多层增透膜的理论解释
增透膜的名词解释

增透膜的名词解释增透膜,顾名思义,是一种具有透光性并可增加透光度的薄膜材料。
它广泛应用于光学设备、电子产品、建筑玻璃等领域,其作用是通过改善材料表面的光学特性,使光线穿透膜材料时减少反射和吸收,从而提高透光率和视觉清晰度。
增透膜的基本原理是利用光的干涉现象。
当光线垂直射入薄膜表面时,一部分光线会因为材料介质的折射率不同而发生反射,这就是我们常见的光的反射现象。
反射会导致能量的损失和视觉上的干涉,使得物体的真实颜色和细节难以观察。
增透膜通过特殊的工艺和材料组成,能够在光线射入材料表面时,将一部分光线反射,一部分光线透过。
它的特殊结构和材料使得入射光线在增透膜和物体之间发生多次反射和折射,从而减少一部分反射光的干扰,并增加一部分透射光的能量。
这样,增透膜能够提高透光率、减少反射率,使我们能够更清晰地看到物体的真实颜色和细节。
增透膜的应用十分广泛。
在光学设备领域,如相机镜头、望远镜、显微镜等,增透膜的使用能够提高成像质量和透光率,使观察者得到更清晰、更真实的图像。
在电子产品领域,如手机、平板电脑、电视等,增透膜的应用可以减少屏幕表面的反射,提高显示效果,并减轻眼睛的疲劳感。
在建筑玻璃领域,增透膜的使用能够降低建筑物的能量消耗,改善室内透光度,提升居住和办公环境质量。
除了提高透光率和减少反射的作用,增透膜还具有其他一些特殊功能。
例如,一些增透膜可以通过特殊的处理来防止指纹和污渍的附着,保持视觉清晰度。
另外,一些增透膜还可以具有防紫外线、防蓝光等功能,减少光波对人眼和物体的伤害。
这些特殊功能的应用使得增透膜在现代生活中扮演着越来越重要的角色。
随着科学技术的不断发展,增透膜的研究和应用也在不断进步。
现代科技的进步使得增透膜的品质和性能得到了很大的提升。
增透膜的材料选择、工艺优化和多层膜结构的设计,都对增透膜的性能有着重要影响。
研究人员不断努力改进增透膜的透光率、抗反射性能、光谱分布等,以满足不同应用领域的需求。
增透膜的应用原理图解大全

增透膜的应用原理图解大全增透膜简介增透膜(Anti-reflective film)是一种能够减少或消除光的反射的薄膜材料。
它广泛应用于光学设备、显示屏、太阳能电池板等领域,以提高透光率、减少反射损失、增强光学品质。
增透膜的原理增透膜的原理是通过光学多层膜的干涉效应来实现的。
在多层膜结构中,不同材料的膜层通过精确的厚度控制,使得入射光在不同层之间发生干涉,从而减少或消除反射。
增透膜的应用领域增透膜广泛应用于以下领域:1.光学镜片:增透膜能够减少光学镜片上的反射,提高光线透过率和图像清晰度。
2.显示屏:增透膜能够减少显示屏表面的反射,提高显示效果和观看舒适度。
3.摄影镜头:增透膜能够减少摄影镜头表面的反射,提高成像质量和对比度。
4.太阳能电池板:增透膜能够减少太阳能电池板表面的反射,提高光吸收率和转换效率。
5.光学仪器:增透膜能够减少光学仪器中的反射损失,提高实验精确性和测量准确性。
增透膜的制备方法增透膜的制备通常采用物理气相沉积(PVD)或化学气相沉积(CVD)等技术。
1.物理气相沉积(PVD):物理气相沉积是将材料通过高温蒸发、溅射或电弧等方式转化为蒸汽或离子,然后沉积到衬底上形成膜层。
2.化学气相沉积(CVD):化学气相沉积是将材料的前驱体通过气体载体输送到衬底上进行化学反应,生成膜层。
增透膜结构的优化为了达到更好的增透效果,增透膜的结构可以进行优化。
下面是几种常见的优化结构:1.单层增透膜:由单一材料制成的膜层,厚度和折射率进行优化,来减少反射。
2.复合增透膜:由多个材料层组成,每个材料层的厚度和折射率都进行优化,以实现更低的反射率。
3.光子晶体增透膜:利用光子晶体的周期性结构,通过改变周期和填充率,使得反射光的波长范围发生变化,从而实现增透效果。
4.非周期性增透膜:通过不规则结构的多层膜堆,使得入射光在不同层之间发生多次干涉,从而增强增透效果。
增透膜的应用效果增透膜的应用可以带来以下效果:•提高光透过率:增透膜能够减少光的反射,提高透过率,使得光线更容易通过材料表面。
镀制双层增透膜的原理

镀制双层增透膜的原理镀制双层增透膜是一种通过在光线传播路径上加强光的透射,减弱反射的技术。
它可以应用于太阳能电池板、LED显示屏、眼镜镜片等多个领域,以提高光学设备的效能。
下面我们将详细介绍镀制双层增透膜的原理。
镀制双层增透膜的原理基于光的干涉现象和薄膜的光学性质。
在介质的表面上镀有一层薄膜,在光的传播路径上形成了一个光学多层膜结构。
这个结构可以通过反射和透射来控制光的传播,以达到增透的效果。
首先,我们需要了解一下光的干涉现象。
当光传播到不同介质之间的界面时,一部分光被反射,另一部分光被透射。
反射光和透射光在相遇时会发生干涉现象。
干涉可以是构成增强或减弱的结果,这取决于光的波长和介质的性质。
一般来说,当波长为λ的光在介质之间传播时,如果两束光的光程差为整数倍的λ,即满足相长干涉条件,那么两束光就会相长干涉,增强透射光的强度。
而当光程差为半整数倍的λ,即满足相消干涉条件,两束光就会相消干涉,减弱透射光的强度。
在镀制双层增透膜过程中,通过精确控制薄膜的厚度和折射率,使得透射光和反射光之间的干涉达到相长干涉条件,从而增强透射光的强度。
镀制双层增透膜通常由两层薄膜构成。
第一层薄膜是高折射率材料,第二层薄膜是低折射率材料。
在光的传播路径上,当光从空气或其他介质中入射到第一层薄膜表面时,一部分光被反射,另一部分光被透射。
透射光进入第一层薄膜,一部分光被反射,另一部分光被透射。
透射光再次进入第一层薄膜,如此往复。
通过精确控制第一层薄膜的厚度和折射率,使得其中一部分透射光和反射光之间的干涉满足相长干涉条件,增强透射光的强度。
然后,由于第一层薄膜是高折射率材料,透射光达到第一层薄膜与第二层薄膜的界面时,一部分光被反射,另一部分光被透射。
透射光进入第二层薄膜,一部分光被反射,另一部分光被透射。
透射光再次进入第二层薄膜,如此往复。
通过精确控制第二层薄膜的厚度和折射率,使得其中一部分透射光和反射光之间的干涉满足相长干涉条件,增强透射光的强度。
高中物理增透膜和增反膜原理

高中物理增透膜和增反膜原理
一、什么是增透膜和增反膜
增透膜和增反膜是一种特殊的光学薄膜,用于改善光学设备中镜片或
滤片的光学性能。
增透膜可以增加透射光线,使图像更加清晰、鲜明。
而增反膜则减少光的反射,可以降低反光、提高对比度,使影像更加
亮丽、细腻。
二、增透膜的原理
增透膜是由多层纳米膜所组成,通过对独立的各层膜进行精密设计,
以达到增加透射光线的目的。
它的主要原理是在光线垂直入射后,在
多层介质的交错的反射层之间,使得光波发生干涉,并使得一部分光
波叠加,增加透射率。
三、增反膜的原理
增反膜是通过在镜面或滤镜上涂覆特殊的光学膜,使得光线经过增反
膜后,其反射率下降,透射率提高。
主要原理是通过对膜层的设计,
使光波在涂层表面和涂层与基板之间反复反射,从而使表面的反射损
失减少。
四、应用领域
增透膜和增反膜广泛应用于各类光学设备中,如摄像机、望远镜、照
相机、显微镜以及各种显示屏幕等。
在这些设备中,增透膜和增反膜
都可以提高影像的清晰度和亮度、降低反光度,为用户带来更好的观
感体验。
五、总结
增透膜和增反膜的出现使得光学设备的性能有了长足的进步,通过对
光学膜层的精密设计和制备,光学膜的透射率和反射率得到了有效的
提高,能够更好地满足人们对光学设备清晰度和透射率的需求。
未来,随着技术的不断进步,相信增透膜和增反膜在越来越多的领域中会得
到应用和发展。
增透膜原理的原理

增透膜原理的原理
增透膜原理是一种利用多层薄膜的反射和干涉现象来增强特定波长的透射的技术。
其主要原理如下:
1. 反射:当光线经过两种介质界面时,一部分光线会被反射,形成反射光。
根据菲涅尔公式,反射光的强度与入射角度和介质折射率之间的关系有关。
2. 干涉:当多层薄膜叠加在一起时,反射光和透射光之间会发生干涉现象。
干涉是由于不同波长的光在薄膜内部多次反射和折射导致的。
3. 折射:当光线从一个介质进入另一个折射率不同的介质时,光线会发生折射,入射角和折射角之间存在一定的关系,由斯涅尔定律描述。
根据以上原理,增透膜由多层薄膜组成,每一层薄膜的厚度和折射率选择合适的数值,使得特定波长的光线经过多次反射和折射后相位差最小,以增强这个波长的透射,而对其他波长的光线则相位差不同,导致干涉后减弱透射。
这样,增透膜可以实现选择性增强特定波长的透射,可应用于光学领域,如增透镜片、光电显示屏等。
多层增透膜的理论解释

多层增透膜的理论解释4.1 λ/4增透膜λ/4的光学增透膜(下面讨论时光学元件用玻璃来代替, 初始入射介质用空气来代替), 一般为在玻璃上镀一层光学厚度为λ/4的薄膜,且薄膜的折射率大于空气的折射率, 小于玻璃的折射率由菲涅耳公式知, 光线垂直人射时, 反射光在空气一薄膜界面和薄膜一玻璃界面都有半波损失设空气、镀膜、玻璃的折射率分别为n0,n1,n2 且n2>n1>n0定义R01,T01为空气-薄膜界面的反射率与透射率,R01,T01为薄膜-空气界面的反射率与透射率,R12,T12为薄膜-玻璃界面的反射率与透射率, R21,T21为玻璃-薄膜界面的反射率与透射率如图4-1所示示, 为了区分人射光线和反射光线, 这里将入射光线画成斜入射,图4-1中反射光线1和2的光程差为λ/2, 这样反射光便能完全相消由菲涅耳公式知道, 光垂直通过界面时, 反射率R 和透射率T 与折射率n 的关系为:221211221122121221122101001100121011001)(41)()(41)(n n n n R T T n n n n R R n n n n R T T n n n n R R +=-==+-==+=-==+-==设人射光的光强为I0, 则反射光线1的光强I1=I0R0, 反射光线2的光强I2=I0I01R12T10。
余下的反射光的光强中会出现反射率的平方, 因为反射率都比较小, 故可不再考虑。
λ/4的光学增透膜使反射光线1与反射光线2的光程差为δ=2n1d1=λ/2, 故相位差为л, 由干涉理论知, 干涉后的光强为:212010102121)(cos R T R I I I I I I p -=++=π因为折射率n0,n1,n2比较接近,例如n0=1,n2=1.5的界面,T=96%,故可近似地取T01和T10为1,若使Ip 为0 ,则有R01=R12,即: 2121220101)()(n n nn n n n n +-=+-由n2>n1>n0得201n n n =,当上式成立时,反射率最小,透射率最大。
增透膜"增透作用的理论解释

“增透膜"增透作用的理论解释一、增透膜作用及问题的引入在比较复杂的光学器件(如望远镜、潜望镜、照相机等)中,光能的反射损失是十分严重的,虽然光学器件的每个表面在光垂直入射的情况下,反射率极低,但由于这些复杂的光学系统往往由多个透镜或棱镜组成,则最终反射而造成的光能损失不能忽略不计。
通常使用的光学材质如玻璃,在垂直入射情况下,可见光的反射率仅有4%,若考虑到透镜的两个面,总反射率也不足8%,但如果系统是由若干个透镜或棱镜所组成,反射的光能就会累积,可达百分之几十。
此外,光会在各透镜面间的发生往复反射,还会造成杂散光,继而会严重影响光学系统的成像质量。
此时,为了减少光在光学元件(透镜、棱镜)表面上的反射损失,可在其表面上镀上一层薄膜,利用薄膜的干涉相消来减少反射光的能量,是尽可能多的能量通过光透射出去。
然而对于增透膜的原理,其实很多人并不知情。
我们通过问卷对有一定物理光学基础的同学进行调查询问,发现大约有80%的人认为增透膜的作用在于当光射向它时,在膜的上下表面发生反射后,由于受干涉相消条件的限制,将重新折入光学器件;同时,约有5%的同学甚至对增透膜有所质疑,即光会在前后表面发生反射,相互抵消,那么就相当于在光的传播过程中,增加了一个反射面,进一步减弱了光的透射率,反而使增透膜无法实现增透的目的。
而在增透膜的应用问题上,比如有关使用中增透膜的厚度要求,几乎所有同学都认为只要等于反射光的四分之一波长或其奇数倍,即使得增透膜前后两列反射波的相位差为或其奇数倍,两列波就发生相消干涉,从而就实现了波的干涉相消。
但我们小组通过查阅了一些文献,发现增透膜的工作原理并非那么简单。
由于光是一种电磁波,我们就通过所学的电磁场与电磁波的理论来分析电磁波(光)通过增透膜这种介质时电场、磁场的分布,求出光在不同介质中传播的反射、投射系数等相应参数,解释增透膜增透的原理,并根据分析所得结论加深对增透膜性质的理解,并对增透膜加以推广。
增透膜应用的原理是什么

增透膜应用的原理是什么1. 什么是增透膜增透膜,也被称为增透镀膜或增透薄膜,是一种具有高透光性能的特殊涂层材料。
它常用于光学领域中,可以减少或消除光学器件表面的反射,提高透光率,从而增加光的传输效率。
增透膜通常由多层薄膜组成,每一层都具有特定的光学性质,如折射率和厚度。
2. 增透膜的原理增透膜的应用原理主要基于两个光学现象,即光的反射和折射。
2.1 光的反射当光在两种介质之间传播时,会发生反射现象。
当光照射到物体表面时,一部分光会从表面反射回来,这就是我们常见的镜面反射。
镜面反射会导致光线的损失和干扰,降低光学器件的效率。
2.2 光的折射当光从一种介质传播到另一种折射率不同的介质中时,光线的传播方向会发生改变,这种现象被称为折射。
折射现象是由于光在不同介质中传播速度不同所致。
当光从一个介质进入另一个介质时,根据斯涅尔定律,入射角和折射角之间存在着一定的关系。
3. 增透膜的应用原理增透膜应用的原理是通过调节膜层的折射率和厚度,以减少或消除光在光学器件表面的反射,提高光的透过率。
以下是增透膜的应用原理的具体流程:1.入射光线照射在增透膜的表面上,部分光线会被增透膜的底层反射。
2.另一部分光线进入增透膜的底层,经过多层膜层的折射和反射。
3.在多层膜层之间的反射和折射过程中,通过调节膜层的折射率和厚度,使得光线的干涉效应得到增强或减弱。
4.经过多次折射和反射后,一部分光线透过增透膜,并达到最大透过率。
5.最终透过的光线能够进一步在光学器件中发挥作用,达到增强光传输效率和改善光学器件性能的目的。
4. 增透膜的应用领域增透膜的性能优势使其在许多领域得到广泛应用。
4.1 光学镜片增透膜常用于光学镜片上,可以降低镜片的反射率,提高镜片透光率,使得图像更加清晰,减少眩光。
这在相机、望远镜、显微镜等光学设备中具有重要作用。
4.2 太阳能电池板增透膜也被应用在太阳能电池板上,可以提高光的利用率,增加太阳能电池板的发电性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多层增透膜的理论解释4.1 λ/4增透膜λ/4的光学增透膜(下面讨论时光学元件用玻璃来代替, 初始入射介质用空气来代替), 一般为在玻璃上镀一层光学厚度为λ/4的薄膜,且薄膜的折射率大于空气的折射率, 小于玻璃的折射率由菲涅耳公式知, 光线垂直人射时, 反射光在空气一薄膜界面和薄膜一玻璃界面都有半波损失设空气、镀膜、玻璃的折射率分别为n0,n1,n2 且n2>n1>n0定义R01,T01为空气-薄膜界面的反射率与透射率,R01,T01为薄膜-空气界面的反射率与透射率,R12,T12为薄膜-玻璃界面的反射率与透射率, R21,T21为玻璃-薄膜界面的反射率与透射率如图4-1所示示, 为了区分人射光线和反射光线, 这里将入射光线画成斜入射,图4-1中反射光线1和2的光程差为λ/2, 这样反射光便能完全相消由菲涅耳公式知道, 光垂直通过界面时, 反射率R 和透射率T 与折射率n 的关系为:221211221122121221122101001100121011001)(41)()(41)(n n n n R T T n n n n R R n n n n R T T n n n n R R +=-==+-==+=-==+-==设人射光的光强为I0, 则反射光线1的光强I1=I0R0, 反射光线2的光强I2=I0I01R12T10。
余下的反射光的光强中会出现反射率的平方, 因为反射率都比较小, 故可不再考虑。
λ/4的光学增透膜使反射光线1与反射光线2的光程差为δ=2n1d1=λ/2, 故相位差为л, 由干涉理论知, 干涉后的光强为:212010102121)(cos R T R I I I I I I p -=++=π因为折射率n0,n1,n2比较接近,例如n0=1,n2=1.5的界面,T=96%,故可近似地取T01和T10为1,若使Ip 为0 ,则有R01=R12,即: 2121220101)()(n n nn n n n n +-=+-由n2>n1>n0得201n n n =,当上式成立时,反射率最小,透射率最大。
但是涂一层膜也有不足之处,因为常用的λ/4光学增透膜MgF2,MgF2的折射率为1.38,1.38*1.38=1.9044,而玻璃的折射率一般在1.5~1.8之间,所以用MgF2增透膜不能使反射光光强最小,再者,一波长为λ+Δλ的光垂直入射到λ/4的光学增透膜同波长为λ的光一样反射光线1和反射光线2的光程差为δ=λ/2相位差为ΔΨ=2лλ/2(λ+Δλ)从而干涉后的光强为:ϕ∆++=cos 22121I I I I I p ,即可选择合适的材料,使I1=I2,从而上式变为)2.(cos 221λλλπ∆+=I I p 。
如图4-2所示,I 为反射光的光强,Δλ为线宽,I 随Δλ的地增加而迅速增加。
光学厚度为λ/4的光学增透膜的反射光强随波长的变化曲线呈V 形,这样λ/4的光学增透膜的透射率较大的波段就较小, 我们称λ/4的光学增透膜的频宽较小,现代的照像机的镜头、摄像机的镜头, 以及彩色电视机的荧屏并不要求在某一波长的光有很高的透射率, 而希望在较宽的波段范围内透射率较低且一致, 即要求增透膜的频宽较大。
所以我们就可以镀两层膜,甚至是多层膜。
空气 玻璃第一层膜 12图 4-14.2镀两层膜在需镀膜的元件上镀两层膜。
这里设空气的折射率为n0,镀的两层膜的折射率为分别为n1 和n2, 厚度分别为d1和d2,玻璃的折射率为n3,且有n3>n2>n1>n0。
定义R01,T01为空气一第一层薄膜界面的反射率与透射率,R10,T10为第一层薄膜-空气界面的反射率与透射率, R12,T12为第一层薄膜-第二层薄膜界面的反射率与透射率,R21,T21为第二层薄膜-第一层薄膜界面的反射率与透射率,R23,T23为第二层薄膜-玻璃界面的反射率与透射率,R32,T32为玻璃-第二层薄膜界面的反射率与透射率, 入射光线垂直人射到介质上取人射光的振动方程为:)cos(000θω+=t A E 。
同λ/4的光学增透膜的一样,我们只讨论反射光线1、2、3的情况。
由n3>n2>n1>n0知,反射光线1、2、3都有半波损,设两层薄膜引起的光程差分别为δ1和δ2,反射光线1、2、3的波动方程分别为:)22cos()2cos()cos(210331022011πδλπδλπθωπδλπθωπθω++++=+++=++=t A E t A E t A E则干涉点P 处的光强为三束光线的叠加)](2cos[)2cos()cos(210310201δδλπθωδλπθωθω+++-++-+-=t A t A t A E p解此方程可得下述结果:(1)令R01=R12=R23,即有232312120101n n n n n n n n n n n n +-=+-=+- 解得:32331023133201,n n n n n n ==取R=R01=R12=R23 ,由于透射光的光强近似为I0,从而:22101000)]}(2cos[)2cos(){cos(δδλπθωδλπθωθω++++++++=t t t R I I p当3221πδλπ=且34)(221πδδλπ=+时,有Ip= 0。
又δ1=2n1d1,δ2=2n2d2,所以n1d1=λ/6,n2d2=λ/6,故只需选取32331023133201,n n n n n n ==的材料,分别镀上一层光学厚度为λ/6的薄膜,即可以将反射光尽量减小,就可以达到理想的效果。
镀这样的两层膜,当以波长为λ+Δλ的光垂直入射时,则干涉处的光强为2л/(λ+Δλ),又因为δ1=δ2=λ/3,所以有:22101000)]}(2cos[)2cos(){cos(δδλλπθωδλλπθωθω++∆++++∆++++=t t t R I I p =200)}3.2cos()]3.2cos(21{[λλλπθωλλλπ+∆+++∆+t R I=)2.21(sin )23.21(sin 220λλπλλπ+∆+∆R I 其结果如图4-3所示,图象呈W 形,说明膜层在一定的线宽上普遍获得较好的增透效果。
(2)保持n3>n2>n1>n0,取δ1=2n1d1=λ/2,δ2=2n2d2=λ,同上述一样,透射光的光强都近似为I0,则2010-100-200ΔλI 0.21.00.6图 4-322101000)]}(2cos[)2cos(){cos(δδλπθωδλπθωθω++++++++=t t t R I I p改为:2231201020))((cos R R R t I I p --+=θω 当231201R R R --=0时,即有232312120101n n n n n n n n n n n n +-++-=+-,则有Ip=0 ,经整理上式得:0))()((33231201220320320321210221321221=+++----+++n n n n n n n n n n n n n n n n n n n n n n n n n n我们镀膜时,入射介质和需镀膜得元件一般为已知,即有n0和n3已知,这样上式就为关于n1和n2 的方程,选取不同的n1便可得到n2。
不过,由于条件n3>n2>n1>n0的限制,当n1过大或n2过小时,会出现方程无解的的情况。
这样的两层膜,当以波长为λ+Δλ的光垂直入射时,则干涉处的光强如图 所示呈W 形,说明此种镀膜得方法可使膜层在一定的线宽上普遍有较好的增透效果。
4.3镀多层膜在需要镀膜得元件上镀上三层膜。
取n2>n1>n0和n2>n3>n4,其中n0为空气的折射率,n4为玻璃的折射率。
由λ/4的光学增透膜知:当201n n n =且n1d1=λ/4时,反射光线1和2能完全相消。
423n n n =且n3d3=λ/4时,光线3和4也能完全相消。
不同的是,反射光线1、2有半波损失,而反射光线3、4没有半波损失。
这样,在略去其余的反射光线和透射率近似为1的情况下,反射光线能完全相消。
当然,由于膜层的增多, 透射率的影响会增加, 这样, 透射层次越多, 光强会越小, 且反射光线2和反射光线3的相位也相反。
因为反射光线2有半波损失, 反射光线3没有半波损失, 则n2d2=λ/2时, 便可以满足上述要求。
这样的三层膜, 当以波长为λ+Δλ的光垂直人射时, 则反射光干涉处的光强为:)2.3(cos 421λλλπ∆+=I I p ,其结果图象也呈W 形,只是在同一频宽上,增透效果会更好。
考虑到膜层的吸收和透射次数的增加时, 各层的透射率的积不再接近于1,对多层膜系的研究主要是它的反射和透射特性。
光学仪器在镀膜时,由高折射率层和低折射率层的膜交替叠成膜系,层间的交界面可高达几十个到几百个。
因为采用高低折射率的膜交替的层数不同,一种情况为膜系对入射光产生强烈反射,反射特性显著;而另一种情况为入射光几乎全部透过,透特性显著。
在一个多层薄膜系中,光束将在每一个界面上多次反射,涉及到大量光束的干涉现象,若薄膜和基底的光吸收无法忽略,则计算将变得更加复杂,所以直接采用多光束干涉来计算是相当复杂繁琐的,而运用矩阵的方法来解决这一问题将有许多优越性。
特性矩阵就是把界面两边的场利用边界条件相互联系起来的矩阵,用一个二阶矩阵代表一个单薄膜。
在分析和计算光学薄膜系统的特性时,通常采用传输矩阵方法,该方法已成为光学薄膜计算与设计的常用和有效方法,并广泛地应用于光子晶体和微带天线等领域的研究。
首先,单层膜是膜系的基本单元,我们求解单膜特性矩阵。
设ng 为基底的折射率,n0是空气的折射率,n1是介质层的折射率,则膜层的传输矩阵为:])[(][2211H E M H E =式中1E 和1H 表示在界面Ⅰ的n0一侧的场矢量,2E 、2H 表示在界面Ⅱ的ng 一侧的场矢量。
下面导出矩阵M 的表达式。
在交界面Ⅰ上有入射波1i E 、反射波1r E ,折射光波1t E ,由介质n1入射到界面Ⅰ上的光波2'r E 。
假设界面上无自由电荷及传导电流,根据边界条件,则有E 的切向分量连续、H 的切向分量连续。
考虑1E 垂直入射面(s 波),得:2'22121111'21111cos cos cos cos i r i t i r i i r t r i H H H H H E E E E E θθθθ-=-=+=+=根据i i i iii n E u E u H 0εε==于是,上式可以变为:21'210101101cos )(cos )(i r t i r i n E E u n E E u H θεθε-=-=同样,在交界面Ⅱ上也可以写出22222222222cos cos cos t t i r i i t r i H H H H E E E E θθθ=-==+=同样,上式的第二式也可以变为:22202202cos cos )(t g t i r i n E n E E u H θθε=-=为了求特征矩阵,我们可把上述公式,稍加变换,求出1i E 、2r E 、2E 、2H 之间的关系。