九年级数学圆的内接四边形同步练习含答案

合集下载

九上数学每日一练:圆内接四边形的性质练习题及答案_2020年单选题版

九上数学每日一练:圆内接四边形的性质练习题及答案_2020年单选题版

九上数学每日一练:圆内接四边形的性质练习题及答案_2020年单选题版答案答案答案答案2020年九上数学:图形的性质_圆_圆内接四边形的性质练习题~~第1题~~(2020北仑.九上期末) 下列四个结论,不正确的是( )①过三点可以作一个圆; ②圆内接四边形对角相等③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等A . ②③B . ①③④C . ①②④D . ①②③④考点: 垂径定理;圆心角、弧、弦的关系;圆内接四边形的性质;确定圆的条件;~~第2题~~(2020柳州.九上期末) 如图,四边形ABCD 是⊙O 的内接四边形,∠B=70°,则∠D 的度数是( )A . 110°B . 90°C . 70°D . 50°考点: 圆内接四边形的性质;~~第3题~~(2020无锡.九上期中) 如图所示,已知四边形ABDC 是圆内接四边形,∠1=112°,则∠CDE=( )A . 56°B . 68°C . 66°D . 58°考点: 圆内接四边形的性质;~~第4题~~(2019江干.九上期末) 如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB =110°,则∠α=( )A . 70°B . 110°C . 120°D . 140°考点: 圆周角定理;圆内接四边形的性质;~~第5题~~(2019三门.九上期末) 如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点.如果∠AOB =130°,那么∠A CB 的度数为( )答案答案答案答案答案A . 65° B . 115° C . 130° D . 65°或115°考点: 圆周角定理;圆内接四边形的性质;~~第6题~~(2019江北.九上期末) 如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,若∠BAC =20°,则∠ADC 的度数是( )A . 90°B . 100°C . 110°D . 130°考点: 圆周角定理;圆内接四边形的性质;~~第7题~~(2019余杭.九上期末) 如图,点A ,B ,C 都在⊙O 上,若∠AOC=140°,则∠B 的度数是( )A . 70°B . 80°C . 110°D . 140°考点: 圆周角定理;圆内接四边形的性质;~~第8题~~(2019连云港.九上期末) 如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A . 50°B . 60°C . 80°D . 100°考点: 圆周角定理;圆内接四边形的性质;~~第9题~~(2019杭州.九上期末)已知ABCD 是一个以AD 为直径的圆内接四边形,分别延长AB 和DC ,它们相交于P ,若∠APD=60°,AB=5,PC=4,则⊙O 的面积为( )A . 25πB . 16πC . 15πD . 13π考点: 圆周角定理;圆内接四边形的性质;相似三角形的判定与性质;~~第10题~~(2019浙江.九上期末) 如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为E ,连接BD ,∠GBC=50°,则∠DBC 的度数为( )答案A . 50° B . 60° C . 80° D . 90°考点: 垂径定理;圆内接四边形的性质;2020年九上数学:图形的性质_圆_圆内接四边形的性质练习题答案1.答案:D2.答案:A3.答案:A4.答案:D5.答案:D6.答案:C7.答案:C8.答案:D9.答案:D10.答案:C。

圆内接四边形的性质定理及其推论习题课件 2023—2024学年鲁教版(五四制)数学九年级下册

圆内接四边形的性质定理及其推论习题课件 2023—2024学年鲁教版(五四制)数学九年级下册

AD∶BD=1∶3, AE=DE=2,则半圆O的半径长为
()
A. 5
B.2 2
C.3 D.2 3
【点拨】
∵四边形 BCED 是半圆 O 的内接四边形, ∴∠AED=∠B,∠ADE=∠C. ∴△ADE∽△ACB.∴DBCE=AADC. ∵AE=DE=2,∴∠A=∠ADE. ∴∠A=∠C.∴AB=BC. 连接 BE,∵BC 为直径,∴∠BEC=90°,即 BE⊥AC.
(2)连接OE,交CD于点F,若OE⊥CD,求∠A的度数. 解:∵∠A=∠AEB,∴△ABE是等腰三角形. 又∵EO⊥CD,∴CF=DF. ∴EO是CD的垂直平分线.∴ED=EC. ∵DC=DE,∴DC=DE=EC. ∴△DCE是等边三角形.∴∠AEB=60°. ∴△ABE是等边三角形.∴∠A=60°.
又∵OA=OC,AC=4,∴OA=2 2.
∴⊙O 的半径为 2 2. 【答案】 B
3 如图,四边形ABCD内接于⊙O,DE是⊙O的直径, 连接BD,若∠BCD=120°,则∠BDE的度数是 () A.25° B.30° C.32° D.35°
【点拨】 连接BE.∵四边形ABCD内接于⊙O, ∴∠BAD+∠BCD=180°. 又∵∠BCD=120°,∴∠BAD=60°. ∴∠BED=∠BAD=60°. ∵DE是⊙O的直径,∴∠DBE=90°. ∴∠BDE=90°-∠BED=90°-60°=30°.
【点拨】 由题意可知∠AEF=∠ABC.
又∵∠A=∠A,∴△AEF∽△ABC.∴AAEB=EBFC=35. ∵BC 为直径,∴∠BEC=90°.∴∠BEA=90°. ∴cos∠BAC=AAEB=35.易得 sin∠BAC=45.
∴在 Rt△ ABE 中,BE=AB·sin∠BAC=6×45=254.

九上数学每日一练:圆内接四边形的性质练习题及答案_2020年压轴题版

九上数学每日一练:圆内接四边形的性质练习题及答案_2020年压轴题版

九上数学每日一练:圆内接四边形的性质练习题及答案_2020年压轴题版答案解析答案解析2020年九上数学:图形的性质_圆_圆内接四边形的性质练习题1.(2019拱墅.九上期末) 如图,在△ABC 中,AB =AC , 以AB 为直径的⊙O 分别交BC , AC 于点D , E , 连结EB ,交OD 于点F .(1) 求证:OD ⊥BE .(2) 若DE = ,AB =6,求AE的长.(3) 若△CDE 的面积是△OBF 面积的 ,求线段BC 与AC 长度之间的等量关系,并说明理由.考点: 垂径定理;圆周角定理;圆内接四边形的性质;相似三角形的判定与性质;2.(2019鄞州.九上期末) 如图1,△ABC 是⊙O 的内接等腰三角形,点D 是AC 上异于A ,C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F .(1) 求证:∠ADB=∠CDE :(2) 若BD=7,CD=3,①求AD·DE 的值;②如图2,若AC ⊥BD ,求tan ∠ACB(3) 若tan ∠CDE= ,记AD=x ,△ABC 的面积和△DBC 面积的差为y ,直接写出y 关于x 的函数解析式.考点: 圆内接四边形的性质;相似三角形的判定与性质;3.(2019宁波.九上期中) 定义:有一个角是其对角一半的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.(1) 如图1,若四边形ABCD 是圆美四边形,求美角∠A 的度数.(2) 在(1)的条件下,若⊙O 的半径为5.①求BD 的长.②如图2,在四边形ABCD 中,若CA 平分∠BCD ,则BC+CD 的最大值是.答案解析答案解析(3) 在(1)的条件下,如图3,若AC 是⊙O 的直径,请用等式表示线段AB ,BC ,CD之间的数量关系,并说明理由.考点:含30度角的直角三角形;圆内接四边形的性质;4.(2020昌平.九上期末) 如图,已知 ,.(1) 求证:是等边三角形;(2) 求 的度数.考点: 等边三角形的判定与性质;圆内接四边形的性质;5.(2020宁波.九上期末) 如图1,在平面直角坐标系中,已知⊙M 的半径为5,圆心M 的坐标为(3,0),⊙M 交x 轴于点D ,交y 轴于A ,B 两点,点C 是 上的一点(不与点A 、D 、B 重合),连结AC 并延长,连结BC ,CD ,AD 。

圆内接四边形的性质判定定 理习题及答案

圆内接四边形的性质判定定    理习题及答案

17.已知:如图所示,平分. (1)求AC和DB的长; (2)求四边形ACBD的面积.
18.在锐角三角形ABC中,AD是BC边上的高,为垂足. 求证:E、B、C、F四点共圆.
19.如图,矩形ABCD中,AD=8,DC=6,在对角线AC上取一点O,以OC为半径 的圆切AD于点E,交BC于点F,交CD于点G. (1)求⊙O的半径; (2)设,请写出之间关系式,并证明.
12.如图,AB为半圆O的直径,C、D为半圆上的两点,,则 .
三、解答径,⊙O交AB、AC于D、
E,求证:.
14.求证:在圆内接四边形ABCD中,. 15.在等边三角形ABC外取一点P,若,求证:P、A、B、C四点共圆.
16.如图,⊙O的内接四边形ABCD中,M为CD中点,N为AB中点,于点 E,连接ON、ME,并延长ME交AB于点F.求证:.
角平分线AD和CE相交于H,∠B=60°,F在AC 查四点共圆的判定方
上,且AE=AF. (1)证明:B,D,H,E四点共圆; (2)证明:CE平分∠DEF.
法及利用四点共圆的
性质证明角相等问题. 2.处理过程:第(1)小题
只要证明四边形BDHE
的内对角互补即可,但
该小题的的难点恰在
于如何证明内对角互
5.圆内接四边形ABCD中,BA与CD的延长线交于点P,AC与BD交于点E,则
图中相似三角形有
A.5对 B.4对 C.3对 D.2对
6.如图,已知圆内接四边形ABCD的边长为,则四边形ABCD面积为
A. B.8 C. D.
T6
T7
T12
7.如图,在以BC为直径的半圆上任取一点P,过弧BP的中点A作于D.连接

共圆问题,引导学生作

圆内接四边形的性质判定定理习题及答案

圆内接四边形的性质判定定理习题及答案

圆内接四边形的性质与判定定理习题及答案2.处理过程:让学生独立完成这两道自测题成两组,每一组推荐一名同学说出解题思路和答案.例1 (2011·课标全国卷)如图3,D,E分别为△ABC 的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于方程x2-14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径. 1.选题立意:本题考查三角形相似、四点共圆的基本知识与方法,考查推理论证能力及运算求解能力.2.处理过程:第(1)小题是证明四点共圆问题,那么要证四点共圆,我们有那些方法呢?通过提问让学生在大脑中搜索相关知识,寻找最佳解题方案这样问题可以转化为证明Rt△ADE与似,从而利用本节的推论来证明四点共圆题是计算问题,关键是引导学生如何确定圆心的位置.根据圆的性质可知,圆心即为该圆弦的中垂线的交点,问题就转化为在矩形AFHG半径了.3.老师点评:证明四点共圆主要是利用圆内接四能力锤炼:能说的让学生说,学生能做的让学生做第(2)小题实际上是证明角相等问题,请一个学生用分析法来寻求证明思路.当学生“找路”有困难时,及时正确引导,同时注意引导方式3.老师点评:解答平面几何问题时不仅要用到几何定理,而且还要用到各种不同的推理形式,推理策略,有时还要使用“添加辅助线”之类的技巧性较高的方法.在几何学习中,除了运用逻辑推理外,还要应用观察、比较、类比、直觉、猜想、归纳、概括等合情推理.如图6,已知△ABC 中,AB=AC,D 是△ABC 外接圆劣弧AC ⌒上的点(不与A,C 重合),延长BD 到E. (1)求证:AD 的延长线平分∠CDE;(2)若∠BAC=30°,△ABC 中BC 边上的高为2+ 3 ,求△ABC 外接圆的面积.设计意图:检验所学习的知识,从而熟练掌握本节的重点,形成相应的数学能力.1. 如图7,在Rt △ABC 中,∠BCA=90°,以BC 为直径的⊙O 交AB 于E 点,D 为AC 的中点,连结BD 交⊙O 于F 点.求证:BC BE = CF EF. 2. 如图8,AB 为⊙O 的弦,CD 切⊙O 于P,AC ⊥CD 于C,BD ⊥DC 于D,PQ ⊥AB 于Q,求证:PQ 2=AC ·BD.3. 如图9,已知AP 是⊙O 的切线,P 为切点,AC 是⊙O 的割线,与⊙O 交于B,C 两点,圆心O 在∠PAC 的内部,点M 是BC 的中点.(1)证明:A,P,O,M 四点共圆; (2)求∠OAM+∠APM 的大小.4.E,EG 平分∠E,且与BC 、AD F5.如图11,已知PA 、PB 是圆O 的切线分别是切点,C 为圆O 上不与A 重合的另一点,若∠ 一、 选择题1. 下列关于圆内接四边形叙述正确的有2. 3. 4.C.12aD.13a5.圆内接四边形ABCD 中,BA 与CD 的延长线交于点P,AC 与BD 交于点E,则图中相似三角形有A.5对B.4对C.3对D.2对6.如图,已知圆内接四边形ABCD 的边长为2,6,4AB BC CD DA ====,则四边形ABCD 面积为A.163 B.8 C.323D.DT6 T7 T127.如图,在以BC 为直径的半圆上任取一点P ,过弧BP 的中点A 作AD BC ⊥于D.连接BP 交AD 于点E,交AC 于点F,则:BE EF =A.1:1B.1:2C.2:1D.以上结论都不对8.直线370x y +-=与20kx y --=与两坐标轴围成的四边形内接于一个圆,则实数k = B.3 C.-6 D.6二、填空题9.圆内接四边形ABCD 中,cos cos cos cos A B C D +++= . 10.三角形三边长为5,12,13,则它的外接圆圆心到顶点的距离为 . 11.圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠= .12.如图,AB 为半圆O 的直径,C 、D 为半圆上的两点,20BAC ∠=,则ADC ∠= .三、解答题13.如图,锐角三角形ABC 中,60A ∠=,BC 为圆O 的直径,⊙O 交AB 、AC 于D 、E ,求证:2BC DE =.DBOCEA14.求证:在圆内接四边形ABCD 中,AC BD AD BC AB CD ⋅=⋅+⋅.15.在等边三角形ABC 外取一点P ,若P A P B P C =+,求证:P 、A 、B 、C 四点共圆.16.如图,⊙O 的内接四边形ABCD 中,M 为CD 中点,N 为AB 中点,AC BD ⊥于点E ,连接ON 、ME ,并延长ME 交AB 于点F.求证:MF AB ⊥.ABC17.已知:如图所示,10,8,AB cm BC cm ==CD 平分ACB ∠. (1)(2)18.求证:19.E,交BC 于点F,(1)求⊙(2)设∠圆内接四边形的性质与判定定理(参考答案)一、 选择题1-5 BBCAB 6-8 DAB 二、填空题9. 0 10.13211.90 12.110三、解答题13.法一:302ABE ABE AB AE ∠=⇒∆=在Rt 中,12A D A E D E A D EA CB AC A B B C ∆∆⇒===∽ 法二:连接BE, 30ABE DE∠=⇒ 的度数为6060DOE ⇒∠=即ODE ∆为正∆ OD DE ⇒=14.在AC 上取点E,使1,23ADE ∠=∠∠=∠又A EB C A D E B D C A E B D A D B CA DB D⇒∆∆⇒=⇒⋅=⋅∽ ①1A D E A D B C D E A B D A C D A B D E C D∠=∠⇒∠=∠∠=∠∆∆又得∽AB BDBD EC AB CD EC CD⇒=⋅=⋅即 ② ①+②即可15.延长PC 至D,作CAD BAP ∠=∠,并取AD=AP ,则A D P A B P A B P A C D ∆≅∆⇒∠=∠⇒P 、A 、B 、C 四点共圆16.,DE EC DM MC EM DM ⊥=⇒=M D E D E M ⇒∠=∠ 90EAF AEF MDE AEF DEM MEC ⇒∠+∠=∠+∠∠=∠+∠=17.(1)6,52AC BD ==(2)49ACB ADB ABCD S S S ∆∆=+=四边形18.法一:连结EF,,9090180DE AB DF AC AED AFD ⊥⊥⇒∠+∠=+=⇒A 、E 、D 、F 四点共圆DEF DAF BEF C ⇒∠=∠⇒∠+∠90180B E D D E F CD A F C =∠+∠+∠=+∠+∠=321BEADCPBAC法二: A 、E 、D 、F 四点共圆DEF DAF ⇒∠=∠9090A E F D E F D A F C⇒∠=-∠=-∠=∠19.(1)10156104OE AO R R AEO ADC R CD AC -∆∆⇒=⇒=⇒=∽ (2)90EFB EGC βα∠=∠⇒+=。

3.6 圆内接四边形 浙教版数学九年级上册同步练习(含解析)

3.6 圆内接四边形 浙教版数学九年级上册同步练习(含解析)

3.6 圆内接四边形基础过关全练知识点 圆内接四边形及其性质1.(2020浙江湖州中考)如图,已知四边形ABCD内接于☉O,∠ABC=70°,则∠ADC的度数是( )A.70°B.110°C.130°D.140°2.【易错题】(2022浙江温州鹿城二模)如图,点B在AC上,∠AOC=100°,则∠ABC等于( )A.50°B.80°C.100°D.130°3.(2021辽宁盘锦中考)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,☉D经过A,B,O,C四点,∠ACO=120°,AB= 4,则圆心D的坐标是 .()4.【教材变式·P97课内练习T1】如图,AB是半圆O的直径,∠D=120°,则∠BAC= °.5.(2019浙江台州中考)如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连结AE.若∠ABC=64°,则∠BAE 的度数为 .6.【易错题】【新独家原创】如图,小明把一副三角尺放到圆中,斜边AC重合,点A、B、C、D均在圆上,其中∠ACB=30°,∠CAD=45°,点P 是圆上任意一点(不与A、B、C、D重合),则∠APB的度数为 .7.如图,已知AD是△ABC的外角平分线,与△ABC的外接圆交于点D.()(1)求证:DB=DC;(2)过D分别作DP⊥AC于点P,DQ⊥BE于点Q,求证:△CDP≌△BDQ.能力提升全练8.【一题多解】(2023浙江温州龙港期中,6,★☆☆)已知在圆的内接四边形ABCD中,∠A∶∠B∶∠C=2∶3∶7,则∠D的度数为( )A.40°B.60°C.100°D.120°9.(2023浙江杭州萧山期中,7,★★☆)如图,点A、B、C、D、E都是☉O上的点,AC=AE,∠D=130°,则∠B的度数为( )A.130°B.128°C.115°D.116°10.【数学文化】(2020湖南株洲中考,18,★★☆)斛是中国古代的一种量器.据《汉书·律历志》记载:“斛底,方而圜(huán)其外,旁有庣(tiāo)焉.”意思是说:“斛的底面为正方形的四个顶点都在一个圆上,此圆外有一个同心圆.”如图所示,问题:现有一斛,其底面的外圆直径为五尺(即5尺),“庣旁”为五寸(即两同心圆的外圆与内圆的半径之差为0.5尺),则此斛底面的正方形的边长为 尺.11.【等面积法】(2023浙江杭州西湖期中,19,★★☆)如图,四边形ABCD内接于☉O,AC为☉O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=2,AD=1,求CD、BD的长度.素养探究全练12.【推理能力】如图1,在☉O中,弦AD平分圆周角∠BAC,我们将圆中以A为公共点的三条弦BA,CA,DA构成的图形称为圆中“爪形A”.如图2,四边形ABCD内接于圆O,AB=BC,(1)证明:圆中存在“爪形D”;(2)若∠ADC=120°,求证:AD+CD=BD.答案全解全析基础过关全练1.B ∵四边形ABCD内接于☉O,∠ABC=70°,∴∠ADC=180°-∠ABC=180°-70°=110°.2.D 如图,在优弧AC(不与点A、C重合)上取点D,连结AD、CD,由圆周角定理得∠ADC=1∠AOC=50°,2∵四边形ABCD为圆内接四边形,∴∠ABC+∠ADC=180°,∴∠ABC=180°-50°=130°,故选D.3.答案 (-3,1)解析 ∵四边形ABOC为圆内接四边形,∴∠ABO+∠ACO=180°,∵∠ACO=120°,∴∠ABO=180°-120°=60°.∵∠AOB=90°,∴AB为☉D的直径,∴D为AB的中点,在Rt△ABO中,∵∠ABO=60°,∴∠OAB=30°,AB=2,∴OA=23,∴OB=12∴A(-23,0),B(0,2),∴点D的坐标为(-3,1).4.答案 30解析 ∵四边形ABCD为圆内接四边形,∴∠B+∠D=180°,∵∠D=120°,∴∠B=60°,∵AB是半圆O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°,∴∠BAC=30°.5.答案 52°解析 由已知得,∠D=180°-∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,∴∠BAE=∠AEC-∠ABC=116°-64°=52°.6.答案 30°或150°解析 当点P在优弧BCA上时,∠APB=∠ACB=30°;当点P在劣弧AB上时,四边形ACBP为圆内接四边形,∴∠APB+∠ACB=180°,∴∠APB=180°-30°=150°.∴∠APB的度数为30°或150°.7.证明 (1)∵AD是△ABC的外角平分线,∴∠EAD=∠DAC,∵四边形ABCD为圆内接四边形,∴∠BAD+∠DCB=180°,∵∠EAD+∠BAD=180°,∴∠EAD=∠DCB,∵∠DAC=∠DBC,∴∠DCB=∠DBC,∴DB=DC.(2)∵AD平分∠EAC,DP⊥AC,DQ⊥BE,∴DQ=DP,在Rt△CDP与Rt△BDQ中,DC=DB, PD=QD,∴Rt△CDP≌Rt△BDQ(HL).能力提升全练8.D 解法一:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∵∠A∶∠B∶∠C=2∶3∶7,∴∠A∶∠B∶∠C∶∠D=2∶3∶7∶6,∴∠D=180°×63+6=120°,故选D.解法二:∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∵∠A∶∠B∶∠C=2∶3∶7,设∠A=2x,∠B=3x,∠C=7x,∴2x+7x=180°,解得x=20°.∴∠B=60°,∴∠D=180°-∠B=120°,故选D.9.C 如图,连结AC、CE,∵点A、C、D、E都是☉O上的点,∴∠CAE+∠D=180°,∵∠D=130°,∴∠CAE=180°-130°=50°,∵AC=AE,×(180°-50°)=65°,∴∠ACE=∠AEC=12∵点A、B、C、E都是☉O上的点,∴∠AEC+∠B=180°,∴∠B=180°-65°=115°,故选C.10.答案 22解析 如图,∵四边形CDEF为正方形,∴∠D=90°,CD=DE,∴CE为直径,∠ECD=45°,由题意得AB=5尺,∴CE=5-0.5×2=4尺,∵CD2+DE2=CE2,CD=DE,∴2CD2=16,∴CD=22尺.11.解析 (1)△ABC是等腰直角三角形.证明:∵AC为☉O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴AB =BC ,∴AB =BC ,又∵∠ABC =90°,∴△ABC 是等腰直角三角形.(2)在Rt △ABC 中,AB =BC =2,∴AC =2,在Rt △ADC 中,AD =1,AC =2,∴CD =AC 2―AD 2=3,过A 作AE ⊥BD 于E ,过C 作CF ⊥BD 于F,如图,则△ADE 和△CDF 均是等腰直角三角形,∴AE =22AD =22,CF =22CD =62,∵S 四边形ABCD =S △ACD +S △ABC =S △ABD +S △BCD ,∴12×1×3+12×2×2=12×22BD +12×62BD ,∴BD =2+62.素养探究全练12.证明 (1)∵AB =BC ,∴AB =BC ,∴∠ADB =∠CDB ,∴DB 平分圆周角∠ADC ,∴圆中存在“爪形D”.(2)如图,延长DC至点E,使得CE=AD,连结BE,∵∠A+∠DCB=180°,∠ECB+∠DCB=180°,∴∠A=∠ECB,∵CE=AD,AB=BC,∴△BAD≌△BCE(SAS),∴∠E=∠ADB,BD=BE,由(1)知,DB平分圆周角∠ADC,∠ADC=120°,∠ADC=60°,∴∠ADB=12∴∠E=∠ADB=60°,∴△BDE是等边三角形,∴DE=BD,∴AD+CD=BD.。

3.6《圆内接四边形》课时练习(含答案) 2021--2022学年浙教版数学九年级上册

3.6《圆内接四边形》课时练习(含答案)    2021--2022学年浙教版数学九年级上册

浙教版数学九年级上册3.6《圆内接四边形》课时练习一、选择题1.如图,四边形 ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为()A.50°B.80°C.100°D.130°2.如图,⊙O中,ABDC是圆内接四边形,∠BOC=110°,则∠BDC的度数是()A.110°B.70°C.55°D.125°3.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°4.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=( )A.70°B.110°C.120°D.140°5.圆内接四边形ABCD,∠A,∠B,∠C的度数之比为3∶4∶6,则∠D的度数为( )A.60°B.80°C.100°D.120°6.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是( )A.50°B.60°C.80°D.100°7.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°8.如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,点P在AC的延长线上,PD是⊙O的切线,延长BC交PD于点E.则下列说法不正确的是()A.∠ADC=∠PDOB.∠DCE=∠DABC.∠1=∠BD.∠PCD=∠PDA二、填空题9.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.10.如图,四边形ABCD内接于圆,AD=DC,点E在CD的延长线上.若∠ADE=80°,则∠ABD的度数是.11.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB= .12.如图,四边形ABCD为⊙O的内接四边形,连接AC、BO,已知∠CAB=36°,∠ABO=30°,则∠D= .13.如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为度(写出一个即可).14.如图,在四边形ABCD中,AB∥CD,AB=BC=BD=2,AD=1,则AC= .三、解答题15.如图,已知四边形ABCD内接于⊙O,E是AD延长线上一点,且AC=BC,求证:DC平分∠BDE。

非学科数学学培训 圆内第四大定理之圆内接四边形(资料附答案)

非学科数学学培训 圆内第四大定理之圆内接四边形(资料附答案)

自学资料一、圆内接四边形【知识探索】1.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形.这个圆叫做这个多边形的外接圆.2.圆内接四边形的对角互补.【错题精练】例1.如图,四边形ABCD的对角线CA平分∠BCD且AD=AB,AE⊥CB于E,点O为四边形ABCD的外接圆的圆心,下列结论:①OA⊥DB;②CD+CB=2CE;③∠CBA−∠DAC=∠ACB;④若∠DAB= 90∘,则CD+CB=√3CA.其中正确的结论()第1页共25页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. ①③④;B. ①②④;C. ②③④;D. ①②③.【答案】D,例2.如图,等腰△ABC内接于⊙O,已知AB=AC,∠ABC=30∘,BD是⊙O的直径,如果CD=4√33则AD=.【答案】4.的值是例3.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则EFGH ()A. ;B. ;C. ;D. 2.【答案】C例4.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为第2页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训().A. cmB. 9 cmC. cmD. cm【解答】C【答案】C例5.如图,四边形ABCD内接于⊙O,BC=CD,∠C=2∠BAD.(1)求∠BOD的度数;(2)求证:四边形OBCD是菱形;(3)若⊙O的半径为r,∠ODA=45∘,求△ABD的面积(用含r的代数式表示).【解答】(1)解:∠A+∠C=180,∠C=2∠A,∴∠A=60∘,∴∠BOD=2∠A=120∘(2)证明:连接OB,OC,OD,可以得出△BOC是等边三角形,∴OB=OC=OD=CD,∴四边形OBCD是菱形;(3)解:过D做DH⊥AB与H,∵DH=√62r,BH=√62r,AH=√22r,∴S△ABD=3+√34r2.第3页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】(1)∠BOD=2∠A=120∘;(2)略;(3)S△ABD=3+√3r2.4例6.如图,已知四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.(1)若∠DFC=40∘,求∠CBF的度数;(2)求证:CD⊥DF.【解答】(1)解:∵∠ADB=∠ACB,∠BAD=∠BFC,∴∠ABD=∠FBC,又∵AB=AD,∴∠ABD=∠ADB,∴∠CBF=∠BCF,∵∠BFC=2∠DFC=80°,∴∠CBF=50∘;(2)证明:令∠CFD=α,则∠BAD=∠BFC=2α,∵四边形ABCD是圆的内接四边形,∴∠BAD+∠BCD=180°,即∠BCD=180∘−2α,又∵AB=AD,∴∠ACD=∠ACB,∴∠ACD=∠ACB=90∘−α,∴∠CFD+∠FCD=α+(90∘−α)=90°,∴∠CDF=90°,即CD⊥DF.【答案】(1)∠CBF=50∘;(2)CD⊥DF.例7.如图,在圆内接四边形ABCD中,CD为∠BCA的外角的平分线,F为弧AD上一点,BC=AF,延长DF与BA的延长线交于E.第4页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训(1)求证:△ABD为等腰三角形.(2)求证:AC⋅AF=DF⋅FE.【解答】(1)证明:∵四边形ABCD是圆O的内接四边形,∴∠DCB+∠DAB=180∘,∵∠MCD+∠DCB=180∘,∴∠MCD=∠DAB,∵CD为∠BCA的外角的平分线,∴∠MCD=∠ACD,∵∠DCA和∠DBA都对弧AFD,∴∠DCA=∠DBA,∴∠DAB=∠DBA,∴DB=DA,∴△ABD为等腰三角形.(2)证明:由(1)知AD=BD,BC=AF,则弧AFD=弧BCD,弧AF=弧BC,∴∠BDC=∠ADF,弧CD=弧DF,CD=DF①∴∠BDC+∠BDA=∠ADF+∠BDA,即∠CDA=∠BDF,而∠FAE+∠BAF=∠BDF+∠BAF=180∘,∴∠FAE=∠BDF=∠CDA,同理∠DCA=∠AFE∴在△CDA与△FAE中,∠CDA=∠FAE,∠DCA=∠AFE,∴△CDA∽△FAE,∴即CD⋅EF=AC⋅AF,又由①有AC⋅AF=DF⋅EF.【答案】(1)略;(2)略.例8.如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中弧AB上一点,延长DA至点E,使CE=CD.(1)求证:AE=BD;(2)若AC⊥BC,求证:AD+BD=CD.第5页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【答案】例9.(1)已知:如图1,四边形ABCD内接于⊙O,延长BC至E.求证:∠A+∠BCD=180°,∠DCE=∠A.(2)依已知条件和(1)中的结论:①如图2,若点C在⊙O外,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系;②如图3,若点C在⊙O内,且A、C两点分别在直线BD的两侧.试确定∠A+∠BCD与180°的大小关系.第6页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】【答案】见解析例10.如图1,已知△ABC,AB=AC,以边AB为直径的⊙O交BC于点D,交AC于点E,连接DE.(1)求证:DE=DC.(2)如图2,连接OE,将∠EDC绕点D逆时针旋转,使∠EDC的两边分别交OE的延长线于点F,AC 的延长线于点G.试探究线段DF、DG的数量关系.【答案】(1)证明:∵四边形ABDE内接于⊙O,第7页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第8页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【解答】第9页共25页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第10页共25页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】【举一反三】1.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78∘,则∠EAC=度.【答案】27.2.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE,若∠D=78∘,则∠EAC=()A. 37°;B. 32°;C. 21°;D. 18.5°.【答案】C.3.已知,如图:AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°.给出以下四个结论:①∠EBC=22.5°;②AE=2EC;③劣弧AE是劣弧DE的2倍;④DE=DC.其中不正确结论的序号是()A. ①B. ④C. ③D. ②【解答】【答案】D4.如图,已知四边形ABEC内接于⊙O,点D在AC的延长线上,CE平分∠BCD交⊙O于点E,则下列结论中一定正确的是()A. AB=AEB. AB=BEC. AE=BED. AB=AC【解答】【答案】C5.已知△ABC.(1)如图,AC⊥AB,点D为BC上一点,∠ABD=∠BAD,∠EAC=∠CAD,求证:AE∥BC.(2)如图,点P是BC上一点,且∠APC<90°,以AP为一边作正方形APMN,若NC⊥BC,则∠ACB= °,并证明你的结论.【答案】6.已知如图,四边形ABCD内接于⊙O,直径AF⊥BC于点H,AD与BC的延长线交于点E,连接BD.(1)若BC=8,FH=2,求⊙O得半径长;(2)若∠EDC=70∘,求∠ADB的度数.【解答】(1)解:由垂径定理得BH=4,OH=r−2,由勾股得:r=5;(2)解:连接AC,由垂径定理得:AB=AC,∴∠ABC=∠ACB,∵∠EDC=70∘,∴∠ABC=∠ACB=70∘,∵∠ADB=∠ACB,∴∠ADB=70∘.【答案】(1)5;(2)70°.7.如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.【答案】8.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(-3,0),C(,0))(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】9.如图,△ABC中,E、F分别是AB、AC上的点.①AD平分∠BAC,②DE⊥AB,DF⊥AC,③AD⊥EF.以此三个中的两个为条件,另一个为结论,可构成三个命题,即:(1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题.【解答】【答案】见解析10.已知△ABC中,AB=AC,以AB为直径的圆O交BC于D,交AC于E,(1)如图①,若AB=6,CD=2,求CE的长;(2)如图②,当∠A为锐角时,使判断∠BAC与∠CBE的关系,并证明你的结论;(3)若②中的边AB不动,边AC绕点A按逆时针旋转,当∠BAC为钝角时,如图③,CA的延长线与圆O相交于E.请问:∠BAC与∠CBE的关系是否与(2)中你得出的关系相同?若相同,请加以证明,若不同,请说明理由.【解答】【答案】见解析11.我们学过圆内接三角形,同样,四个顶点在圆上的四边形是圆内接四边形,下面我们来研究它的性质.(I)如图(1),连接AO、OC,则有.∴,同理∠BAD+∠BCD=180°,即圆内接四边形对角(相对的两个角)互补.(II)在图(2)中,∠ECD是圆内接四边形ABCD的一个外角,请你探究外角∠DCE与它的相邻内角的对角(简称内对角)∠A的关系,并证明∠DCE与∠A的关系.(III)应用:请你应用上述性质解答下题:如图(3)已知ABCD是圆内接四边形,F、E分别为BD、AD延长线上的点,如果DE平分∠FDC,求证:AB=AC.【解答】【答案】见解析1.如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45∘,试求AB的长.【解答】解:∵ABCD是正方形,∴∠DCO=90∘.∵∠POM=45∘,∴∠CDO=45∘.∴CD=CO.∴BO=BC+CO=BC+CD.∴BO=2AB.连接AO,∵MN=10,∴AO=5.在Rt△ABO中,AB2+BO2=AO2,AB2+(2AB)2=52,解得:AB=√5,则AB的长为√5.【答案】√5.2.如图所示,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.【解答】解:∵AB是直径,∴∠ACB=∠ADB=90∘.在Rt△ABC中,AB=6,AC=2,∴BC=√AB2−AC2=√62−22=4√2.∵∠ACB的平分线交⊙O于点D,∴∠DCA=∠BCD.∴.∴AD=BD.∴在Rt△ABD中,AD=BD=3√2,AB=6.∴四边形ADBC的面积=S△ABC+S△ABD=12AC⋅BC+12AD⋅BD=12×2×4√2+12×3√2×3√2=9+4√2.故四边形ADBC的面积是9+4√2.【答案】9+4√2.3.(2015秋•嵊泗县期中)如图①、②、③,正三角形ABC、正方形ABCD、正五边形ABCDE分别是⊙O的内接三角形、内接四边形、内接五边形,点M、N分别从点B、C开始,以相同的速度在⊙O上逆时针运动.(1)求图①中∠APN的度数(写出解题过程);(2)写出图②中∠APN的度数和图③中∠APN的度数;(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案)【解答】【答案】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章对称图形——圆
2.4第3课时圆的内接四边形
知识点圆内接四边形的性质
1.如图2-4-30所示,四边形ABCD为⊙O的内接四边形.若∠BCD=110°,则∠BAD 的度数为()
A.140°B.110°C.90°D.70°
图2-4-30
图2-4-31
2.如图2-4-31,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD =105°,则∠DCE的大小是()
A.115°B.105°C.100°D.95°
3.在圆内接四边形ABCD中,若∠A∶∠B∶∠C=2∶3∶4,则∠D的度数是() A.60°B.90°C.120°D.30°
4.如图2-4-32,四边形ABCD内接于⊙O.若四边形ABCO是平行四边形,则∠ADC 的大小为()
A.45°B.50°C.60°D.75°
图2-4-32
图2-4-33
.如图2-4-33,已知AB是⊙O的直径,C,D是⊙O上两点,且∠D=130°,则∠BAC =________°.
6.如图2-4-34,四边形ABCD内接于⊙O.若∠BOD=130°,则∠DCE=________°.
图2-4-34
7.如图2-4-35,四边形ABCD为圆的内接四边形,DA,CB的延长线交于点P,∠P =30°,∠ABC=100°,则∠C=________°.
图2-4-35
图2-4-36
8.如图2-4-36,△ABC为⊙O的内接等边三角形,D为⊙O上一点,则∠ADB=________°.
9.如图2-4-37,已知A,B,C,D是⊙O上的四点,延长DC,AB相交于点E.若BC =BE.求证:△ADE是等腰三角形.
图2-4-37
10.已知:如图2-4-38,四边形ABCD是圆的内接四边形,延长AD,BC相交于点E,F是BD延长线上的点,且DE平分∠CDF.求证:AB=AC.
图2-4-38
11.[2016·淮安清河区二模] 如图2-4-39,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,∠AED =115°,则∠B 的度数是( )
A .50°
B .75°
C .80°
D .100°
图2-4-39
图2-4-40
12.如图2-4-40,⊙O 是钝角三角形ABC 的外接圆,连接OC.已知∠BAC =y °,∠BCO =x °,则y 与x 之间的函数表达式为______________(不必写出自变量的取值范围).
13.教材练习第3题变式如图2-4-41,在⊙O 中,点A ,B ,C 在⊙O 上,且∠ACB =110°,则∠α=________.
14. [2016·南京高淳区一模] 四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为________.
图2-4-41
图2-4-42
15.[2016·南京溧水区一模] 如图2-4-42,在⊙O 的内接四边形ABCD 中,AB =AD ,∠C =110°.点E 在AD ︵
上,则∠E =________°.
16.如图2-4-43,AD 为圆内接三角形ABC 的外角∠EAC 的平分线,它与圆交于点D ,F 为BC 上的点.
(1)求证:DB =DC ;
(2)请你再补充一个条件使直线DF 一定经过圆心,并说明理由.
图2-4-43
17.如图2-4-44,⊙O的内接四边形ABCD两组对边的延长线分别相交于点E,F.
(1)若∠E=∠F,求证:∠ADC=∠ABC;
(2)若∠E=∠F=42°,求∠A的度数;
(3)若∠E=α,∠F=β,且α≠β,请你用含有α,β的代数式表示∠A的大小.
图2-4-44
详解详析
1.D [解析] ∵四边形ABCD 为⊙O 的内接四边形, ∴∠BCD +∠BAD =180°(圆内接四边形的对角互补). 又∵∠BCD =110°,
∴∠BAD =70°.故选D .
2.B [解析] ∵四边形ABCD 是圆内接四边形, ∴∠BAD +∠BCD =180°, 而∠BCD +∠DCE =180°, ∴∠DCE =∠BAD. 而∠BAD =105°,
∴∠DCE =105°. 故选B .
3.B [解析] ∵∠A ∶∠B ∶∠C =2∶3∶4, ∴设∠A =2x ,则∠B =3x ,∠C =4x. ∵四边形ABCD 为圆内接四边形, ∴∠A +∠C =180°,
即2x +4x =180°,解得x =30°, ∴∠B =3x =90°,
∴∠D =180°-∠B =180°-90°=90°.故选B . 4. C
5.40 [解析] ∵AB 是⊙O 的直径, ∴∠ACB =90°.
∵∠B =180°-∠D =50°, ∴∠BAC =90°-∠B =40°.
6.65 [解析] ∵∠BOD =130°, ∴∠A =1
2
∠BOD =65°.
∵∠A +∠BCD =180°,∠DCE +∠BCD =180°, ∴∠DCE =∠A =65°.
7.70 [解析] ∵∠ABC =100°,∠P =30°, ∴∠PAB =∠ABC -∠P =70°.
∵四边形ABCD 为圆的内接四边形, ∴∠C +∠BAD =180°. ∵∠BAD +∠PAB =180°, ∴∠C =∠PAB =70°. 8.120.
9.证明:∵A ,B ,C ,D 是⊙O 上的四点, ∴四边形ABCD 是⊙O 的内接四边形, ∴∠A +∠DCB =180°.
又∵∠BCE +∠DCB =180°,
∴∠A =∠BCE. ∵BC =BE ,
∴∠BCE =∠E ,∴∠A =∠E ,
∴AD =DE ,即△ADE 是等腰三角形.
10.证明:∵四边形ABCD 是圆内接四边形, ∴∠ABC +∠ADC =180°.
∵∠ADC +∠CDE =180°,
∴∠ABC =∠CDE.
∵∠FDE =∠ADB =∠ACB ,∠CDE =∠FDE ,∴∠ABC =∠ACB , ∴AB =AC.
11.D [解析] ∵四边形ACDE 是圆内接四边形, ∴∠AED +∠ACD =180°. ∵∠AED =115°, ∴∠ACD =65°. ∵∠CAD =35°,
∴∠ADC =80°.
∵四边形ABCD 是圆内接四边形, ∴∠B +∠ADC =180°, ∴∠B =100°,故选D . 12.y =x +90 13.140°
14. 130°或50° 15.125
16. (1)证明:∵∠DCB +∠BAD =180°,∠BAD +∠DAE =180°, ∴∠DCB =∠DAE.
∵∠DBC =∠CAD ,∠CAD =∠DAE , ∴∠DBC =∠CAD =∠DAE =∠DCB ,
∴DB =DC.
(2)答案不唯一,如:
若F 为BC 的中点,则DF 经过圆心.
理由:∵△DBC 是等腰三角形,F 是BC 的中点, ∴DF 是底边BC 的垂直平分线.
∵圆内接三角形的圆心是三边垂直平分线的交点, ∴DF 必过圆心.
17. (1)证明:∵∠E =∠F ,∠ECD =∠FCB , ∴∠E +∠ECD =∠F +∠FCB ,
即∠ADC =∠ABC.
(2)∵∠A +∠BCD =180°,∠ECD +∠BCD =180°, ∴∠A =∠ECD.
∵∠EDC =∠A +∠F ,
∠EDC +∠E +∠ECD =180°,
∴2∠A +∠E +∠F =180°.
又∵∠E =∠F =42°,∴∠A =48°.
(3)由(2)中的结论可知2∠A +∠E +∠F =180°, ∴2∠A +α+β=180°,解得∠A =90°-1
2(α+β).。

相关文档
最新文档