一、函数与映射的基本概念

合集下载

函数映射知识点归纳总结

函数映射知识点归纳总结

函数映射知识点归纳总结一、函数的定义与基本概念函数是数学中最基本的概念之一,在现代数学中函数被广泛应用到各个领域。

在实际应用中,函数是用来描述变量之间的关系的,它是一个很重要的工具。

1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

在数学上,我们通常用字母 y=f(x) 来表示这一关系,其中 x 是自变量,y 是因变量,f(x) 表示函数关系。

当 x 取不同的值时,y 也会随之变化,这就是函数的基本概念。

1.2 函数的表示方法函数可以用不同的表达方式来表示,其中最常见的有函数图像、函数的解析式、函数的数值表以及函数的映射图等。

函数图像可以直观地表示函数的变化规律,函数的解析式可以用代数式来表示函数的关系,函数的数值表可以用一组数据来列举函数的取值,函数的映射图则可以用有向箭头来表示函数元素之间的映射关系。

1.3 函数的性质函数有很多重要的性质,比如定义域和值域、奇偶性、周期性、增减性、极值等。

这些性质对于研究函数的特性和行为非常重要,它们可以帮助我们更深入地了解函数的规律和特点。

二、常见函数的类型及特点在数学中有很多常见的函数类型,它们都具有各自特定的特点和规律。

了解这些函数类型的特点对于理解函数的本质和规律非常有帮助。

2.1 一次函数一次函数是最简单的函数类型之一,它的解析式可以写成 y=ax+b 的形式,其中 a 和 b 分别是函数的斜率和截距。

一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距则是直线与坐标轴的交点。

2.2 二次函数二次函数是一个抛物线函数,它的解析式可以写成 y=ax^2+bx+c 的形式,其中 a、b、c 是函数的系数。

二次函数的图像是一个开口朝上或者朝下的抛物线,a 的正负决定了抛物线的开口方向,b 和 c 则决定了抛物线的位置和形状。

2.3 指数函数指数函数是一个以底数为常数的幂函数,它的解析式可以写成 y=a^x 的形式,其中 a 是底数,x 是幂。

映射和函数的关系

映射和函数的关系

映射和函数的关系在数学中,映射和函数是两个非常重要的概念,它们之间存在着密切的关系。

本文将从不同的角度介绍映射和函数,并探讨它们之间的联系和特点。

一、映射的定义和特点映射是数学中一个基本的概念,它描述了两个集合之间的元素之间的对应关系。

具体来说,设A和B是两个非空集合,如果对于A中的每个元素a,都有一个元素b与之对应,那么就称这种对应关系为映射。

映射具有以下特点:1. 一对一映射:如果对于A中的不同元素a1和a2,其对应的b1和b2也是不同的,那么称这种映射为一对一映射。

2. 多对一映射:如果对于A中的不同元素a1和a2,其对应的b1和b2是相同的,那么称这种映射为多对一映射。

3. 映射的定义域和值域:对于映射f:A→B,A称为定义域,B称为值域。

4. 映射的像和逆像:对于映射f:A→B,对于B中的任意元素b,称在A中所有与b对应的元素的集合为b的逆像,称在B中与A的所有元素对应的元素的集合为A的像。

二、函数的定义和性质函数是一种特殊的映射,它具有以下性质:1. 定义域和值域:函数f:A→B的定义域为A,值域为B。

2. 唯一性:对于定义域A中的每个元素a,函数f只能有一个值b 与之对应。

3. 图像和原像:对于函数f:A→B,对于B中的任意元素b,称在A 中与b对应的元素为b的原像,称在B中与A的所有元素对应的元素的集合为A的图像。

4. 单调性:函数可以是单调递增的,也可以是单调递减的,或者不具备单调性。

三、映射与函数的关系映射是一个更加一般的概念,而函数是映射的一种特殊情况。

具体来说,函数是一种满足每个元素只有一个唯一值与之对应的映射。

在映射中,元素之间的对应关系可以是一对一的或多对一的,但在函数中,元素之间的对应关系必须是一对一的。

因此,函数是映射的一种特殊情况。

映射和函数都具有定义域和值域的概念,用来描述元素的取值范围。

只不过在函数中,定义域中的每个元素只能有一个对应的值域元素,而在映射中可以有多个。

高等数学上册1.1 映射与函数

高等数学上册1.1 映射与函数
第一节 映射与函数
一、映 射
二、函 数
第一章 函数与极限
一、映射
1. 映射的概念
定义1
设 X 、Y 是两个非空集合, 若存在一个法则 , 使得对X中
每个元素, 按法则 , 在Y中有唯一确定的与之对应, 则称
为从 X 到 Y 的映射. 记作 : X→Y.

X
定义域
D =X
第一节 映射与函数



()


()=
若既是满射又是单射, 则称为双射或一一映射.
第一节 映射与函数
第一章 函数与极限
注 映射又称为算子, 在不同数学分支中有不同的名称.


Y
非空集X
上的泛函
数集Y
非空集X
上的变换
非空集Y
实数集X
上的函数
实数集Y
第一节 映射与函数
第一章 函数与极限
2. 逆映射与复合映射
注 分段函数是一个函数,不是多个函数.
第一节 映射与函数
第一章 函数与极限
2. 函数的几种特性
设函数 = () 的定义域为D , 且数集 ⊂ D 或区间 I ⊂ D .
(1) 有界性
∀ ∈ , ∃ > 0, 使 () ≤, 称 () 在上有界.否则称无界.
∀ > 0, ∃0 ∈ , 使|( 0)|≥M, 称() 在I上无界.
<0
第一章 函数与极限
例8 设为任一实数,不超过的最大整数称为的整数部分,记作[].
例如:
5
= 0,
7
阶梯曲线
2 = 1, [π] = 3, [−1] = −1, [−3.5] = −4.
求函数 = [] 的定义域和值域并画图.

映射与函数知识点总结

映射与函数知识点总结

映射与函数知识点总结一、映射与函数的概念1.映射的定义:将一个集合中的每个元素都对应到另一个集合中的一些元素的规律称为映射。

对于给定的两个集合A和B,如果每个元素a∈A都有一个元素b∈B与之对应,那么就称集合A到集合B的映射。

记作f:A→B。

2.函数的定义:函数是一种特殊的映射,它满足每个元素a∈A只能对应一个元素b∈B的规律。

对于给定的两个集合A和B,如果每个元素a∈A都有唯一的元素b∈B与之对应,那么就称集合A到集合B的函数。

记作f:A→B。

3.定义域和值域:函数f的定义域是指所有可能作为函数输入的数的集合,通常用符号D(f)表示;函数f的值域是指函数所有可能的输出的数的集合,通常用符号R(f)表示。

二、映射与函数的性质1.单射:也称为一一对应,指当对于集合A中的不同元素a1和a2,它们在集合B中的对应元素f(a1)和f(a2)也不相同。

换句话说,每个元素a∈A都对应着集合B中唯一的元素。

2.满射:也称为映满函数,指函数的值域与集合B相同,即函数的所有可能的输出都在集合B中。

3.双射:即同时满足单射和满射的函数,也称为一一映射。

4.奇函数和偶函数:如果对于函数f的定义域中的每一个实数x,都有f(-x)=-f(x)成立,则称函数f是奇函数;如果对于函数f的定义域中的每一个实数x,都有f(-x)=f(x)成立,则称函数f是偶函数。

5.反函数:如果函数f的定义域和值域都是实数集,且对于函数f中的每一对实数(x,y),都有y=f(x),则存在一个函数g,使得对于函数g中的每一对实数(y,x),都有x=g(y)。

这样的函数g称为函数f的反函数。

三、映射与函数的应用1.函数关系式:映射与函数可以描述实际问题中的各种关系,如线性函数、二次函数、指数函数、对数函数等。

通过分析函数关系式,我们可以了解函数的性质和特点,从而应用到各种实际问题中。

2.函数的图像:通过绘制函数的图像,可以直观地表达函数的变化规律,了解函数的增减性、奇偶性、周期性等。

大一高数知识点映射与函数

大一高数知识点映射与函数

大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。

在这篇文章中,我们将重点讨论高数中的映射与函数。

一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。

在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。

映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。

映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。

即不同的元素在映射中有不同的对应元素。

2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。

即每一个元素都有对应的映射元素。

3. 一一映射:即又是单射又是满射的映射。

二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。

函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。

函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。

2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。

3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。

4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。

5. 对称性:函数是否具有关于某个轴的对称性。

三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。

下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。

2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。

3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。

4. 三角函数:包括正弦函数、余弦函数和正切函数等。

5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。

函数、映射的概念

函数、映射的概念

函数、映射的概念•1、映射:(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。

(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。

2、函数:(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x 的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x ∈A}叫做函数f(x)的值域。

显然值域是集合B的子集。

3、构成函数的三要素:定义域,值域,对应法则。

值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

4、函数的表示方法:(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法;(2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;(3)图象法:就是用函数图象表示两个变量之间的关系。

注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。

•映射f:A→B的特征:(1)存在性:集合A中任一a在集合B中都有像;(2)惟一性:集合A中的任一a在集合B中的像只有一个;(3)方向性:从A到B的映射与从B到A的映射一般是不一样的;(4)集合B中的元素在集合A中不一定有原象,若集合B中元素在集合A中有原像,原像不一定惟一。

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)

第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。

1-1 映射与函数

1-1 映射与函数

例: f ( x ) x 2 在[0, )上单调增加
在 ( , 0]上单调减少 在 ( , )上不是单调的
函数的几种特性
3.函数的奇偶性
设函数f (x) 的定义域D关于原点对称
如果对于任一 x D, f ( x ) f ( x )恒成立
那么称函数f (x)为偶函数
四则运算
函 数
构造 复合映射
构造
基本初等函数
基本初等函数与初等函数
基本初等函数 幂函数、 指数函数、 对数函数、 三角函数、 反三角函数 初等函数 由常数和基本初等函数经过有限次四则运算和有限次
的函数复合步骤所构成并可用一个式子表示的函数
否则称为非初等函数
概念
概念 初等函数
逆映射
集 合 区 邻 间 域
即Y中的任一元素y都是X中某元素的像,
则称f为X到Y上的映射或满射 若对X中任意两个不同的元素
则称f为X到Y的单射 若映射 f 既是满射又是单射, 则称 f 为一一映射或双射. X f
它们的像
逆映射 若f 是从X到Y的单射,可定义一个从 对每个 规定
到X的新映射g
这x满足
这个映射g称为f的逆映射,记作 注 (1) 只有单射才存在逆映射 (2) 逆映射
1 y f ( x ), x f ( D) y f ( x ), x D 的反函数记成 一般地,
注 (1) f 在D上单调增加(减少),f 1 必定存在
1 且 f 在f (D)上也单调增加(减少)
(2) 函数y=f (x)与其反函数 y f 1 ( x ) 的图形 关于直线y=x对称
函数的几种特性
2.函数的单调性
设函数f (x) 的定义域为D,区间 I D
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、函数与映射的基本概念一、基本概念1.函数的定义:设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么就称这样的对应“f :A →B ”为从集合A 到B 的一个函数,记作y =f (x ),x ∈A ,其中x 叫做自变量.x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合C={y|y = f (x ),x ∈A }叫做函数的值域)(B C ⊆. 函数符号y =f (x )表示“y 是x 的函数”,或简记为f (x ).这里的“f ”即对应法则,它确定了y 与x 的对应关系.从函数概念看,“定义域、值域和对应法则”是构成函数的三个要素,其中,“定义域和对应法则”是两个关键性要素,定义域和对应法则一旦确定,函数的值域也随之确定.2、对应法则是指y 与x 的对应关系,它含有两层意思,一是对应的过程(形式),即由x 求出y 的运算过程,一般体现在函数的解析表达式中;二是运算的结果(本质),即y 的值,两个对应法则是否相同,要看对于同一个自变量的值所得到的函数值是否相同,有时形式上不同的对应法则本质上是相同的。

例如:x x x y x y ++=+=22cos sin 1与的对应法则是相同的。

3、同一个函数两个函数当且仅当定义域和对应法则二者均相同时才表示同一个函数,而值域相同是两函数为同一函数的必要非充分条件.4、变换字母在函数的定义域及对应法则不变的条件下,用不同的字母表示自变量及对应法则,这对于函数本身并无影响,比如f (x )=x 2+1,g (t )= t 2+1,都表示同一函数.5、区间及其表示方法.区间是数学中常用的表示数集的术语与符号.设b a R b a <∈,、,规定闭区间: [a ,b ]={}b x a x ≤≤|,开区间:(a ,b )={}b x a x <<|, 半开半闭区间:(a ,b ]={}b x a x ≤<|,[a ,b )={}b x a x <≤|. 其中a 、b 分别为区间的左端点、右端点,b -a 为区间长度.符号+∞读作正无穷大,﹣∞读作负无穷大,它们都不是一个具体的数. 用+∞或-∞作为区间的端点,表示无穷区间,并且只能用开区间的形式. 如:{}a x x a >=+∞|),(,{}}|),(b x x b <=-∞,R =+∞-∞),(6.映射的概念:映射是两个集合间的一种特殊的对应关系,即若按照某种对应法则f ,对于集合A 中的任一元素,在集合B 中都有唯一的元素与之对应,那么这样的对应(包括集合A 、B 和对应法则f )就叫做集合A 到集合B 的映射,记作f :A →B .在映射f :A →B 中,若A 中元素a 与B 中元素b 对应,则b 叫做a 的象,a 叫做b 的原象.因而,映射可以理解为“使A 中任一元素在B 中都有唯一象”的特殊对应(即单值对应).如果映射f :A →B 满足①A 中不同元素在B 中有不同的象;②B 中任一元素均有原象,那么这个映射就是A 到B 上的一一映射.7、映射与函数的关系函数是映射,但映射不一定是函数。

由映射的概念可知,函数本质上是定义在两个非空数集上的一类特殊的映射:当A 、B 是两个非空数集,那么A 到B 的映射f :A →B 就叫做A 到B 的函数,并记作y =f (x ),其中x ∈A ,y ∈B .原象的集合A 叫做函数的定义域,象的集合C 叫做函数的值域,显然C ⊆B .8、函数的三种表示法及其优缺点(1)、解析法用一个含有这两个变量及数学运算符号的等式表示两个变量间的函数关系,,这种表示法叫做解析法.例如,代数式,y =-2x -1,y =22-+x x ,y =x1,y =3-x 等等都是函数解析式.一般的可表示为)(x f y =。

解析法简单明了,能准确地反映整个变化过程中自变量与函数的相依关系,即给出了由x 求y 的方法,但求对应值时,往往要经过比较复杂的计算,而且在实际问题中,有的函数关系不一定能用解析式表达出来. (2)、列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法.如平方表、平方根表等.列表法一目了然,表格中已有自变量的每一个值,不需计算就可以直接查出与它对应的函数值,使用起来很方便,但列表法有局限性,因为列出的对应值是有限的,而且在表格中也不容易看出自变量与函数之间的对应规律.而且是近似值 (3)、图象法用平面直角坐标系中的曲线表示函数关系的方法叫做图象法.图象法形象直观,通过函数的图象,可以直接、形象地把函数关系表示出来,能够直观地研究函数的一些性质,例如函数有没有最大值(或最小值)?最大(小)值是多少?函数值是随自变量增大而增大,还是随自变量的增大而减小等等,函数图象是研究函数性质的有力工具.但是,由图象观察只能由x 的值量出y 的近似值使函数有意义的自变量的取值的全体,叫做函数的自变量的取值范围. 注意:(1)当函数是由一个解析式表示时,欲求函数值,实质就是求代数式的值.(2)当已知函数解析式,又给出函数值,欲求相应的自变量的值时,实质就是解方程. (3)当已知函数值的一个取值范围,欲求相应的自变量的取值范围时,实质就是解不等式.9、分段函数在定义域的不同部分上有不同的解析表达式的函数。

在不同的范围里求函数值时必须把自变量代入相应的表达式例:求分段函数的函数值 已知函数求f{f[f(a)]} (a<0)的值。

分析 求此函数值关键是由内到外逐一求值,即由a<0, f(a)=2a ,又0<2a <1, ,, 所以,。

注:求分段函数值的关键是根据自变量的取值代入相应的函数段的表达式.二、典型例题解析例1 在对应法则“f ”下,给出下列从集合A 到集合B 的对应: (1)A =N ,B =R ,f :x →y =x1; (2)A =N ,B =Z ,f :x →y =x )1(-;(3)A ={x ∣x 是平面内的三角形},B ={y ∣y 是平面内的圆},f :x →y 是x 的外接圆. 其中能构成映射的是 ( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)分析 判断一个对应是不是映射,应紧扣映射的定义,即在对应法则f 下,对于集合A 中的任一..元素在B 中是否都有唯一..的象. 解 : 在(1)中,元素“0”在B 中没有象,不满足“任意性”,故不能构成映射.在(2)中,当x 为偶数时,其象为1;当x 为奇数时,其象为-1,而1,-1∈B ,即A 中任一元素在B 中都有唯一的象.在(3)中,因为任一三角形都有唯一的外接圆,所以(2)、(3)能构成映射.答案选C .点评 ①判断一个对应是否能构成映射,应紧扣映射定义.②在课本中,已规定0是自然数,忽视了这一点,将误认为对应(1)是映射.③在映射f :A →B 中,A 、B 的地位是不对等的,它并不要求B 中元素均有原象,或有原象也未必唯一.一般地,若A 中元素的象的集合为C ,则C ⊆B .如(2)中除1,-1以外的任何元素均无原象,(3)中任一圆的内接三角形都有无数个.④映射中的集合元素的对象是任意的,可以是数集、点集或其他任意对象,如(3)中的集合对象是几何图形.变题 设集合A ={x ∣x 是平面内的圆},B ={y ∣y 是平面内的矩形},f :x →y 是x 的内接矩形.试问它能否构成映射?答案:不能。

因为圆的内接矩形有很多个,与映射要求的通过对应关系只有唯一的元满足关系不符例2 已知映射f :A →B ,其中集合A ={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意a ∈A ,在B 中和它们对应的元素是|a |,则集合B 中元素的个数是 ( ) A .4 B .5 C .6 D .7分析 本题主要考查映射的概念及对对应概念的理解.解本题应抓住:①对应法则f 是什么?②集合B 中的具体元素是什么?而②的解决由①来决定.解: 依题意,由A →B 的对应法则为f :a →|a |.于是,将集合A 中的7个不同元素分别取绝对值后依次得3,2,1,1,2,3,4.由集合元素的互异性可知,B ={1,2,3,4},它有4个元素,答案选A .点评 ①准确理解题目本身所给的信息,捕捉对解题有用的成份,是解决问题的关键. ②不能忽视集合元素的三大特性在解题中的应用.本题中如果忽视集合元素的互异性,将导致错选D .例3 设A ={(x ,y )∣x ∈R ,y ∈R }.如果由A 到A 的一一映射,使象集合中的元素(y -1,x +2)和原象集合中的元素(x ,y )对应,那么象(3,-4)的原象是 ( ) A .(-5,5) B .(4,-6) C .(2,-2) D .(-6,4) 分析 由象与原象的概念可知,本题中的对应法则是f :(x ,y )→(y -1,x +2),问题即:当点(y -1,x +2)是(3,-4)时,对应的x ,y 的值分别是多少?于是由⎩⎨⎧-=+=-4231x y ⎩⎨⎧=-=⇒46y x ,即象(-3,4)的原象是(-6,4),选D .点评 ①已知原象要求象,只需根据对应法则直接代入计算;已知象元素,反求原象,需逆向思考,通常借助方程思想,通过解方程组来解决.②在映射f :A →B 中,A 是原象集合,B 是象的集合,对应法则是f :原象→象,二者顺序不能颠倒,否则将误选A ;点(x ,y )是有序数对,x ,y 的顺序不能搞错,否则将误选B .例4 设A ={x ∣0≤x ≤2},B ={y ∣1≤y ≤2},图1中表示A 到B 的函数是( )分析 可根据映射观点下的函数定义直接求解.首先C 图中,A 中同一个元素x (除x =2)与B 中两个元素对应,它不是映射,当然更不是函数;其次,A 、B 两图中,A 所对应的“象”的集合均为{y ∣0≤y ≤2},而{y ∣0≤y ≤2}⊄ B ={y ∣1≤y ≤2},故它们均不能构成函数.从而答案选D . 点评 函数首先必须是映射,是当集合A 与B 均为非空数集时的映射.因此,判断一个对应是否能构成函数,应判断:①集合A 与B 是否为非空数集;②f :A →B 能否为一个映射.另外,函数f :A →B 中,象的集合M 叫函数的值域,且M ⊆B .变题 已知函数y =f (x ),集合A ={(x ,y )∣y =f (x )},B ={(x ,y )∣x =a ,y ∈R },其中a 为常数,则集合A ∩B 的元素有 ( C ) A .0个 B .1个 C .至多1个 D .至少1个提示 设函数y =f (x )的定义域为D ,则当a ∈D 时,A ∩B 中恰有1个元素;当a ∈/D 时,A ∩B 中没有元素.例5 集合A ={3,4},B ={5,6,7},那么可建立从A 到B 的映射个数是__________,从B 到A 的映射个数是__________.剖析:从A 到B 可分两步进行:第一步A 中的元素3可有3种对应方法(可对应5或6或7),第二步A 中的元素4也有这3种对应方法.由乘法原理,不同的映射种数N 1=3×3=9.反之从B 到A ,道理相同,有N 2=2×2×2=8种不同映射. 答案:9 , 8例6、某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市 时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示. (1)写出图一表示的市场售价与时间的函数关系式)(t f p =; (2)写出图二表示的种植成本与时间的函数关系式)(t g Q =;解:(Ⅰ)由图一可得市场售价与时间的函数关系为⎩⎨⎧≤<-≤≤-= 300t 200 3002 200,t 0,300)(t t t f由图二可得种植成本与时间的函数关系为300t 0 ,100)150(201)(2≤≤+-=t t g例7、若f :y =3x +1是从集合A ={1,2,3,k }到集合B ={4,7,a 4,a 2+3a }的一个映射,求自然数a 、k的值及集合A 、B.解:∵f (1)=3×1+1=4,f (2)=3×2+1=7,f (3)=3×3+1=10,f (k )=3k +1,由映射的定义知(1)⎪⎩⎪⎨⎧+=+=,133,1024k a a a 或(2)⎪⎩⎪⎨⎧+==+.13,10342k a a a∵a ∈N ,∴方程组(1)无解. 解方程组(2),得a =2或a =-5(舍),3k +1=16,3k =15,k =5 .∴A ={1,2,3,5},B ={4,7,10,16}.三、基本概念练习题1.对于映射f :A →B ,下列说法正确的是 ( ) A .A 中某一元素的象可以不止一个 B .B 中某一元素的原象可以不止一个 C .A 中两个不同元素的象必不相同 D .B 中两个不同元素的原象可能相同2.设集合A ={a ,b ,c },B ={m ,n ,p },那么从集合A 到B 可以建立 个一一映射.3.已知A =B =R ,x ∈A ,y ∈B ,且f :x →y =ax +b ,若5和20的原象分别是5和10,则7在f 下的象为 .4.下列函数中,表示同一函数的是 ( )A .f (x )=1,g (x )=x °B .f (x )=x +1,g (x )= x 2-1x -1C .f (x )= x 2,g (x )=|x |D .f (x )=x ,g (x )=(x )25.函数y =x -1,x ∈Z 且x ∈[-1,5 ],则函数的值域为 . 6.给出三个命题:①映射f :A →B 是函数,则A 叫做函数的定义域,B 叫做函数的值域; ②x x x f -+-=34)(是函数;③函数y =3x (x ∈Z )的图象是一条直线.其中正确的有 ( ) A .0个 B .1个 C .2个 D .3个7、集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0, 那么映射f :M →N 的个数是多少?参考答案 1.B 2.6 3. 11 4. C5. {-2,-1,0,1,2,3,4}6.A (定义域对,值域不一定对,值域是B 的真子,第二个定义域空,第三是点) 7、解:∵f (a )∈N ,f (b )∈N ,f (c )∈N ,且f (a )+f (b )+f (c )=0,∴有0+0+0=0+1+(-1)=0.当f (a )=f (b )=f (c )=0时,只有一个映射; 当f (a )、f (b )、f (c )中恰有一个为0,而另两个分别为1,-1时,共有3*2=6个映射. 因此所求的映射的个数为1+6=7.评述:本题考查了映射的概念和分类讨论的思想.四、小结1.理解映射的概念,应紧紧抓住映射的两个特性:①任意性;②唯一性. 2.判断一个对应是不是映射或一一映射,应“回到定义去”;说明一个对应不是映射或一一映射,只须找出一个反例.3.深化对函数概念的理解,能从函数三要素(定义域、值域与对应法则)的整体上去把握函数概念.在函数三要素中,定义域和对应法则是函数的两大要素,对应法则是核心。

相关文档
最新文档