回转转盘轴承承载计算实例详解
回转轴承载荷计算过程

=1053767kN·米 修正值(带 ' 为计算终值)
=1618504kN·米 修正值(带 ' 为计算终值)
=1373660kN·米 修正值(带 ' 为计算终值)
Coa':=334031 × (1-3.6 × 2/75) Coa' =283499 × (1-3 × 2/65) Coa':=561172 × (1-3.6 × 2/75) Coa =476278 × (1-3 × 2/65) Coa':=731527 × (1-3.6 × Coa =620862 × (1-3 × 2/65) =301964 kN =257329 kN =507299 kN =432313 kN 2/75) =661300 kN =563551 kN Fa=Coa’ Fa=Coa’ Fa=Coa’ Fa=Coa’ Fa=Coa’ Fa=Coa’
理论倾覆力矩:M=Fa×Do/2×1/2 理论倾覆力矩 M=Fa×Do/2×1/2 =334031×8.85/2×1/2 =739043kN·米 修正值(带 ' 为计算终值) =283499×8.85/2×1/2 =627242kN·米 修正值(带 ' 为计算终值)
=1241592kN·米 修正值(带 ' 为计算终值)
倾覆力矩 M(1)=Fa×Do/2×1/2 倾覆力矩M(2)=Fa×Do/2×1/2 =301964×8.85/2×1/2 =668095kN·米 (见表1.1 M值) =257329×8.85/2×1/2 =569340kN·米 =1122399kN·米(见表2.2 M值) =956491kN·米 =1463128kN* 米 ( 见 表 2.2 M 值) =1246854kN*米
回转支承选型计算

回转支承选型计算:一、单排球式回转支承的选型计算1、计算额定静容量C0 = f ·D·d式中:Co ——额定静容量,kNf ——静容量系数,0.108 kN / mm2D ——滚道中心直径,mmd ——钢球公称直径,mm2、根据组合后的外载荷,计算当量轴向载荷式中:Cp ——当量轴向载荷,kNM ——总倾覆力矩,kN·mFa ——总轴向力,kNFr ——总倾覆力矩作用平面的总径向力,kN 3、计算安全系数fs = Co / Cpfs值可按下表选取。
二、三排柱式回转支承的选型计算1、计算额定静容量C0 = f ·D·d式中:Co ——额定静容量,kNf ——静容量系数,0.172 kN / mm2D ——滚道中心直径,mmd ——上排滚柱直径,mm2、根据组合后的外载荷,计算当量轴向载荷式中:Cp ——当量轴向载荷,kNM ——总倾覆力矩,kN·mFa ——总轴向力,kN3、计算安全系数fs = Co / Cpfs值可按下表选取。
回转支承安全系数fs回转支承产品标准对合理选型的影响《建筑机械》2002年第三期现行的单排球式回转支承有两个行业标准JJ36.1-91《建筑机械用回转支承》和JB/T2300-99《回转支承》,也就是在以前的建设部标准JJ36-86和机械部标准JB2300-84的基础上重新修订的。
在JJ36.1的基本参数系列表中列出了145种基本参数的145种型号单排球式回转支承,在JB/T2300中列出了120种基本参数的220种型号单排球式回转支承。
目前我国除引进主机外,绝大多数主机都是按现行的两个标准规定的参数选择回转支承型号。
由于JB2300-84较JJ36-86颁布实施得早,其覆盖面要略大于JJ36-86,两个标准都为回转支承标准化生产做出了贡献。
随着各主机待业和回转支承行业的飞速发展,国外机型的大量引进,标准中的问题也显现出来,甚至阻碍了各主机行业和回转支承行业的发展,应引起我们高度重视。
回转支承寿命载荷系数

2019/1/3
港口物流技术与装备教育部工程研究中心
9/32
Hale Waihona Puke 2.回转支承轮齿断齿分析2.1 齿轮断齿形式
轮齿受力后,在齿根部产生的弯曲应力很大,且在齿根过渡圆角处 有应力集中,由于轮齿的交变应力超过了材料的疲劳极限,在齿根圆角
处将产生疲劳裂纹,裂纹不断扩展,造成弯曲疲劳折断。过载折断通常
是由于受到短时过载或冲击载荷或轮齿磨薄,是轮齿应力超过其极限应 力所造成的。
2.2 静强度齿根弯曲应力 (2)静强度许用齿根弯曲应力
FPst F limYST YNT
S F min YrelT
(1-2)
式中: F lim —弯曲疲劳极限应力( N / m m2 ) ;
YST —试验齿轮的应力修正系数; YNT —弯曲强度的寿命系数;
YrelT —相对齿根圆角敏感系数;
2019/1/3
港口物流技术与装备教育部工程研究中心
10/32
2.回转支承轮齿断齿分析
2.2 静强度齿根弯曲应力 (1)静强度最大齿根弯曲应力
Fst KV K F K F
式中: K V —动载系数;
Fcal YF YS Y Y bmn
(1-1)
KF —弯曲强度计算的齿向载荷分布系数;
号。
承载能力曲线一般有两条,一条为极限静载曲线,一 条为疲劳寿命曲线。极限静载曲线用于初步选型,疲劳寿
命曲线用于校核。
2019/1/3
港口物流技术与装备教育部工程研究中心
3/32
1. 回转支承的疲劳计算
1.1 回转支承承载能力曲线
2019/1/3
港口物流技术与装备教育部工程研究中心
4/32
单排球式回转支承的承载能力分析

单排球式回转支承的承载能力分析I I I I I I J先进制 造技术杜 睿 吴志军 ( 清华大学 精密仪器与机械学系,北京 !"""#$ )!"#$%&’& () $(#* +#,#+’-% ’" # &’".$/ 0 1(2 &$/2’". 3/#1’".%& ’()* +& ,-) . /(0 1 %234567206 89 :52;)<)80 =0<65(7206 40> ?2;-40)<7* @<)0A -(4 &0)B25<)6C* D 2)/)0A !"""#$* E -)04 FEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE E F【摘要】回转支承是工程机械行业的重要基础件。
通过运用赫兹的弹性接触理论对单排球式回转支承内部的接触问题进行计算,推导出了该类型回转支承承载能力的理论计算公式,进而分析了 回转支承的结构及工艺参数对其承载能力的影响,并给出了提高回转支承承载能力的方法,以供工 艺人员参考。
关键词J 回转支承;承载能力;影响因素【!"#$%&’$】!"#$%&’ (#)*%&’+ )*# ()+%, ,-./-&#&0+ $%1#"2 3+#1 %& ,-&+0*3,0%-& .),4%&#*2 %&13+0*25 64# "-)1 %& 04# *-""%&’ #"#.#&0+ -7 ) +%&’"# 8 *-$ +"#$%&’ (#)*%&’ $)+ ,)",3")0#1 (2 3+%&’ ^25K 9 + ,-&0),0 04#-*2: )&1 ) 04#-*#0%,)" 7-*.3") $)+ /*#+#&0#1 7-* 04# "-)1 ,)/),%02 -7 04%+ +"#$%&’ (#)*%&’5 !#;#*)" +0*3,03*)" )&1 0#,4&%,)" 7),0-*+ $#*# 7-3&1 0- +%’&%7%,)&0"2 )77#,0 04# "-)1 ,)/),%02 -7 04# +"#$%&’ (#)*%&’ +031%#15 <#04-1+ 0- %&,*#)+# "-)1 ,)/),%02 -7 +"#$%&’ (#)*%&’+ )*# /*-;%1#1 7-* 0#,4&-"-’%+0+5()* +,%-#. /0)+123 ")&%1234 5,&- ’&6&’1$*4 72809)2’123 8&’$,%中图分类号:@^!W ! 引言文献标识码:M车吊以及各类起重机配套外,还广泛应用于轻工机械、冶金机械、医疗机械、工业机器人、隧道掘进机、堆取料机、导弹发射架、雷达天线座、旋转舞台等。
回转轴承承载说明

回转轴承承载说明回转轴承是一种与其他轴承不同的特殊轴承,它是由内圆和外圆两个圆环组成的。
在回转轴承中,内圆和外圆之间的接触面积非常大,承载能力也相应地增强了。
回转轴承的承载能力由多个因素决定,如负荷方向、转速、使用环境等等。
下面将详细介绍回转轴承承载说明。
1. 载荷种类回转轴承的承载能力与其所承受的负荷类型相关。
一般而言,回转轴承可承受径向载荷、轴向载荷和倾斜载荷。
其中,轴向载荷是指沿轴向方向作用的载荷,径向载荷是指垂直于轴向的载荷。
而倾斜载荷指斜向作用在轴承上的载荷。
2. 额定载荷额定载荷是回转轴承所能承受的最大负载。
当轴承承受额定载荷时,其寿命应达到设计要求。
额定载荷通常由制造商在产品说明书中给出。
动载荷是指应用在回转轴承上的变动载荷。
在工业场合中,回转轴承经常被应用于旋转机械设备中,这就决定了它必须能够承受变化的载荷。
因此,动载荷是回转轴承设计中非常重要的一个参数,需要制造商充分考虑。
静载荷是指应用在回转轴承上的稳定、固定载荷。
静载荷往往比动载荷小,但是同样也是回转轴承设计中的重要参数。
5. 寿命和疲劳寿命在回转轴承设计和制造中,一个重要的指标是寿命。
寿命被定义为轴承可以承受的循环次数或运行时间。
疲劳寿命是指轴承在循环载荷下运行到出现疲劳破坏时经历的循环次数或运行时间。
6. 转速转速是指轴承所承载设备的旋转速度。
回转轴承的承载能力与其所处环境和应用有关,当经常应用于高速环境时,需要特别考虑轴承的承载能力。
7. 环境环境也是回转轴承承载能力的一个重要因素。
如果轴承用于恶劣环境,如高温、高湿度、强腐蚀性、重载荷、高速运行等条件,必须选择合适的材料和结构来确保承载能力。
总之,回转轴承的承载能力是由多个因素综合影响的。
在轴承的设计、制造和使用过程中,需要全面综合考虑各种因素,以确保回转轴承的长期、稳定的工作。
旋转轴承的选型计算及结构.doc

旋转轴承的选型计算及结构回转支承选型计算(JB2300-1999)回转支承在使用过程中,一般承受轴向力Fa、径向力Fr和倾覆力矩m的共同作用。
对于不同的应用,由于主机的工作模式和结构形式不同,上述三种载荷的组合会发生变化,有时可能是两种载荷的组合作用,有时可能只是一种载荷的单一作用。
一般来说,回转支承有两种安装方式——座式安装和悬挂式安装。
两种安装形式的支架承受的载荷如下所示:二、回转支承选型所需的技术参数。
回转支承承受的载荷及其占用工作时间的百分比。
在每个载荷的作用下,回转支承的转速或回转支承作用在齿轮上的圆周力的大小。
其他操作条件。
主机制造商可以根据产品样本提供的信息,利用静承载力图,根据回转支承选型的计算方法,初步选择回转支承,然后与我公司技术部门确认。
我们也可以向我公司提供会议和转让支持的相关信息,我公司将设计和选择类型。
每种类型的回转支承对应一条承载能力曲线,可以帮助用户初步选择回转支承。
图表中有两种类型的曲线,一种是静态承载曲线(第1行),表示回转支承在静态时可以承受的最大载荷。
另一个是回转支承螺栓的极限载荷曲线(8.8,10.9),当螺栓的夹紧长度为螺栓公称直径的5倍且预紧力为螺栓材料屈服极限的70%时,该曲线被确定。
回转支承选择的计算方法静态选择1)选择计算流程图2)静态参考载荷Fa’和m’的计算方法:单行四点接触球型:单列四点接触球面回转支承的选择和计算分别在45°和60°两种支承角条件下进行。
I,a=45 ii,a=60 fa '=(1.225 * fa 2.676 * fr)* fsfa '=(fa 5.046 * fr)* FSM '=1.225 * m * FSM '=m * fs,然后在图上找到以上两点,其中一点在曲线下方。
单列十字滚子fa'=(fa2.05Fr) * fsm'=m * fs双列变径球型用于双列变径球型回转支承选型计算,但Fr≤10,fr被忽略。
回转支承选型计算及结构

回转支承选型计算(JB2300-1999)•转支承受载情况回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。
通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。
两种安装形式支承承受的载荷示意如下:二、回转支承选型所需的技术参数•回转支承承受的载荷•每种载荷及其所占有作业时间的百分比•在每种载荷作用下回转支承的转速或转数•作用在齿轮上的圆周力•回转支承的尺寸•其他的运转条件主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。
也可向我公司提供会和转支承相关信息,由我公司进行设计选型。
每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。
曲线图中有二种类型曲线,一类为静止承载曲线( 1 线),表示回转支承保持静止状态时所能承受的最大负荷。
另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径 5 倍,预紧力为螺栓材料屈服极限70% 是确定的。
•回转支承选型计算方法•静态选型1 )选型计算流程图2 )静态参照载荷Fa' 和M' 的计算方法:•单排四点接触球式:单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。
I、a=45° II、a=60°Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fsM'=1.225*M*fs M'=M*fs然后在曲线图上找出以上二点,其中一点在曲线以下即可。
•单排交叉滚柱式Fa'=(Fa+2.05Fr)*fsM'=M*fs•双排异径球式对于双排异径球式回转支承选型计算,但Fr ≦10%Fa 时,Fr 忽略不计。
转盘轴承载荷能力计算小程序

30 输入 1000 输入 sin45 89.504046
轴向载荷 径向载荷 倾覆力矩
2847.5712 2847.5712
355.9464
三排滚子组合 转盘轴承的载 荷 主推力滚珠直 径 滚珠长度 回转中心 滚珠个数
50 输入
49.5 输入 3150 输入 164.93358
副推力滚珠直 径 滚珠长度 回转中心 滚珠个数
40 输入
40 输入 3125 输入 204.5307292
主推力轴向载 荷
主径向载荷
400454.61 KN 88173.492 KN
副推力轴 向载荷 副径向载 荷
321031.4325 KN 70685.82 KN
主倾覆力矩
157679 KN.m
总轴向载荷 总径向载荷 总倾覆力矩
721486.04 KN 158859.31 KN 283081.91 KN.m
18 输入 3000 输入 436.3322
球珠组合转盘 轴承的载荷
滚珠直径 滚珠长度 回转中心 滚珠个数
50 49.5 4500 241.66092
轴向载荷 径向载荷 倾覆力矩
483926 KN 21356.784 KN 53231825402.9033 KN.m
径向滚子 直径 滚珠长度 回转中心 滚珠个数
18 输入
转盘 轴承 承载 能力 载荷 计算
承载能力的载 荷计算 四点接触球转 盘轴承载荷 钢球直径 回转中心 接触角 钢球数量
25 输入 1000 输入 sin45 107.40485
轴向载荷 径向载荷 倾覆力矩
2372.976 KN 2372.976 KN
296.622 KN.m
**黄色为必须 输入数值
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以主推力滚子为计算基 以副推力滚子为计算基准 准
=68314吨(见表3.1 Fa =55220吨 值) 理论倾覆力矩: 理论倾覆力矩:
=136629吨* =110441吨*米 米 修正值(带 ' 为计算终 修正值(带 ' 为计算终值) 值) Coa’=68314× Coa’=55220×0.9=49698 0.9=61482 吨 吨 Fa=Coa’ Fa=Coa’
J132.85.8500.03载荷计算过程
主推力滚子回转中心φ 8500 副推力滚子回转中心φ 8460 径向滚子回转中心φ 8265 内圈安装孔中心径φ 8000 主推力滚子:φ 85×75×258粒 :φ 85×70×258粒 副推力滚子 :φ 70×60×306粒 :φ 70×60×306粒 径向滚子 :φ 60×80×432粒 以许用应力2700MPa 为计算基准 (原 J132.85.8500.03计 算过程) 参照表1.1 Dw:滚子直径 Lw:滚子长度 z: 滚子个数 Do:内圈安装孔中心径(:米)
以许用应力3500MPa为计算基准(3500/2700)² =1.69
fs
以许用应力4000MPa为计算基准(4000/2700)²=2.19
max
max
2参照表2.1Fra bibliotekfs
max
max
2
参照表3.1
以主推力滚子为计算 以副推力滚子为计算 以主推力滚子为计算基 以副推力滚子为计算基准 基准 基准 准 理论轴向载荷: 理论轴向载荷 : Coa=98.1×Dw×Lw× Coa=98.1×Dw×Lw× z z =98.1×85×(75+70) ×258 =311943285N =31194吨(见表1.1 Fa值) 理论倾覆力矩:M=Fa ×Do/2×1/2 =31194×8/2×1/2 =62388吨*米 修正值(带 ' 为计 算终值) Coa’=31194×(1-3.6 ×4/145)=28074 吨 Fa=Coa’ 倾覆力矩M(1)=Fa ×Do/2×1/2 =28074× 8/2×1/2 8/2×1/2 =45386吨 M(2)’=M ×0.86 = 56148 ×0.86 ×0.86 =81605吨*米 =65962吨*米 = 45386 =94890吨*米 (见表2.2 M值) =76702吨*米 =56148吨 *米(见表1.1 M值) *米 M(1)’=M× 0.86 =98.1×70×(60+60) ×306 =252156240N =25215吨 理论倾覆力矩 M=Fa ×Do/2×1/2 =25215×8/2×1/2 =50430吨*米 修正值(带 ' 为计 算终值) Coa’=25215×(1-3 ×4/120)=22693 吨 Fa=Coa’ 倾覆力矩M(2)=Fa ×Do/2×1/2 =22693× =105435吨* =85226吨*米 米 修正值(带 ' 为计算终 修正值(带 ' 为计算终 值) 值) Coa’=52717× Coa’=42613× 0.9=47445吨 0.9=38352 吨 Fa=Coa’ Fa=Coa’ =52717吨(见表2.1 Fa 值) 理论倾覆力矩: =42613吨 理论倾覆力矩:
=122964吨* 米(见表3.2 M值)
=99395吨*米
=48287吨 =39031吨 *米 *米 径向载荷Cor=21.6×Dw×Lw×z =21.6×60×80×432 =44789760N =4478吨 注1:轴向力乘过0.9 倍,倾覆力矩乘过 0.86倍
=105748吨* 米
=86069吨*米
=7567吨 注2:因本轴承在近海的实际使用工况比较复杂, 与陆地上使用差异较大,为此本次改进完善的设计 计算中我们认为采用:a.材料许用应力为3500MPa 为宜;b.为确保安全使用我们选定:以副推力滚 子的计算结果为依据。
=9806吨