7-1激光加工技术-激光热加工原理讲解
激光加工的原理

激光加工的原理
激光加工的原理是利用一种叫做激光的光束进行加工,它有一定的波长和能量,即光束有形成特定的空间图形及属性,这样它具有一定的效率,能够将能量转换为加工能量。
激光加工是通过把激光加工机械手及相关加工设备控制系统所控制的激光器连接起来,用激光光束作为加工介质,把激光聚焦到加工部位,将其热能转换为热能的方式来加工硬质物料。
激光加工的原理是基于量子力学的原理,它可以通过光子的特性来加工材料。
根据多光子激发(MPE)原理,当激光照射到金属材料表面时,它会把金属表面形成一层薄膜,这层薄膜可以形成一定厚度的抛物面,从而形成激光切割孔。
然后,电离向量再将金属融化或改变形状,然后再继续加工处理。
另一方面,激光加工机床可以根据低相对能量密度的激光波来热加工。
这些激光波的热传导率是由光束束径和能量大小及波长等决定的。
使用高功率的激光,就可以形成足够的热量来瞬间将材料转变成熔融状态,从而可以实现快速、定点、精确的加工。
激光加工的优点在于它可以进行精准加工,加工时间短,成本低,它可以加工几乎所有的塑料或金属,它的加工要求精度高,加工精度高,加工表面质量好,有效抵抗高温,节约能源,可以高速加工,可以大批量制作,非常方便。
总的来说,激光加工的原理是利用激光束来热加工金属材料,它可以及时改变激光光束的形状和特性以达到加工质量,同时减少加工成本,提高生产效率。
激光加工的原理特点及应用

激光加工的原理特点及应用一、激光加工的原理激光加工是一种利用激光束对材料进行加工的方法。
它使用高能量密度的激光束对材料表面进行加热或熔化,从而实现切割、焊接、打孔等加工过程。
激光加工的原理主要包括以下几个方面:1.激光的产生:激光是由激光器生成的一束高度聚焦的光束。
激光器通过受激辐射的原子或分子发出具有特定波长和方向性的光,形成激光束。
2.激光的聚焦:激光束经过透镜或反射镜的作用,可以将光束聚焦到小尺寸的区域。
聚焦后的激光束具有高能量密度,可使材料表面产生高温。
3.激光与材料的相互作用:激光束照射到材料表面时,光能会被材料吸收、反射或透射。
当光能被吸收时,材料会发生热量的积累,引起温度升高。
4.材料的热效应:当材料受到高温的作用时,可能会发生熔化、汽化、气化或蒸发等现象。
材料的热效应决定了激光加工的效果。
二、激光加工的特点激光加工具有以下几个特点,使其在许多领域得到了广泛应用:1.高能量密度:激光束具有高度聚焦的特性,能够将高能量集中在很小的区域内。
因此,激光加工可以在微观尺度上进行精确加工,实现高精度的加工效果。
2.无接触加工:激光加工是一种非接触加工方法,即激光束不需要直接接触材料表面,避免了材料污染和机械损伤的可能性。
3.热影响区小:激光加工主要通过瞬时高温作用于材料表面,对材料的热影响区域较小,减少了加工过程中的热变形和残余应力。
4.处理速度快:激光加工具有高加工速度的特点,可以在短时间内完成大量的加工任务,提高了生产效率。
5.可加工多种材料:激光加工适用于各种硬度和脆性的材料,包括金属、非金属、塑料等。
不同材料对激光的吸收和反射特性不同,因此可以选择不同类型的激光器进行加工。
三、激光加工的应用激光加工在许多应用领域都得到了广泛的应用,以下列举了几个常见的应用领域:1.制造业:激光切割、激光焊接和激光打孔是制造业中常用的激光加工方法。
激光加工可以对金属板材、管材、零件等进行精确加工,提高产品的质量和生产效率。
激光原理与技术第七章激光加工技术

利用激光的亮度高和方向性好可以在机加工领域 大有作为。
如可以在零件上打一般钻头不能打的异形孔和尺 寸达微米级的小孔。利用激光进行切割,具有速度快, 切面光洁,不发生形变的特点。激光焊接可焊一般焊 接法不能焊的难熔金属。还可以利用激光亮度高、能 量集中、可通过理论计算进行控制的特点对金属工件 表面进行改性处理。
(4)离焦量对焊接质量的影响。 激光焊接通常需要一定的离做 文章一,因为激光焦点处光斑中心的功率密度过高,容易蒸发 成孔。离开激光焦点的各平面上,功率密度分布相对均匀。离 焦方式有两种:正离焦与负离焦。焦平面位于工件上方为正离 焦,反之为负离焦。按几何光学理论,当正负离焦平面与焊接 平面距离相等时,所对应平面上功率密度近似相同,但实际上 所获得的熔池形状不同。负离焦时,可获得更大的熔深,这与 熔池的形成过程有关。实验表明,激光加热50~200us材料开 始熔化,形成液相金属并出现问分汽化,形成市压蒸汽,并以 极高的速度喷射,发出耀眼的白光。与此同时,高浓度汽体使 液相金属运动至熔池边缘,在熔池中心形成凹陷。当负离焦时, 材料内部功率密度比表面还高,易形成更强的熔化、汽化,使 光能向材料更深处传递。所以在实际应用中,当要求熔深较大 时,采用负离焦;焊接薄材料时,宜用正离焦。
奥迪系列
宝马系列
人们对改进汽车的基本性能(驾驶性、安全性及对
环境的保护性等) 作了大量的工作。由于机械、电子
和光学等各种技术的综合应用,目前所制造的汽车更
为安全和舒适。
奔驰系列
激光发生器
激光设备
☆ 由光学震荡器及放在震荡器空穴两端镜间的介质所组成 。介质受到激发至高能量状态时,开始产生同相位光波且 在两端镜间来回反射,形成光电的串结效应,将光波放大 ,并获得足够能量而开始发射出激光。
激光加工原理

激光加工原理激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。
由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。
由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。
目前,公认的激光加工原理是两种:分别为激光热加工和光化学加工(又称冷加工)。
激光热加工指当激光束照射到物体表面时,引起快速加热,热力把对象的特性改变或把物料熔解蒸发。
热加工具有较高能量密度的激光束(它是集中的能量流),照射在被加工材料表面上,材料表面吸收激光能量,在照射区域内产生热激发过程,从而使材料表面(或涂层)温度上升,产生变态、熔融、烧蚀、蒸发等现象。
光化学加工指当激光束加于物体时,高密度能量光子引发或控制光化学反应的加工过程。
冷加工具有很高负荷能量的(紫外)光子,能够打断材料(特别是有机材料)或周围介质内的化学键,至使材料发生非热过程破坏。
这种冷加工在激光标记加工中具有特殊的意义,因为它不是热烧蚀,而是不产生“热损伤”副作用的、打断化学键的冷剥离,因而对被加工表面的里层和附近区域不产生加热或热变形等作用。
例如,电子工业中使用准分子激光器在基底材料上沉积化学物质薄膜,在半导体基片上开出狭窄的槽。
第一版激光加工简介激光加工是激光系统最常用的应用。
根据激光束与材料相互作用的机理,大体可将激光加工分为激光热加工和光化学反应加工两类。
激光热加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等;光化学反应加工是指激光束照射到物体,借助高密度高能光子引发或控制光化学反应的加工过程。
包括光化学沉积、立体光刻、激光刻蚀等。
由于激光具有高亮度、高方向性、高单色性和高相干性四大特性,因此就给激光加工带来一些其它加工方法所不具备的特性。
激光加工的原理特点应用

激光加工的原理特点应用一、激光加工的原理激光加工是一种利用高能量激光对材料进行加工的技术。
其原理基于激光的特性和相应的相互作用过程。
1. 激光的特性•高亮度:激光具有高亮度,即光束中的光子数目非常高。
•高单色性:激光是一种单色光,光的频率非常纯净。
•高相干性:激光具有相干性,光波的振动方向具有一定的规律。
2. 激光与材料的相互作用•吸收:激光进入材料后,会被材料吸收,能量转化为材料内部的热能。
•散射:激光与材料相互作用时,可能会发生散射现象,即光线改变了方向。
•光热效应:激光加工中,激光光束的能量转化为热能,使材料局部融化或汽化。
二、激光加工的特点1. 高精度激光加工具有非常高的精度。
由于激光光束的单色性和聚焦性,可以实现对材料的精细加工,尺寸控制在微米级别。
2. 无接触加工激光加工是非接触式加工技术,光束直接作用于材料表面,无需实体接触。
这种无接触性让激光加工可以对脆性材料、高硬度材料以及容易变形的材料进行加工,避免了物理性力量对材料造成的损伤。
3. 操作灵活激光加工可以通过调整激光的功率、频率、焦点位置和扫描速度等参数来实现不同的加工效果。
这使得激光加工具有操作灵活性,适应性强,能够满足不同材料和产品的加工需求。
4. 高速加工激光加工速度快,加工效率高。
由于激光光束具有较高的功率密度,能够在瞬间对材料进行加热、熔化和汽化。
这种高速加工能够极大地提高生产效率,适用于大批量加工生产。
5. 广泛应用激光加工技术广泛应用于各个领域。
例如,激光切割用于金属材料、塑料材料的切割加工;激光打标用于产品标记和编号;激光焊接用于金属零件的焊接;激光雕刻用于木材、石材、玻璃的雕刻等等。
三、激光加工的应用1. 工业制造激光加工在工业制造中扮演着重要的角色。
例如,激光切割技术可用于汽车制造中的车身零件切割,减少了材料浪费和加工时间;激光焊接技术可用于焊接不易访问到的位置,提高了焊接质量和生产效率。
2. 电子设备制造激光加工在电子设备制造中有广泛的应用。
激光加工技术的原理及应用

激光加工技术摘要激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一种加工新技术,涉及到光、机、电、材料及检测等多门学科。
由于激光加工热影响区域小,光束方向性好,几乎可以加工任何材料。
常用来进行选择性加工,精密加工。
由于激光加工的特殊特点,其发展前景广阔,目前已广泛应用于激光焊接、激光切割、表面改性、激光打标、切削加工,快速成形,激光钻孔和基板划片,半导体处理等。
关键词:原理、应用﹑新技术、精密加工、引言激光是本世纪的重大发明之一,具有巨大的技术潜力。
专家们认为,现在是电子技术的全胜时期,其主角是计算机,下一代将是光技术时代,其主角是激光。
激光因具有单色性、相干性和平行性三大特点,特别适用于材料加工。
激光加工是激光应用最有发展前途的领域,国外已开发出20多种激光加工技术。
激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。
激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。
激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。
用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。
激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。
正文1﹑激光加工技术的原理及其特点1.1激光加工的起源早期的激光加工由于功率较小,大多用于打小孔和微型焊接。
到20世纪70年代,随着大功率二氧化碳激光器、高重复频率钇铝石榴石激光器的出现,以及对激光加工机理和工艺的深入研究,激光加工技术有了很大进展,使用范围随之扩大。
数千瓦的激光加工机已用于各种材料的高速切割、深熔焊接和材料热处理等方面。
机械制造中的激光加工技术原理

机械制造中的激光加工技术原理激光加工技术是一种高精度加工方法,被广泛应用于机械制造领域。
它通过高能量密度的激光束对材料进行加热、熔化或蒸发,以达到切割、焊接、打孔、雕刻等目的。
本文将介绍激光加工技术的原理及其在机械制造中的应用。
一、激光加工技术原理激光是一种特殊的光束,具有高纯度、高单色性和高相干性等特点。
它是通过将激光材料激发至激光阈值以上,激活其内部的原子或分子,使它们从高能级跃迁到低能级,释放出带有特定波长和相位的光子。
这些光子经过放大、反射和聚焦等处理后,形成一个高强度、高能量密度的激光束。
激光加工技术利用这种特殊性质,对工件进行高精度加工。
在激光加工中,激光束首先经过准直系统和聚焦系统的处理,使其能够在一个很小的焦点上集中能量。
当激光功率足够大时,材料在激光束照射下将发生熔化、汽化或沉积等物理变化。
二、激光加工技术在机械制造中的应用1. 激光切割激光切割是激光加工技术的一项重要应用。
它可以对金属、塑料、纸板等不同材料进行切割,具有高精度、高速度和无接触等优势。
激光切割常用于金属板材加工、制造业和电子行业等领域。
2. 激光焊接激光焊接是利用激光束对材料进行熔化和固化的加工方法。
它具有快速、高效、无接触等优点,适用于对金属、塑料等材料进行精密焊接。
激光焊接广泛应用于汽车制造、航空航天等行业。
3. 激光打孔与刻蚀激光打孔是利用激光束对材料进行穿孔加工的方法。
激光束可以精确控制孔径和孔的形状,适用于多孔板、钢板和塑料板等材料的加工。
激光刻蚀则是利用激光束对材料进行蚀刻,可以制作出复杂的图形和花纹。
4. 激光表面处理激光表面处理是利用激光束对材料表面进行改性处理的方法。
通过调节激光功率和扫描速度等参数,可以改变材料表面的物理和化学特性。
激光表面处理常用于金属材料的硬化、涂层脱附和喷涂等工艺。
三、激光加工技术的发展趋势随着科学技术的不断进步,激光加工技术在机械制造领域中的应用也在不断拓展。
一方面,激光设备的性能和效率不断提高,使得激光加工更加精确、快速和稳定。
激光加工技术的原理及应用

激光加工技术的原理及应用激光加工技术是指利用激光束对物体进行切割、焊接、打孔、打标等各种加工处理的技术。
它是一种非接触式的加工方式,具有高能量密度、热影响区小、加工速度快、精度高等优点,广泛应用于航空航天、汽车制造、电子设备、医疗器械等领域。
激光加工技术的原理是利用激光器产生的激光束,通过聚焦系统将激光束聚焦到一个很小的点上,使其能量密度达到足够高,从而使物体表面的材料被加热至融点以上,然后通过熔化、汽化、气化等方式将其去除,在此过程中激光光束所传递的能量能够被物体吸收,从而进行精确的加工。
激光加工技术的应用十分广泛。
首先,在金属材料上的应用方面,激光加工技术可以实现高质量的切割、焊接等工艺,广泛应用于汽车、航空航天等领域。
其次,在电子设备的制造方面,激光加工技术可以实现对微型电子元器件的打孔、钻孔等工艺,提高了电子器件的集成度和性能。
此外,激光加工技术还可以应用于材料表面的处理,如打标、蚀刻等工艺,可以用于制作标识、图案等需求。
另外,激光加工技术还可以应用于医疗器械领域,如激光手术刀可以实现在激光束的精准作用下,对人体组织进行切割、消融等治疗。
激光加工技术的发展也在不断提升。
首先,激光器的功率和稳定性得到了提高,使得激光加工的速度和效率更高。
其次,激光加工的精度也得到了提高,可以实现更加精密的加工要求。
此外,激光加工技术还结合了计算机控制系统,可以实现对加工过程的精确控制,提高了加工的自动化程度。
另外,激光加工技术还逐渐向多波长加工、多轴加工等领域扩展,提供了更多的选择和应用范围。
总之,激光加工技术以其高能量密度、热影响区小、精确控制等优点,广泛应用于各领域的加工处理中。
随着技术的不断发展和应用的不断拓展,相信激光加工技术将会在未来取得更多的突破和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§
7 1 激 光 热 加 工 原 理 .
上一页 回首页 下一页 回末页 回目录
7.1 激光热加工原理
第 七 章 激 光 加 工 技 术
(2) 材料的加热 如果光照时间为有限长(s),考察点离开表面的距离(cm)也不为零,此时圆形激 光光斑中心轴线上考察点的温度为 2 2 z r 2 AP kt z 0 ierfc T z, t ierfc r0 2 t 2 kt 2 kt 进一步假设照射激光是高斯光束,且入射到表面上的光束有效半径为,则激光 光斑的功率密度可用离开中心的距离表示为 r2 q S r q S 0 exp 2 r 持续加热得到的光斑中心的温度最大值为
7.1 激光热加工原理
第 七 章 激 光 加 工 技 术
1.对激光与材料的相互作用过程的物理描述可以分为以下四个方面:
(1) 材料对激光的吸收 激光热加工时首先发生的是材料对激光能量的吸收。透入材料内部的光能主 要对材料起加热作用。 不同材料对不同波长激光吸收率不同。假设材料表面反射率为R,则吸收率为 A 1 R 当激光由空气垂直入射到平板材料上时,根据菲涅尔公式,反射率为
第 七 章 激 光 加 工 技 术
(4) 激光等离子体屏蔽现象 激光作用于靶表面,引发蒸汽,蒸汽继续吸收激光能量,使温度升高,最后 在靶表面产生高温高密度的等离子体。等离子体迅速向外膨胀,在此过程中继 续吸收入射激光,阻止激光到达靶面,切断了激光与靶的能量耦合。 如图7-2所示,为等离子云变化的过程
cl
T T T T t t z t z Qx, y, z, t t x x y y
如果光功率的损耗全部变成热量,则有
Qx, y, z, t qx, y, z, t
n1 1 n22 n 1 R n 1 n1 12 n22
2 2
§
.
上一页 回首页 下一页 回末页 回目录
7.1 激光热加工原理
第 七 章 激 光 加 工 技 术
(2) 材料的加热 为了得到加热阶段的温度分布,必须求解热传导微分方程。对于各向同性的 均匀材料,激光加热的热传导偏微分方程的一般形式为
7.1 激光热加工原理
第 七 章 激 光 加 工 技 术
1.无论是哪一种激光加工的方法,都要将一定功率激光束聚焦于被加工物体上, 使激光与物质相互作用。在不同激光参数下的各种加工的应用范围如图7-1示
§
7 1 激 光 热 加 工 原 理 .
图页 下一页 回末页 回目录
7 1 激 光 热 加 工 原 理
T 0,0,
(2) 材料的熔化与汽化
AqS 0r 23 2 t
§
.
激光功率密度过高,材料在表面汽化,不在深层熔化;激光功率密度过低, 则能量会扩散到较大的体积内,使焦点处熔化的深度很小
上一页 回首页 下一页 回末页 回目录
7.1 激光热加工原理
7 1 激 光 热 加 工 原 理
(2) 材料的加热 设入射激光束的光功率密度为qi,材料表面吸收的光功率密度为q0 ,则有 q0 Aqi qi 1 R az 激光从表面入射到材料内部深度为处的光强 qz q0 e 一般将激光在材料内的穿透深度定义为光强降至I0/e时的深度,因而穿透深 度为1/a
§
7 1 激 光 热 加 工 原 理 .
图7-2 等离子云变化的过程
上一页 回首页 下一页 回末页 回目录
从理论上讲,根据加工时的各工艺参数以及初始条件,可以解出加工过程中激 光照射区的温度场分布。但实际加工时,各方面的因素使热传导方程的求解十 分困难 简化:如果半无限大(即物体厚度无限大)物体表面受到均匀的激光垂直照 射加热,被材料表面吸收的光功率密度不随时间改变,而且光照时间足够长, 以至被吸收的能量、所产生的温度、导热和热辐射之间达到动平衡,此时圆形 激光光斑中心的温度可以由下式确定 AP T 0, r0 t