4即4-2 V 2AD V 4+21V AD V 3•AD=22. 已知:D 是AB 中点,/ ACB=90 °,求证:CD - AB2A延长CD与P,使D为CP中点。
连接AP,BP•/ DP=DC,DA=DB•ACBP为平行四边形又/ ACB=90•平行四边形ACBP为矩形•AB=CP=1/2AB3. 已知:BC=DE,/ B= / E ,Z C= / D, F 是CD 中点,求证:/ 1 = / 2证明:连接BF 和EF•/ BC=ED,CF=DF, / BCF= / EDF•••三角形BCF 全等于三角形 EDF (边角边)••• BF=EF, / CBF= / DEF连接BE在三角形BEF 中,BF=EF• / EBF= / BEF 。
•/ / ABC= / AED 。
• / ABE= / AEB 。
AB=AE 。
在三角形ABF 和三角形 AEF 中AB=AE,BF=EF,/ ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF•三角形ABF 和三角形AEF 全等。
• / BAF= / EAF ( / 1 = / 2)。
4. 已知:/ 仁/2, CD=DE , EF//AB ,求证:CG // EF ,可得,/ EFD = CGDDE = DC/ FDE =Z GDC (对顶角)• △ EFD ^A CGDEF = CG 过C 作CG // EF 交AD 的延长线于点 GEF=AC/ CGD=Z EFD又,EF// AB•••,/ EFD=Z 1/ 1= / 2•••/ CGD=Z 2•△ AGC为等腰三角形,AC= CG又EF= CG•EF= AC5. 已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C证明:延长AB取点E,使AE = AC,连接DE•/ AD 平分/ BAC•••/ EAD = Z CAD•/ AE = AC , AD = AD•△ AED ◎△ ACD ( SAS)•••/ E=Z C•/ AC = AB+BD•AE =AB+BD•/ AE = AB+BE•BD = BE•••/ BDE = Z E•••/ ABC = Z E+ / BDE•••/ ABC = 2 / E•••/ ABC = 2 / C6. 已知:AC 平分/ BAD , CE丄AB,/ B+ / D=180 °,求证:AE=AD+BEc证明:在AE上取F,使EF = EB,连接CF•/ CE 丄AB•••/CEB = Z CEF = 90 °•/ EB = EF, CE = CE,•••△CEB ◎△ CEF•••/ B =Z CFE•••/ B +Z D= 180°,/ CFE + Z CFA = 180°•••/ D = / CFA•/ AC 平分/ BAD•••/ DAC = / FAC•/ AC = AC•△ADC ◎△ AFC (SAS)•AD = AF•AE = AF + FE= AD + BE7. 已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD解:延长AD至U E,使AD=DE•/ D是BC中点• BD=DC在厶ACD和厶BDE中AD=DE/ BDE= / ADCBD=DC•••△ ACD ◎△ BDE••• AC=BE=2•••在△ ABE 中AB-BE V AE V AB+BE•/ AB=4即4-2 V 2AD V 4+21 V AD V 3• AD=28. 已知:D 是AB 中点,/ ACB=90 °,求证:CD -AB2解:延长AD至U E,使AD=DE•/ D是BC中点•BD=DC在厶ACD和厶BDE中AD=DE/ BDE= / ADCBD=DC•△ ACD ◎△ BDE•AC=BE=2•••在△ ABE 中AB-BE V AE V AB+BE•/ AB=4即4-2 V 2AD V 4+21 V AD V 3•AD=29. 已知:BC=DE,/ B= / E ,Z C= / D, F 是CD 中点,求证:/ 1 = / 2证明:连接BF 和EF 。
中考数学全等三角形证明经典50题(含答案)+经典因式分解练习题100道

全等三角形经典证明题50道1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE2、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC3、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .FAEDC B4.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA5.(5分)如图,已知AD∥BC,∠P AB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.PCEDBA6.(6分)如图①,E、F分别为线段AC上的两个动点,且DE ⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):8.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCB AFE D CB A25、如图:DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
证明:∵DF=CE , ∵DF-EF=CE-EF , 即DE=CF ,在∵AED 和∵BFC 中,∵ AD=BC , ∵D=∵C ,DE=CF ∵∵AED ∵∵BFC (SAS )26、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
全等三角形证明经典40题含答案(供参考)

1.已知:AB=4, AC=2, D是BC中点,AD是整数,求AD的长.解:延长AD到E使AD=DEYD是BC中点ABD=DC^EAACD和厶BDE中AD=DEZBDE=ZADCBD=DCAAACD^ABDEAAC=BE=2•••在△ ABE 中AB-BE<AE<AB+BEVAB=4即4・2V2ADV4+21<AD<3AAD=22.已知:BC=ED, ZB二ZE, ZC=ZD, F 是CD 中点,求证:Z1 = Z2证明:连接BF和EF••• BC=ED.CF=DE ZBCF=ZEDF・•.三角形BCF全等于三角形EDF(边角边)••• BF=EEZCBF=ZDEF连接BE在三角形BEF中,BF=EF••• ZEBF=ZBEFo••• ZABC=ZAEDc••• ZABE=ZAEBo/. AB=AEo在三角形ABF和三角形AEF中AB=AE.BF=EEZABF=ZABE+ZEBF=ZAEB+ZBEF=ZAEF ・•.三角形ABF和三角形AEF全等。
••• ZBAF=ZEAF(Zl=Z2)o3.已知:Z1=Z2, CD=DE, EF//AB,求证:EF=AC过C作CG〃EF交AD的延长线于点GCG/7EF,可得,ZEFD=CGDDE=DCZFDE=ZGDC (对顶角)•••△ EFD^ACGDEF=CGZCGD=ZEFD又,EF〃AB•••, ZEFD=Z1Z1=Z2AZCGD=Z2・•・△ AGC为等腰三角形,AC=CG又EF=CG・・・EF=AC4.已知:AD 平分ZBAC, AC=AB+BD,求证:ZB=2ZC证明:延长AB取点E,使AE=AC,连接DE TAD 平分ZBAC •••ZEAD=ZCADVAE=AC, AD=ADAAAED^AACD (SAS)AZE=ZCVAC=AB+BDAAE = AB+BDVAE = AB+BE•••BD = BEAZBDE=ZEAZABC=2ZEAZABC=2ZC5.已知:AC 平分ZBAD, CE丄AB, ZB+ZD=180° ,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CFICE丄ABAZCEB = ZCEF=90°VEB=EF, CE=CE,AACEB^ACEF(SAS)AZB = ZCFEVZB4-ZD=180° , ZCFE+ZCFA=180°AZD=ZCFAVAC 平分ZBADAZDAC=ZFACVAC=ACAAADC^AAFC (SAS)•••AD = AF•••AE=AF+FE=AD+BE6.如图,四边形ABCD中,AB〃DC, BE、CE分别平分ZABC、ZBCD,且点E在AD 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. ..
七年级数学下---全等三角形证明题
1.如图,已知AD是△ABC的中线,分别过点B、C作BE⊥AD于点E,CF⊥AD交AD的延长线于点F,求证:BE=CF.
2.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:
①线段DE与AC的位置关系是_________ ;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是_________ .
(2)猜想论证
当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)拓展探究
已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.
3.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.
4.如图所示,在△ABC中,D、E分别是AB、AC上的点,DE∥BC,如图①,然后将△ADE绕A点顺时针旋转一定角度,得到图②,然后将BD、CE分别延长至M、N,使DM=BD,EN=CE,得到图③,请解答下列问题:(1)若AB=AC,请探究下列数量关系:
①在图②中,BD与CE的数量关系是_________ ;
②在图③中,猜想AM与AN的数量关系、∠MAN与∠BAC的数量关系,并证明你的猜想;(2)若AB=k•AC(k>1),按上述操作方法,得到图④,请继续探究:AM与AN的数量关系、∠MAN与∠BAC的数量关系,直接写出你的猜想,不必证明.
4.(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①当点D在AC上时,如图1,线段BD、CE有怎样的数量关系和位置关系?直接写出你猜想的结论;
②将图1中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图2,线段BD、CE有怎样的数量关系和位置关系?请说明理由.
(2)当△ABC和△ADE满足下面甲、乙、丙中的哪个条件时,使线段BD、CE在(1)中的位置关系仍然成立?不必说明理由.甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;
乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.
6.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则BE _________ CF;EF _________ |BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件_________ ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
7.如图,已知AB=AC,(1)若CE=BD,求证:GE=GD;
(2)若CE=m•BD(m为正数),试猜想GE与GD有何关系.(只写结论,不证明)
8.(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;
(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为_________ ;∠APB的大小为_________ ;
(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD间的等量关系式为_________ ;∠APB的大小为
10.已知:EG∥AF,AB=AC,DE=DF;求证:BE=CF
2.解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,∴△ACD是等边三角形,
∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;
②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC 的面积相等(等底等高的三角形的面积相等),
即S1=S2;故答案为:DE∥AC;S1=S2;
(2)如图,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,
,
∴△ACN≌△DCM(AAS),∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;
3、解答:(1)证明:∵在△CBF和△DBG中,
,
∴△CBF≌△DBG(SAS),∴CF=DG;
(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,∴∠DHF=∠CBF=60°,
∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.
4、
②结论:BD=CE ,BD ⊥CE ;理由如下:∵∠BAC=∠DAE=90°
∴∠BAC ﹣∠DAC=∠DAE ﹣∠DAC ,即∠BAD=∠CAE 在△ABD 与△ACE 中,
∵
∴△ABD ≌△ACE (SAS )∴BD=CE
延长BD 交AC 于F ,交CE 于H . 在△ABF 与△HCF 中,∵∠ABF=∠HCF ,∠AFB=∠HFC ;∴∠CHF=∠BAF=90°
∴BD ⊥CE (2)结论:乙.AB :AC=AD :AE ,∠BAC=∠DAE=90°
解答: 解:(1)①BD=CE ;②AM=AN ,∠MAN=∠BAC ,∵∠DAE=∠BAC ,∴∠CAE=∠BAD , 在△BAD 和△CAE 中
∵ ∴△CAE ≌△BAD (SAS ),
∴∠ACE=∠ABD ,∵DM=BD ,EN=CE ,∴BM=CN ,
在△ABM 和△ACN 中,
∵
∴△ABM ≌△ACN (SAS ),∴AM=AN ,∴∠BAM=∠CAN ,即∠MAN=∠BAC ;
(2)AM=k •AN ,
∠MAN=∠BAC .
5.
6.
解答:解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CFA;∴△BCE≌△CAF,∴BE=CF;EF=|BE﹣AF|.
②所填的条件是:∠α+∠BCA=180°.
证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,
又∵BC=CA,∠BEC=∠CFA,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,
又∵EF=CF﹣CE,∴EF=|BE﹣AF|.
(2)EF=BE+AF.
7.解答:证明:(1)过D作DF∥CE,交BC于F,
则∠E=∠GDF.∵AB=AC,∴∠ACB=∠ABC∵DF∥CE,∴∠DFB=∠ACB,
∴∠DFB=∠ACB=∠ABC.∴DF=DB.∵CE=BD,∴DF=CE,在△GDF和△GEC中,,
∴△GDF≌△GEC(AAS).∴GE=GD.
(2)GE=m•GD.
9.解
答:
解:(1)①∵∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC.即:∠AOC=∠BOD.
又∵OA=OB,OC=OD,∴△AOC≌△BOD.∴AC=BD.
②由①得:∠OAC=∠OBD,
∵∠AEO=∠PEB,∠APB=180°﹣(∠BEP+∠OBD),∠AOB=180°﹣(∠OAC+∠AEO),∴∠APB=∠AOB=60°.
(2)AC=BD,α(3)AC=k•BD,180°﹣α.。