单双多层增透膜的原理及应用
增透膜的应用原理有哪些

增透膜的应用原理有哪些1. 什么是增透膜增透膜是一种可以增加物体透明度的薄膜,通常由多层特殊材料堆积而成。
增透膜可以减少光线的反射和散射,并增加物体的透过率,提高光线透明度。
它被广泛应用在眼镜、显示屏、摄影镜头等领域。
2. 增透膜的原理增透膜的应用原理主要涉及光的干涉和衍射理论。
2.1 光的干涉增透膜的多层薄膜结构可以形成光的干涉现象。
当光线进入多层膜结构时,一部分光线会被前一层膜面反射,一部分光线会透过膜面进入下一层。
透过不同层膜面的光线会发生干涉现象,使得特定波长的光线相互加强或相互抵消。
2.2 衍射增透膜的一种常见原理是利用衍射现象来增加透明度。
衍射是指当光线通过一个孔或缝隙时,光线波动会弯曲并投射到周围区域。
通过特殊设计的多层膜结构,增透膜可以改变光线的传播路径和幅度,使得光线更容易透过薄膜,降低光线的反射和散射。
3. 增透膜的应用增透膜在各个领域有广泛的应用,以下是一些常见的应用场景:3.1 光学镜片增透膜在眼镜、相机镜头等光学器件的镜片上应用广泛。
通过在镜片表面涂覆一层增透膜,可以减少反射和散射,提高镜片的透过率和视觉清晰度。
3.2 显示屏增透膜在液晶显示器、手机屏幕等电子设备的显示屏上起到重要作用。
具有增透膜的显示屏可以减少背光源的反射,并提高画面的亮度和对比度。
3.3 摄影镜头增透膜在摄影镜头上被广泛使用。
它可以减少镜头表面的反射,提高光线的透过率。
通过使用增透膜,摄影师可以得到更清晰、更亮的图像。
3.4 光学仪器增透膜在各种光学仪器中也有应用,如显微镜、望远镜等。
通过使用增透膜,可以提高光学仪器的透明度和成像质量。
4. 增透膜的优势增透膜具有多项优势,使其成为许多应用领域的理想选择:•提高透过率:增透膜可以减少光线的反射和散射,提高物体的透过率,使得图像更明亮、更清晰。
•减少眩光:增透膜可以减少光线的反射,降低眩光问题,提升视觉舒适度。
•改善对比度:通过减少反射光的干扰,增透膜可以提高图像的对比度,使得画面更加鲜明。
增透膜的原理及应用(最新整理)

为 1.38)的镀膜材料很难找到,所以,现在一般都用氟化镁镀制增透膜。
另外,要使光线①和②正好反相,对薄膜的厚度有一定的要求。当光从光疏介质射向光密介质时,反射光有半 波损失。对于玻璃上的增透膜,其折射率大小介于玻璃和空气的折射率之间,所以,当光从空气透过薄膜射向玻璃 时,光线①在空气与薄膜的交界面反射时有半波损失,光线②在薄膜与介质的交界面反射时也有半波损失。所以,
长 1/4 的数量级上,增透膜的均匀度的要求也非常的苛刻
Hale Waihona Puke 。尽管如此,在人们的不懈探索中,还是掌握了不
少行之有效、先进的镀膜技术。目前,常用的镀膜方法有真空蒸镀、化学起相沉积、溶胶—凝胶镀膜等方法。三者 相比较,溶胶—凝胶镀膜设备简单、能在常温常压下操作、膜层均匀性高、微观结构可控,适于不同形状、尺寸的 基片、能通过控制配方、制备工艺得到高激光破坏阈值的光学薄膜,已成为高功率激光薄膜的最具竞争力的制备方 法之一。
事、太空探索等各行各业 ,为人类科技进步作出了重大贡献。
参考文献: [1] 姚启钧.光学教程[M].北京:高等教育出版社,2002:159-164. [2] 张彦亮.“增透膜”增透作用的理论解释[J].临沂师范学院学报,2004,26(3):1-3. [3] 王秀英.增透膜的原理及几个问题的解答[J].物理教师,2004,25(11):1-2. [4] 苗润才,周艳.光学增透膜[J].中学物理教学参考,1999,28(8):1-2. [5] 赵凯华,钟锡华.光学[M].北京:高等教育出版社,1989:152-159. [6] Ambrosc BS Shaffer PS. Steinberg R N,MeDermott L C. An investigation of student understanding of smgle slit diffraotion and double-slit interference[J] Am.J.Phvs.1999:67,146-155. [7] 俞波,陈一匡,方向明等.玻璃表面增透膜的溶胶-凝胶法制备[J].汕头大学学报,2002,17(2):1-6. [8]张厚石.薄膜干涉中的半波损失与薄膜厚度[J].中学物理教学参考,2001,30(11):1-2. [9] 孙增辉,乔学亮,程宇航.一种新型的光学增透膜—DLC 及改性 DLC 薄膜[J].材料导报,2002, 11(6):1-3. [10] 张耀平,许鸿,凌宁等.一种新型三层双波段减反膜设计研究[J].光电子技术与信息,2006,19(2):1-3. [11] 赵秀琴.增透膜与增反膜[J].太原师范学院学报,2003,2(4):1-4. [12] 李林,董连和,黄良钊.硫化锌陶瓷红外增透膜研究[J].长春理工大学学报,2004,27(1):1-3. [13] 沈自才,宋永香,王英剑等.非均匀性对增透膜增透特性的影响[J].光学技术,2005,31(1):1-3.
增透膜的原理及应用

增透膜的原理及应用摘要:在光学元件中,由于元件表面的反射作用而使光能损失,为了减少元件表面的反射损失,常在光学元件表面镀层透明介质薄膜,这种薄膜就叫增透膜。
本文分别从能量守恒的角度对增透膜增加透射的原理给予定性分析;根据菲涅尔公式和折射定律对增透膜增加透射的原理给予定量解释;利用电动力学的电磁理论对增透膜增加透射的原理给予理论解释。
同时对增透膜的研究和应用现状作一介绍。
关键词:增透膜;干涉;增透膜材料;镀膜技术1前言在日常生活中,人们对光学增透膜的理解,存在着一些模糊的观念。
这些模糊的观念不仅在高中生中有,而且在大学生中也是存在的。
例如,有不少人认为入射光从增透膜的上、下表面反射后形成两列反射光,因为光是以波的形式传播的,这两列反射光干涉相消,使整个反射光减弱或消失,从而使透射光增强,透射率增大。
然而他们无法理解:反射回来的两列光不管是干涉相消还是干涉相长,反射光肯定是没有透射过去,因增加了一个反射面,反射回来的光应该是多了,透射过去的光应该是少了,这样的话,应当说增透膜不仅不能增透,而且要进一步减弱光的透射,怎么是增强透射呢?也有人对增透膜的属性和技术含量不甚了解,对它进行清洁时造成许多不必要的损坏。
随着人类科学技术的飞速发展,增透膜的应用越来越广泛。
因此,本文利用光学及其他物理学知识对增透膜原理给以全面深入的解释,同时对增透膜的研究和应用现状作一介绍。
让人们对增透膜有一个全面深入的了解,进而排除在应用时的无知感和迷惑感。
2增透原理2.1 定性分析光学仪器中,光学元件表面的反射,不仅影响光学元件的通光能量;而且这些反射光还会在仪器中形成杂散光,影响光学仪器的成像质量。
为了解决这些问题,通常在光学元件的表面镀上一定厚度的单层或多层膜,目的是为了减小元件表面的反射光,这样的膜叫光学增透膜(或减反膜)。
这里我们首先从能量守恒的角度对光学增透膜的增透原理给予分析。
一般情况下,当光入射在给定的材料的光学元件的表面时,所产生的反射光与透射光能量确定,在不考虑吸收、散射等其他因素时,反射光与透射光的总能量等于入射光的能量。
增透膜的应用原理图解大全

增透膜的应用原理图解大全增透膜简介增透膜(Anti-reflective film)是一种能够减少或消除光的反射的薄膜材料。
它广泛应用于光学设备、显示屏、太阳能电池板等领域,以提高透光率、减少反射损失、增强光学品质。
增透膜的原理增透膜的原理是通过光学多层膜的干涉效应来实现的。
在多层膜结构中,不同材料的膜层通过精确的厚度控制,使得入射光在不同层之间发生干涉,从而减少或消除反射。
增透膜的应用领域增透膜广泛应用于以下领域:1.光学镜片:增透膜能够减少光学镜片上的反射,提高光线透过率和图像清晰度。
2.显示屏:增透膜能够减少显示屏表面的反射,提高显示效果和观看舒适度。
3.摄影镜头:增透膜能够减少摄影镜头表面的反射,提高成像质量和对比度。
4.太阳能电池板:增透膜能够减少太阳能电池板表面的反射,提高光吸收率和转换效率。
5.光学仪器:增透膜能够减少光学仪器中的反射损失,提高实验精确性和测量准确性。
增透膜的制备方法增透膜的制备通常采用物理气相沉积(PVD)或化学气相沉积(CVD)等技术。
1.物理气相沉积(PVD):物理气相沉积是将材料通过高温蒸发、溅射或电弧等方式转化为蒸汽或离子,然后沉积到衬底上形成膜层。
2.化学气相沉积(CVD):化学气相沉积是将材料的前驱体通过气体载体输送到衬底上进行化学反应,生成膜层。
增透膜结构的优化为了达到更好的增透效果,增透膜的结构可以进行优化。
下面是几种常见的优化结构:1.单层增透膜:由单一材料制成的膜层,厚度和折射率进行优化,来减少反射。
2.复合增透膜:由多个材料层组成,每个材料层的厚度和折射率都进行优化,以实现更低的反射率。
3.光子晶体增透膜:利用光子晶体的周期性结构,通过改变周期和填充率,使得反射光的波长范围发生变化,从而实现增透效果。
4.非周期性增透膜:通过不规则结构的多层膜堆,使得入射光在不同层之间发生多次干涉,从而增强增透效果。
增透膜的应用效果增透膜的应用可以带来以下效果:•提高光透过率:增透膜能够减少光的反射,提高透过率,使得光线更容易通过材料表面。
镀制双层增透膜的原理

镀制双层增透膜的原理镀制双层增透膜是一种通过在光线传播路径上加强光的透射,减弱反射的技术。
它可以应用于太阳能电池板、LED显示屏、眼镜镜片等多个领域,以提高光学设备的效能。
下面我们将详细介绍镀制双层增透膜的原理。
镀制双层增透膜的原理基于光的干涉现象和薄膜的光学性质。
在介质的表面上镀有一层薄膜,在光的传播路径上形成了一个光学多层膜结构。
这个结构可以通过反射和透射来控制光的传播,以达到增透的效果。
首先,我们需要了解一下光的干涉现象。
当光传播到不同介质之间的界面时,一部分光被反射,另一部分光被透射。
反射光和透射光在相遇时会发生干涉现象。
干涉可以是构成增强或减弱的结果,这取决于光的波长和介质的性质。
一般来说,当波长为λ的光在介质之间传播时,如果两束光的光程差为整数倍的λ,即满足相长干涉条件,那么两束光就会相长干涉,增强透射光的强度。
而当光程差为半整数倍的λ,即满足相消干涉条件,两束光就会相消干涉,减弱透射光的强度。
在镀制双层增透膜过程中,通过精确控制薄膜的厚度和折射率,使得透射光和反射光之间的干涉达到相长干涉条件,从而增强透射光的强度。
镀制双层增透膜通常由两层薄膜构成。
第一层薄膜是高折射率材料,第二层薄膜是低折射率材料。
在光的传播路径上,当光从空气或其他介质中入射到第一层薄膜表面时,一部分光被反射,另一部分光被透射。
透射光进入第一层薄膜,一部分光被反射,另一部分光被透射。
透射光再次进入第一层薄膜,如此往复。
通过精确控制第一层薄膜的厚度和折射率,使得其中一部分透射光和反射光之间的干涉满足相长干涉条件,增强透射光的强度。
然后,由于第一层薄膜是高折射率材料,透射光达到第一层薄膜与第二层薄膜的界面时,一部分光被反射,另一部分光被透射。
透射光进入第二层薄膜,一部分光被反射,另一部分光被透射。
透射光再次进入第二层薄膜,如此往复。
通过精确控制第二层薄膜的厚度和折射率,使得其中一部分透射光和反射光之间的干涉满足相长干涉条件,增强透射光的强度。
增透膜的应用原理图解简单

增透膜的应用原理图解简单1. 什么是增透膜?增透膜是一种透明的薄膜,具有增加透光性能的特殊涂层。
它被广泛应用于光电设备、光学仪器和光学镜头等领域,用于改善光学器件的透光率和光学性能。
2. 增透膜的应用原理增透膜的应用原理可以简单概括为以下几点:2.1 多层膜结构增透膜通常由多层薄膜组成,每一层薄膜在光学波长范围内具有不同的折射率。
通过选择合适的膜层厚度和折射率,可以实现特定波长的光通过膜层的共振增强,从而提高光的透射率。
2.2 干涉光学效应增透膜的原理基于干涉光学效应。
当光通过增透膜时,不同波长的光会在膜层之间发生干涉现象。
通过调整每一层膜层的厚度,可以使得特定波长的光在膜层之间发生构造性干涉,从而增强该波长的透射。
2.3 阻挡反射增透膜还可以用于阻挡光的反射。
反射光的损失会导致光学器件的透射率下降。
通过设计合适的膜层结构,增透膜能够选择性地消除波长范围内的反射,从而提高光的透射率。
3. 增透膜的具体实现方式增透膜可以通过不同的方法来实现,下面是常见的两种实现方式:3.1 光学蒸发光学蒸发是一种常用的制备增透膜的方法。
在光学蒸发过程中,薄膜材料会被加热到蒸发温度,然后蒸发物质沉积在基底材料上形成膜层。
通过控制加热温度、蒸发速率和基底材料的选择,可以制备出具有特定折射率和透射率的增透膜。
3.2 磁控溅射磁控溅射是另一种常用的制备增透膜的方法。
在磁控溅射过程中,膜层材料被溅射源加热至高温。
然后,高能粒子轰击溅射材料,使其从溅射源表面脱落,并在基底材料上沉积形成膜层。
通过控制溅射过程中的气氛、溅射功率和基底材料的选择,可以制备出具有特定透射率和折射率的增透膜。
4. 增透膜的应用领域增透膜具有广泛的应用领域,下面列举了其中的几个主要领域:•光电显示器件:增透膜用于提高LCD、LED等显示器件的亮度和对比度,使得图像显示更加清晰。
•光学仪器:增透膜用于光学仪器的透射窗口和镜片,提高光学系统的传输效率和成像质量。
增透膜应用的原理是什么

增透膜应用的原理是什么1. 什么是增透膜增透膜,也被称为增透镀膜或增透薄膜,是一种具有高透光性能的特殊涂层材料。
它常用于光学领域中,可以减少或消除光学器件表面的反射,提高透光率,从而增加光的传输效率。
增透膜通常由多层薄膜组成,每一层都具有特定的光学性质,如折射率和厚度。
2. 增透膜的原理增透膜的应用原理主要基于两个光学现象,即光的反射和折射。
2.1 光的反射当光在两种介质之间传播时,会发生反射现象。
当光照射到物体表面时,一部分光会从表面反射回来,这就是我们常见的镜面反射。
镜面反射会导致光线的损失和干扰,降低光学器件的效率。
2.2 光的折射当光从一种介质传播到另一种折射率不同的介质中时,光线的传播方向会发生改变,这种现象被称为折射。
折射现象是由于光在不同介质中传播速度不同所致。
当光从一个介质进入另一个介质时,根据斯涅尔定律,入射角和折射角之间存在着一定的关系。
3. 增透膜的应用原理增透膜应用的原理是通过调节膜层的折射率和厚度,以减少或消除光在光学器件表面的反射,提高光的透过率。
以下是增透膜的应用原理的具体流程:1.入射光线照射在增透膜的表面上,部分光线会被增透膜的底层反射。
2.另一部分光线进入增透膜的底层,经过多层膜层的折射和反射。
3.在多层膜层之间的反射和折射过程中,通过调节膜层的折射率和厚度,使得光线的干涉效应得到增强或减弱。
4.经过多次折射和反射后,一部分光线透过增透膜,并达到最大透过率。
5.最终透过的光线能够进一步在光学器件中发挥作用,达到增强光传输效率和改善光学器件性能的目的。
4. 增透膜的应用领域增透膜的性能优势使其在许多领域得到广泛应用。
4.1 光学镜片增透膜常用于光学镜片上,可以降低镜片的反射率,提高镜片透光率,使得图像更加清晰,减少眩光。
这在相机、望远镜、显微镜等光学设备中具有重要作用。
4.2 太阳能电池板增透膜也被应用在太阳能电池板上,可以提高光的利用率,增加太阳能电池板的发电性能。
增透膜原理

增透膜原理增透膜是一种能够提高光学器件透射率的薄膜材料,它在光学领域有着广泛的应用。
增透膜的原理主要是基于光学干涉和薄膜多层堆积的效应,通过精确控制膜层的厚度和折射率,使得特定波长的光线在薄膜表面发生干涉,从而增强透射率。
在本文中,我们将详细介绍增透膜的原理,以及其在光学器件中的应用。
首先,我们来了解一下光学干涉的基本原理。
光学干涉是指两束或多束光线相遇时,由于光波的叠加而产生明暗条纹的现象。
这是由于光波的波峰和波谷相遇时出现相长干涉,波峰和波峰相遇时出现相消干涉。
而在增透膜中,利用光学干涉的原理可以使特定波长的光线增强透射,从而提高器件的透射率。
其次,薄膜多层堆积也是增透膜原理的重要组成部分。
薄膜多层堆积是指将不同材料的薄膜层依次堆积在一起,通过控制每一层膜的厚度和折射率,可以实现对特定波长光线的反射和透射的调控。
这种多层膜的堆积结构可以形成光学腔,从而实现对特定波长光线的增强透射。
在实际应用中,增透膜被广泛应用于各种光学器件中,如透镜、滤光片、光学镀膜等。
通过在这些器件表面镀覆增透膜,可以显著提高器件的透射率,改善光学性能,提高器件的整体效率。
例如,在摄影镜头中,增透膜可以有效减少反射和散射,提高透射率,从而提高成像质量。
在激光器件中,增透膜也可以降低光学损耗,提高激光器件的输出功率。
总之,增透膜的原理是基于光学干涉和薄膜多层堆积的效应,通过精确控制膜层的厚度和折射率,使得特定波长的光线在薄膜表面发生干涉,从而增强透射率。
在光学器件中的应用也取得了显著的效果,提高了器件的透射率和光学性能。
增透膜的发展将进一步推动光学器件的性能提升,为光学技术的发展带来新的机遇和挑战。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单双多层增透膜的原理及应用文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]单、双、多层增透膜的原理及应用(转载自网络并整理)➢ 单层λ/4增透膜λ/4的光学增透膜(下面讨论时光学元件用玻璃来代替, 初始入射介质用空气来代替), 一般为在玻璃上镀一层光学厚度为λ/4的薄膜,且薄膜的折射率大于空气的折射率, 小于玻璃的折射率由菲涅耳公式知, 光线垂直人射时, 反射光在空气一薄膜界面和薄膜一玻璃界面都有半波损失设空气、镀膜、玻璃的折射率分别为n0,n1,n2 且n2>n1>n0定义R01,T01为空气-薄膜界面的反射率与透射率,R01,T01为薄膜-空气界面的反射率与透射率,R12,T12为薄膜-玻璃界面的反射率与透射率, R21,T21为玻璃-薄膜界面的反射率与透射率如图4-1所示示, 为了区分人射光线和反射光线, 这里将入射光线画成斜入射,图4-1中反射光线1和2的光程差为λ/2, 这样反射光便能完全相消由菲涅耳公式知道, 光垂直通过界面时, 反射率R 和透射率T 与折射率n 的关系为:设人射光的光强为I0, 则反射光线1的光强I1=I0R0, 反射光线2的光强I2=I0I01R12T10。
余下的反射光的光强中会出现反射率的平方, 因为反射率都比较小, 故可不再考虑。
λ/4的光学增透膜使反射光线1与反射光线2的光程差为δ=2n1d1=λ/2, 故相位差为л, 由干涉理论知, 干涉后的光强为:因为折射率n0,n1,n2比较接近,例如n0=1,n2=的界面,T=96%,故可近似地取T01和T10为1,若使Ip 为0 ,则有R01=R12,即:由n2>n1>n0得201n n n ,当上式成立时,反射率最小,透射率最大。
但是涂一层膜也有不足之处,因为常用的λ/4光学增透膜MgF2,MgF2的折射率为,*=,而玻璃的折射率一般在~之间,所以用MgF2增透膜不能使反射光光强最小,再者,一波长为λ+Δλ的光垂直入射到λ/4的光学增透膜同波长为λ的光一样反射光线1和反射光线2的光程差为δ=λ/2相位差为ΔΨ=2лλ/2(λ+Δλ)从而干涉后的光强为:ϕ∆++=cos 22121I I I I I p ,即可选择合适的材料,使I1=I2,从而上式变为)2.(cos 221λλλπ∆+=I I p 。
如图4-2所示,I 为反射光的光强,Δλ为线宽,I 随Δλ的地增加而迅速增加。
光学厚度为λ/4的光学增透膜的反射光强随波长的变化曲线呈V 形,这样λ/4的光学增透膜的透射率较大的波段就较小, 我们称λ/4的光学增透膜的频宽较小,现代的照像机的镜头、摄像机的镜头, 以及彩色电视机的荧屏并不要求在某一波长的光有很高的透射率, 而希望在较宽的波段范围内透射率较低且一致, 即要求增透膜的频宽较大。
所以我们就可以镀两层膜,甚至是多层膜。
率与透射率,R32,T32为玻璃-第二层薄膜界面的反射率与透射率, 入射光线垂直人射到介质上取人射光的振动方程为:)cos(000θω+=t A E 。
同λ/4的光学增透膜的一样,我们只讨论反射光线1、2、3的情况。
由n3>n2>n1>n0知,反射光线1、2、3都有半波损,设两层薄膜引起的光程差分别为δ1和δ2,反射光线1、2、3的波动方程分别为:则干涉点P 处的光强为三束光线的叠加)](2cos[)2cos()cos(210310201δδλπθωδλπθωθω+++-++-+-=t A t A t A E p解此方程可得下述结果:(1)令R01=R12=R23,即有232312120101n n n n n n n n n n n n +-=+-=+- 解得:32331023133201,n n n n n n ==取R=R01=R12=R23 ,由于透射光的光强近似为I0,从而: 当3221πδλπ=且34)(221πδδλπ=+时,有Ip= 0。
又δ1=2n1d1,δ2=2n2d2,所以n1d1=λ/6,n2d2=λ/6,故只需选取32331023133201,n n n n n n ==的材料,分别镀上一层光学厚度为λ/6的薄膜,即可以将反射光尽量减小,就可以达到理想的效果。
镀这样的两层膜,当以波长为λ+Δλ的光垂直入射时,则干涉处的光强为2л/(λ+Δλ),又因为δ1=δ2=λ/3,所以有:22101000)]}(2cos[)2cos(){cos(δδλλπθωδλλπθωθω++∆++++∆++++=t t t R I I p =200)}3.2cos()]3.2cos(21{[λλλπθωλλλπ+∆+++∆+t R I=)2.21(sin )23.21(sin 220λλπλλπ+∆+∆RI 其结果如图4-3所示,图象呈W 形,说明膜层在一定的线宽上普遍获得较好的增透效果。
(2)保持为I0,则改为:2231201020))((cos R R R t I I p --+=θω 当231201R R R --=0时,即有232312120101n n n n n n n n n n n n +-++-=+-,则有Ip=0 ,经整理上式得:0))()((33231201220320320321210221321221=+++----+++n n n n n n n n n n n n n n n n n n n n n n n n n n我们镀膜时,入射介质和需镀膜得元件一般为已知,即有n0和n3已知,这样上式就为关于n1和n2 的方程,选取不同的n1便可得到n2。
不过,由于条件n3>n2>n1>n0的限制,当n1过大或n2过小时,会出现方程无解的的情况。
这样的两层膜,当以波长为λ+Δλ的光垂直入射时,则干涉处的光强如图 所示呈W 形,说明此种镀膜得方法可使膜层在一定的线宽上普遍有较好的增透效果。
➢1透射率近似为1的情况下,反射光线能完全相消。
当然,由于膜层的增多, 透射率的影响会增加, 这样, 透射层次越多, 光强会越小, 且反射光线2和反射光线3的相位也相反。
因为反射光线2有半波损失, 反射光线3没有半波损失, 则n2d2=λ/2时, 便可以满足上述要求。
这样的三层膜, 当以波长为λ+Δλ的光垂直人射时, 则反射光干涉处的光强为:)2.3(cos 421λλλπ∆+=I I p ,其结果图象也呈W 形,只是在同一频宽上,增透效果会更好。
考虑到膜层的吸收和透射次数的增加时, 各层的透射率的积不再接近于1,对多层膜系的研究主要是它的反射和透射特性。
光学仪器在镀膜时,由高折射率层和低折射率层的膜交替叠成膜系,层间的交界面可高达几十个到几百个。
因为采用高低折射率的膜交替的层数不同,一种情况为膜系对入射光产生强烈反射,反射特性显着;而另一种情况为入射光几乎全部透过,透特性显着。
在一个多层薄膜系中,光束将在每一个界面上多次反射,涉及到大量光束的干涉现象,若薄膜和基底的光吸收无法忽略,则计算将变得更加复杂,所以直接采用多光束干涉来计算是相当复杂繁琐的,而运用矩阵的方法来解决这一问题将有许多优越性。
特性矩阵就是把界面两边的场利用边界条件相互联系起来的矩阵,用一个二阶矩阵代表一个单薄膜。
在分析和计算光学薄膜系统的特性时,通常采用传输矩阵方法,该方法已成为光学薄膜计算与设计的常用和有效方法,并广泛地应用于光子晶体和微带天线等领域的研究。
首先,单层膜是膜系的基本单元,我们求解单膜特性矩阵。
设ng 为基底的折射率,n0是空气的折射率,n1是介质层的折射率,则膜层的传输矩阵为:])[(][2211H E M H E =式中1E 和1H 表示在界面Ⅰ的n0一侧的场矢量,2E 、2H 表示在界面Ⅱ的ng 一侧的场矢量。
下面导出矩阵M 的表达式。
在交界面Ⅰ上有入射波1i E 、反射波1r E ,折射光波1t E ,由介质n1入射到界面Ⅰ上的光波2'r E 。
假设界面上无自由电荷及传导电流,根据边界条件,则有E 的切向分量连续、H 的切向分量连续。
考虑1E 垂直入射面(s 波),得:根据i i i iii n E u E u H 0εε==于是,上式可以变为:同样,在交界面Ⅱ上也可以写出 同样,上式的第二式也可以变为:22202202cos cos )(t g t i r i n E n E E u H θθε=-=为了求特征矩阵,我们可把上述公式,稍加变换,求出1i E 、2r E 、2E 、2H 之间的关系。
考察界面Ⅰ上的透射场)0,,(1=z y x E t 与界面Ⅱ上的入射场),,(12h z y x E i =有:式中211011cos 2i z h n h K θλπδ-=-=,表示波失为的平面波在薄膜中,垂直跨过两个界面的相位差(即在z 方向上的相位差)。
同样,也可以写出2r E 和'2r E 之间的关系:12'2δi r r e E E =,因此有: 以及 令2101cos i n u θεη=,得到将上两式代入矩阵方程求得:121121112121cos sin )sin (cos δδηηδδH i E H i H E E +=-=,将其写为矩阵的形式为:]].[cos sin sin cos [][2211111111H E i i H E δδηδηδ=则其中M=]cos sin sin cos [111111δδηδηδi i 。
现在,我们研究多层膜系的光学特性,研究多层光学薄膜的方法很多,如等效法,矩阵法等,现在我们就用多层膜矩阵法 来求解。
多层膜只是单层膜的叠加,逐层应用的单层膜的特征矩阵可求得多层膜的特性矩阵,其特性矩阵为各单层膜的特性矩阵乘积。
对于第二层膜n2在界面Ⅲ以下介质中场矢量为3E ,3H 有][][33222H E M H E =,将其代入])[(][2211H E M H E =,得][*][][332122111H E M M H E M H E ==。
以此类推可得对N+1个界面的多层膜一般式11112111)[(][..*][++++==N N N N N H E M H E M M M H E其中∏∏====m j mj jjj jjjj i iM M 11]cos sin sin cos [δδηδηδ。
是多层膜的特征矩阵,它等于各个单层膜特征矩阵之积,此处矩阵不服从交换率,故相乘次序不可交换。
由该矩阵可推出多层膜的透射率和反射率。
膜系反射率的计算多层膜系的反射系数:11i r E E r =,透射系数为:11i tN E E t +=, 首先,为了表述方便将M 改写为][DiC iBA M =,并将单层膜公式推广到N 层的第N+1个界面,可写为一般式:1110111cos ++++++===tN G tN G tN N tN N E n E H E E ηθμε其中10cos +=tN G G n θμεη,而界面Ⅰ上仍有)(cos )(110101101111r i i r i r i E E n E E H E E E -=-=+=+ηθμε;式中1000cos i n θμεη=将以上各式代入][][][11++==N N ii H E D CBA H E 中得到][][])([1111011++==-+tN G tN r i r i E E DCBA E E E E ηη展开此式得:111101111)(++++++=-+=+tN G tN r i tN G tN r i E D CE E E E B AE E E ηηη解方程,求得反射系数:透射系数和反射率分别为:。