光纤通信技术的发展史及其现状要点

光纤通信技术的发展史及其现状要点
光纤通信技术的发展史及其现状要点

本科学生读书报告

论文题目:光纤通信技术的发展史及其现状学院:电子工程学院

年级:

专业:

姓名:

学号:

指导教师:

摘要

光纤通信符合了高速度、大容量、高保密等要求,但是,光纤通信能实际应用到人类传输信息中并不是一帆风顺的,其发展中经历了很多技术难关,解决了这些技术难题,光纤通信才能进一步发展。

本文从光源及传输介质、光电子器件、光纤通信系统的发展来展示光纤通信技术的发展。

关键词

光纤通信技术光纤光缆;光有源器件;光无源器件;光纤通信系统

Abstract

Optical fiber communication in line with the high speed, high capacity etc requirements, however, optical fiber communication can actual application to human transmission of information and is not straightforward, its developing experience a lot of technical challenges, solve these technical problems, optical fiber communication to further development.

This paper, from the light source and the transmission medium, the optoelectronic devices, optical fiber communication system to show the development of the optical fiber communication technology development.

Key words

Optical fiber communication technology of optical fiber cable ;Active optical device ;Optical passive device ;Optical fiber communication system

目录

摘要 ............................................................................................................................................ I Abstract......................................................................................................................................II 前言 . (1)

第一章光纤通信技术的形成 (1)

1.1 早期的光通信 (1)

1.2 现代光纤通信技术的形成 (2)

第二章光纤通信技术现状及其发展 (4)

2.1 光纤光缆 (4)

2.2 光电子器件 (5)

2.2.1 光有源器件 (5)

2.2.2 光无源器件 (6)

2.3 光纤通信系统 (9)

第三章我国光纤通信的发展 (10)

结论 (11)

参考文献 (12)

前言

光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。

光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。

将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。

第一章光纤通信技术的形成

1.1 早期的光通信

光无处不在,这句话毫不夸张。在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。

打手势是一种目视形式的光通信,在黑暗中不能进行。白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。

另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。望远镜的出现则又极大地延长了这类目视形式的光通信的距离。

这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。

近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。这种光电话利用太阳光或弧光灯作光源,通过透镜把光束聚焦在送话器前的振动镜片上,使光强度随话音的变化而变化,实现话音对光强度的调制。在接收端,用抛物面反射镜把从大气传来的光束反射到硅光电池上,使光信号变换为电流传送到受话器。

光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。其所利用的自然光为非相干光,方向性不好,不易调制和传输;而以空气作为传输介质,损耗会很大,无法实现远距离传输,又易受天气影响,通信极不稳定可靠。

如此看来,这种光电话并没有太大的实际应用价值,然而,我们不得不说,光电话仍是一项伟大的发明,它的出现证明了用光波作为载波传输信息是可行的,因此,把贝尔光电话称为现代光通信的雏形毫不过分。

1.2 现代光纤通信技术的形成

随着社会的发展,信息传输与交换量与日俱增,传统的通信方式已不能满足人们的需要。为了扩大通信容量,通信方式从中波、短波发展到微波、毫米波,这实际上就是通过提高通通信载波频率来扩大通信容量的。

继续提高频率,达到光波波段,光波是人们最熟悉的电磁波,其波长在微米级,而频率则为14

10~5

10倍。如此看来,用光波作为载10Hz数量级,这比常用的微波频率高4

波进行通信,通信容量将大大超过传统通信方式。

要发展光通信,最重要的问题就是要寻找适用于光通信的光源和传输介质。

1970年,光纤和激光器这两个科研成果同时问世,拉开了光纤通信的帷幕,所以我们把1970年称为光纤通信的“元年”。

1、光源

1960年,美国的梅曼(T.H.Maiman)发明了红宝石激光器,它可以产生单色相干光,使高速信息的光调制成为可能。

和普通光相比,激光具有波谱宽度窄,方向性极好,亮度极高,以及频率和相位较一致的良好特性。激光是一种高度相干光,它的特性和无线电波相似,是一种理想的光载波。

但是,红宝石激光器发出的光束不容易耦合进光纤中传输,其耦合效率是极低的,因此需要研制小型化的激光光源。

1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后突破了半导体激光器在低温(-200 C?)或脉冲激励条件下工作的限制,研制成功室温下连续工作的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但其意义是重大的,它为半导体激光器的发展奠定了基础。1973年,半导体激光器寿命达到10万小时(约11.4年),外推寿命达到100万小时,完全满足实用化的要求。在这个期间,

μ的铟镓砷磷(InGaAsP)激光器,1976年日本电报电话公司研制成功发射波长为1.3 m

μ的1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55m

连续振荡半导体激光器。

激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。

2、传输介质

1)大气

1961~1970年,人们主要研究利用大气传输光信号。美国麻省理工学院利用He-Ne

激光器和

CO激光器进行了大气激光通信试验。试验证明用承载信息的光波通过大气的2

传播实现点对点的通信是可行的,但是大气传输光通信存在很多严重的问题:(1)通信能力和质量受气候影响十分严重。由于雨、雾、雪和大气灰尘的吸收和散射,光波能量衰减很大。例如,雨能造成30dB/km的衰减,浓雾衰减高达120dB/km。

(2)大气的密度和温度很不均匀,造成折射率的变化,加上大气湍流的影响,光束位置可能会发生偏移和抖动。因而通信的距离和稳定性都受到极大的限制,不能实现“全天候”通信。

(3)大气传输设备要求设在高处,收、发设备必须直线可见。这种地理条件使得大气传输通信的适用范围具有很大的局限性。

虽然,固体激光器(例如掺钕钇铝石榴石(Nd:YAG)激光器)的发明大大提高了发射光功率,延长了传输距离,使大气激光通信可以在江河两岸、海岛之间和某些特定场合使用,但是大气激光通信的稳定性和可靠性仍然没有解决。

为了克服气候对激光通信的影响,人们自然想到把激光束限制在特定的空间内传输。因而提出了透镜波导和反射镜波导的光波传输系统。透镜波导是在金属管内每隔一定距离安装一个透镜,每个透镜把经传输的光束会聚到下一个透镜而实现的。反射镜波导和透射镜波导相似,是用与光束传输方向成45?角的两个平行反射镜代替透镜而构成的。

这两种波导从理论上讲是可行的,但在实际应用中遇到了不可克服的困难。首先,现场施工中校准和安装十分复杂;其次,为了防止地面活动对波导的影响,必须把波导深埋或选择在人车稀少的地区使用。

由于没有找到稳定可靠和低损耗的传输介质,对光通信的研究曾一度走入了低潮。

2)光纤

为了发展光通信技术,人们又考虑和尝试了各种传输介质,其中包括利用玻璃材料制成光导纤维来传输光信号,但是当时最好的光学玻璃材料的损耗在1000dB/km以上,这么高的传输损耗根本就无法用于通信。

1966年,美籍华人高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了光纤通信的基础。

1970年,光纤研制取得了重大突破。美国康宁(Corning)公司研制成功损耗20dB/km 的石英光纤。因此,光纤通信开始可以和同轴电缆通信竞争,世界各国相继投入大量人力物力,把光纤通信的研究开发推向一个新阶段。

1972年,随着光纤制备工艺中的原材料提纯、制棒和拉丝技术水平的不断提高,进而将梯度折射率多模光纤的衰减系数降至4dB/km。

1973年,美国贝尔实验室研制的光纤损耗降低到 2.5dB/km。1974年降到了1.1dB/km。

1976年日本电报电话(NTT)公司等单位将光纤损耗降低到0.47dB/km(波长μ)。

1.2m

μ波长处的光纤损耗(如图2所示):1979年是20dB/km,在以后的10年中, 1.55m

1984年是0.157dB/km,1986年是0.154dB/km,接近了光纤最低损耗的理论极限。

图105

10

15

20

25

1970

1972

1973

1974

年dB/km 光纤损耗

情图205

10152025197919841986年dB/km 1550nm波长处光纤损耗

1976年,在进一步设法降低玻璃中的OH -(氢氧根)含量时,发现光纤的衰减在长波长区有1.31m μ和1.55m μ两个低损耗窗口。

1976年,美国在亚特兰大进行了世界上第一个实用光纤通信系统的现场试验,系统采用GaAlAs 激光器作为光源,多模光纤作为传输介质,速率为44.736Mbit/s 、传输距离约10km ,这一试验使光纤通信向实用化迈出了第一步。

1980年,原材料提纯和光纤制备工艺得到不断完善,从而加快了光纤的传输窗口由0.85m μ移至1.31m μ和1.55m μ的进程。特别是制出了低衰减光纤,其在1.55m μ的衰减系数为0.20dB/km ,已接近理论值。与此同时,为促进光纤通信系统的实用化,人们又及时地开发出适用于长波长的光源,即激光器、发光管和光检测器。应运而生的光纤成缆、光无源器件、性能测试及工程应用仪表等技术的日趋成熟,都为光纤光缆作为新的通信传输媒质奠定了良好的基础。

1981年以后,世界各发达国家将光纤通信技术大规模地推入商用。历经20余年的突飞猛进的发展,光纤通信速率已由1978年的45Mbit/s (例如美国MCI 于1991年开通了Chicago 至St.Louis 全长275英里的4×10Gbit/s 的商用光纤通信系统等)。

第二章 光纤通信技术现状及其发展

从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分。

2.1 光纤光缆

光纤本身所固有的优点及其技术的进步使其成为当今社会信息传输的主要媒介。图3展示了北美消费的光缆较多,占了全球近25%,其次为欧洲。全球光纤的消费额逐年增加,由此看出,光纤的市场需求量在增加,其应用越来越广。

0100

200

300400

亿美元19982008年

图3 光纤消费地域分布情况

全球北美欧洲010*******

400

亿美元1998

2008年图4 单模、多模光纤消费情况单模光纤

多模光纤总额

图5 1998年光纤消费情况单模光纤

多模光纤图6 预计2008年光纤消费情况

单模光纤

多模光纤

图4展示了单模、多模光纤的消费额总体在增加,结合图5、图6又可以知道单模光纤的市场份额有所下降,多模光纤的应用则变得较为广泛。

2.2 光电子器件

2.2.1 光有源器件

1) 光检测器

常见的光检测器包括:PN 光电二极管、PIN 光电二极管和雪崩光电二极管(APD )。目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW 左右。为了得到较大的信号电流,人们希望灵敏度尽可能的高。

光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。

由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。因此,光电检测器的噪声要求很小。

另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。

2) 光放大器

光放大器的出现使得我们可以省去传统的长途光纤传输系统中不可缺少的光-电-光的转换过程,使得电路变得比较简单,可靠性也变高。

早在1960年激光器发明不久,人们就开始了对光放大器的研究,但是真正开始实

用化的研究是在1980年以后。随着半导体激光器特性的改善,首先出现了法布里-泊罗型半导体激光放大器,接着开始了对行波式半导体激光放大器的研究。另一方面,随着光纤技术的发展,出现了光纤拉曼放大器。80年代后期,掺稀土元素的光纤放大器脱颖而出,并很快达到实用水平,应用于越洋的长途光通信系统中。

目前能用于光纤通信的光放大器主要是半导体激光放大器和掺稀土金属光纤放大器,特别是掺饵光纤放大器(EDFA )倍受青睐。1985年英国南安普顿大学首次研制成掺饵光纤,1989年以后掺饵光纤放大器的研究工作不断取得重大突破。由于光纤放大器的问世,在1990年到1992年不到两年的时间里,光纤系统的容量竟增加了一个数量级。而在1982年到1990年的8年时间里,光纤系统的容量才只增加了一个数量级。光放大器的作用和光纤传输容量的突飞猛进,为光纤通信展现了无限广阔的发展前景。

当前光纤通信系统工作在两个低损耗窗口:1.55m μ波段和1.31m μ波段。选择不同的掺杂元素,可使放大器工作在不同窗口。

掺饵光纤放大器工作在1.55m μ窗口,该窗口光纤损耗系数比1.31m μ窗口低(仅0.2dB/km )。已商用的EDFA 噪声低,增益曲线好,放大器带宽大,与波分复用(WDM )系统兼容,泵浦效率高,工作性能稳定,技术成熟,在现代长途高速光通信系统中备受青睐。

掺镨光纤放大器工作在1.31μm 波段,已敷设的光纤90%都工作在这一窗口。PDFA 对现有光通信线路的升级和扩容有重要的意义。目前已经研制出低噪声、高增益的PDFA ,但是它的泵浦效率不高,工作性能不稳定,增益对温度敏感,离实用还有一段距离。

非线性的研制始于80年代,并在90年代初取得重大突破。光纤拉曼放大器是利用光纤的非线性光学效应——受激拉曼散射效应产生的增益机理而对光信号进行放大的。其优点是传输线路与放大线路同为光纤,因此,放大器与线路的耦合损耗小,噪声较低,增益稳定性较好。但由于这种光放大器需要很大的泵浦功率(数百毫瓦)和很长的光纤(数公里)。另外,光纤拉曼放大器的特性对光纤的偏振状态十分敏感。因此,光纤拉曼放大器目前还不能用于光纤通信。

2.2.2 光无源器件

光无源器件是光纤通信系统的重要组成部分,在光纤通信向大容量、高速率发展的今天,光无源器件显得尤为重要。今年来,新材料、新工艺和新产品在不断涌现,光无源器件正面临一个迅速发展的时期。

1) 光纤活动连接器

光纤(缆)活动连接器是实现光纤之间活动连接的光无源器件,它还具有将光纤与其他无源器件、光纤与有源器件、光纤与系统和仪表进行活动连接的功能。在进一步提高光纤活动连接器性能的基础上,使其向小型化、集成化方向发展。

① 进一步提高光纤活动连接器性能指标

目前的插入损耗范围在0.1dB ~0.5dB ,平均值为0.3dB ,相对过高且变化范围大。随着加工精度的提高,争取将平均值降到0.1dB 以下,变化范围缩小至0.2dB 左右。

改变插针端面的几何形状是提高回波损耗的有效手段。可以预期,端面为平面形状

的插针将会逐渐被淘汰,球面和斜球面的插针会同时存在,而且球面插针的需要量仍将占主要地位。

此外,采用镀膜工艺等新的加工技术来提高回波损耗可以降低零件的加工精度要求,并可提高两接器的一致性和互换性。

②小型化

随着光纤接入网的发展,目前使用的连接器已显示出体积过大、价格太贵的缺点,因此小型化是光纤活动连接器的发展方向。

光纤活动连接器小型化的一种方法是缩小单芯光纤连接器尺寸,开发小型化(SFF)的连接器,如瑞士Diamond公司的E-2000型连接器,美国朗讯公司的LC型连接器以及日本NTT公司的MU型连接器等,它们的插针直径只有1.25mm。

连接器小型化的另一种方法是开发适应带状光纤的多芯光纤连接器,即MT型系列光纤连接器。带状光缆具有可集成的优势,是今年来迅速发展的一个光缆品种,它具有以下优点:体积小、重量轻、密集度高;采用注塑成型,一致性好,适于大批量生产;具有较低的插入损耗;具有良好的稳定性。随着干线网、用户网和局域网的发展,带状光缆连接器将成为连接器发展的方向。

③集成化

光纤活动器不仅仅只有连接功能,还具有其它功能,因此,集成化是其发展的一个重要方向。现在已经出现了一些集成化的多功能产品,如外形与各种变换器一样的固定衰减器;既可作为FC型转换器,又可以对光的衰减量连续可调(0~25dB)的小型可变衰减器等。

光纤活动连接器的集成化,不但增加了连接器的功能,而且更重要的是体高其它器件的密集度和可靠性,给使用者带来极大方便。

2)固定连接器

固定连接器又称固定接头或接线子,它能够把两个光纤端面结合在一起,以实现光纤与光纤之间的永久性连接。固定接头的制作方法按其工作原理有熔接法、V形槽法、毛细管法、套管法等。

光纤熔接机正朝着两个方向发展:一是向全自动、多功能方向发展;二是向小型化、简易化方向发展。目前普遍使用的全自动光纤熔接机设备笨重,价格昂贵。今后这一机型会朝着提高精度、降低成本、尤其是增加连接芯数的方向发展。

同时,随着光纤应用领域的扩大及用户不同的需要,对光纤熔接技术的要求也逐渐趋于多样化。因此,研制小型和超小型熔接机就成为第二个发展方向。同时致力于多芯光纤熔接机和保偏光纤熔接机的研究生产。

对于其它几种固定连接器而言,插入损耗和回波损耗这两个指标上都落后于光纤熔接机所制作的固定接头。要想提高这几种接头的加工精度,研制更适合的匹配液是一种比较有效的办法,目前许多厂家正致力于这方面的研究。此外,V形槽和毛细管结构比光纤熔接机更容易实现带状光纤与光波导阵列、光有源器件阵列的固定连接,可以从改善机械结构、光学透镜和匹配液入手,使这种连接得以实现。最后,为配合带状光缆的应用,多芯化的固定连接器也应大力发展。

3)光衰减器

光衰减器是光通信中发展最早的无源器件之一,目前已形成了固定式、步进可调式、

连续可调式及智能型光衰减器四种系列。

目前,光衰减器的市场越来越大。由于固定光衰减器具有价格低廉、性能稳定、使用简便等优点,所以市场需求比可变光衰减器大一些。而可变光衰减器由于其灵活性,市场需求仍稳步增长。

国外的光衰减器性能已达到高性能要求,目前国外的一些光学器件公司正在不断开发各种新型光衰减器,以求获得性能更高、体积更小、价格更适宜的实用化产品。

从市场需求的角度来看,光衰减器将向着小型化、系列化、低价格的方向发展。此外,由于普通型光衰减器已相当成熟,所以今后的研究将侧重于其高性能方面。

为了避免器件的光反射引起光源的频率漂移和线路噪声,使受此影响较大的系统能够正常工作,必须在相应的线路中使用高回损衰减器。因此,高回损衰减器是衰减器发展的一个重要方向。此外,光衰减器还必须有更宽的温度使用范围和频谱范围及多更能等优良性能。

4)光波分复用器

光波分复用器(WDM)又称为光合波/分波器,它是对光波波长进行合成与分离的光无源器件,在解决光缆线路的扩容或复用中起着关键作用。

当前使用的光波分复用器主要是两波长的复用器,例如1310/1550nm主要用于通信线路,980/1550nm和1480/1550nm主要用于光纤放大器。随着密集波分复用(DWDM)系统的发展,多波长复用器的需求量正在增加,复用波长之间的间隔也在逐渐缩小。当波长之间的间隔为20nm时,一般称为粗波分复用器;波长之间的间隔为1~10nm时,一般称为密集波分复用器。因此,密集化、小型化、实用化、组件化是波分复用器发展的必然趋势。

5)无源光耦合器

光耦合器的研制、开发及应用已经历了近四十年,目前基本形成了以熔融拉锥型器件为主、波导器件逐渐发展的局面。随着光纤通信、光纤传感技术、光纤CATV、局域网、光纤用户网以及用户接入网等的迅速发展,对光耦合器的需求会进一步增大。

当前,能进行大批量生产单模光纤耦合器的方法是熔融拉锥法。但是在这种方法中,由于光纤之间的耦合系数与波长有关,所以光传输波长发生变化时,耦合系数也会发生变化,即耦合比发生变化,一般它随波长的变化率为0.2%nm。所以宽带化是耦合器的一个重要方向。

与此同时,为了适应各种光纤网络用户数量剧增的需要,一方面需要大功率的光源,另一方面在不断增加耦合器路数的同时,进一步降低附加损耗、减少器件体积,并提高使用的可靠性。

综上所述,未来的光耦合器将是宽带的、集成化的、低损耗和易接入的器件,还应根据要实现多路数、小型化等。

6)光隔离器

隔离器是一种光单向传输的非互易器件,它对正向传输光具有较低的插入损耗,而对反向传输光有很大的衰减作用。

目前,光隔离器已经产生了一系列的器件,如阵列光隔离器、小型化光隔离器,还有一些隔离器与WDM、Tap、GFF等滤波器混合的器件,这些器件都已研制成功,并批量生产。到目前为止,自由空间型、偏振相关型隔离器应用较多,主要用于有源器件的封

装。

从实用的角度来看,光隔离器发展的主要方向是高性能偏振无关在线型光隔离器、高性能偏振灵敏微型光隔离器以及多功能光隔离器。

随着光纤放大器、CATV 网、光信息处理、Gbit/s 级高速光纤通信及相干光通信等技术的进一步推广,光隔离器也正向着高性能、微型化、集成化、多功能能、低价格方向发展未来的光隔离器很可能是一种微型化高性价比的集成器件。

7) 光开关

随着密集波分复用系统和全光通信网的使用,各结点上的信号交换直接在光域中完成,这就需要光开关。由于这些结点上进行交换的光纤和波长数量很多,所以这种光开关应当是大端口数的矩阵开关。因此,光开关的矩阵化和小型化是光开关发展的一个重要趋势。

今年来出现了能继承大规模矩阵阵列而又有良好性能的两种新型光开关,即微机械光开关(MEMS )和热光开关。

2.3 光纤通信系统

光纤通信系统已经历了四代变更:

第一代光纤通信系统是在1973~1976年研制成功的45Mbit/s 、0.85m μ多模光纤系统。其光纤损耗在0.85m μ处为4dB/km ,在1.06m μ处为2dB/km ,LD (Laser Diode ,

激光二极管)寿命达到610小时。此外组成系统的其他各个部分在性能上已基本满足要

求。1978年投入使用的第一代光纤通信系统的速率范围在50~100Mbit/s ,中继距离为10km 。

第二代光纤通信体统于1976~1982年研制成功,它可以传送中等码速的数字信号。其工作波长为1.30m μ,损耗为0.5dB/km ,色散的最小值近似为零。

目前正处在大规模实用化的是第三代光纤通信系统。其工作波长为1.31m μ,使用LD 可传输140~600Mbit/s 的高码速信号,中继距离达30~50km 。

第四代光纤通信系统目前还处在实验室研制阶段。其主要思想是将零色散波长移到

1.55m μ,这样可以使光纤损耗更低,色散为零。

目前,人们已经涉足第五代光纤通信系统的研究和开发,称之为光孤子通信系统。光孤子通信系统具有超长距离的传输能力,其应用潜力是巨大的。但是光孤子通信系统目前尚处于研究开发阶段,要真正进入实用化还需要解决一系列实际应用问题。

第三章我国光纤通信的发展

在国外光纤通信的研究起步不久,我国从1974年就开始了光纤通信的基础研究,并在几年之内就取得了阶段性的研究成果。在此基础上,20世纪70年代末进行了光纤通信系统现场试验。80年代主要进行光纤通信系统的实用化攻关,完成了武汉市话中继实用化工程,武汉-荆州多模光缆34Mbit/s省内干线工程以及合肥-芜湖140Mbit/s单模光缆一级干线工程等,为大规模推广应用打下了基础。90年代初期,我国开始了光纤通信系统的大量建设,光缆逐渐取代电缆,并完成了“八纵八横”国家干线。这些干线主要是采用PDH140Mbit/s系统。随着市场需求量的增加以及技术水平的不断提高,逐渐采用了SDH622Mbit/s和2.5Gbit/s系统。郑州-洛阳-开封的16×2.5Gbit/s和上海-南京的32×10Gbit/s的波分复用数字光纤通信系统的研究开发与投入商用等工作正在加速进行之中。此外,国产的光器件产品在国际市场也具有较强的竞争力。由此可见,我国已具有大力发展光纤通信的综合实力。

μ窗口、3.5dB/km,多模、8Mbit/s、13.5km),1982年建武汉市话中继光缆(0.85m

μ窗口、1.2dB/km,多1988年建第一条国产设备长途直埋光缆兰州至武威工程(1.30m

模、140Mb/s、286km),1989年起大量用单模光纤建线路。至2000年底,光缆总长度达125万公里(其中长途干线光缆28.6万公里,中国电信23万公里、中国联通5.6万公里),通达250多个地市,总用光纤约3000万公里。上述线路基本上是G.652单模光纤(只有京九光缆放了六根G.653光纤),且1995年前只开通1310nm窗口,1995年后才开通1550nm窗口。传输速率九十年代末期才开始从622Mb/s提升到2.5Gb/s。这两年新建线路用到10Gb/s,波分复用最高达32,总传输容量达320Gb/s(32×10Gb/s)。1999年开始较多使用G.655光纤。

在光纤研制方面,我国对国际上现有的光纤类型都在跟踪研究并有了成果,武汉邮科院和长飞公司研制的非零色散位移光纤已经实用。其他如色散补偿光纤、偏振保持光纤、掺饵光纤、数据光纤、塑料光纤等均能达到生产阶段。光有源器件的研制在掺饵光纤激光器、主动锁模光纤环形激光器、被动锁模光纤环形激光器、光纤光栅激光器、增益平坦EDFA、高增益低噪声EDFA、掺饵光纤均衡放大器、DFB-LD与EA型外调制器的集成器件等方面都有显著进展。

结论

总的说来,任何一项技术的发展都是要与人类生活相适应的。目前社会,很多产品都在向小型化、集成化方向发展,光纤通信领域的设备也不例外,而其技术则在向越来越有利于人类的方向发展,这些技术、设备的进步都是在我们的研究中不断进步的,我国的光纤通信技术还需要我们进一步的学习和研究发展。

参考文献

[1] 穆道生主编.现代光纤通信系统.北京:科学出版社,2005.9

[2] 刘增基,周洋溢,胡辽林,周绮丽编著.光纤通信.西安:西安电子科技大学出版社,2001.8

[3] Joseph C,Palais著;王江平等译.光纤通信(第五版).北京:电子工业出版社,2006.1

光纤通信发展

光纤通信技术的发展 (辽宁工程技术大学电子与信息学院辽宁省葫芦岛市126105) 摘要光纤通信的问世使高速率,大容量的通信成为可能,目前它已成为最主要的信息传输技术。本文简要介绍了光纤通信的发展史;光无源器件;光纤通信系统;总结了光纤通信的主要技术的发展—光波分复用技术、光孤子通信技术、光纤交换技术以及量子通信技术等的基本原理、优势、发展状况和技术水平;指出了未来的光纤通信将会朝着光纤到户、全光网络的方向发展,为用户提供更多更好的信息服务。 关键词:光无源器件; 光放大器 ;光孤子通信 ; 全光通信网 中图分类号:文献标志码: Optical fiber communications technology development (Liaoning Technical Univercity Electronic Information Engineering College , Liaoning Huludao 125105) Abstract: Optical fiber communications being published causes the high speed, the large capacity correspondence becomes possibly, at present it has become the most main intelligence transmission technology. This article introduced the optical fiber communications history briefly; Light passive component; Optical fiber communications system; Summarized the optical fiber communications main technology development - light wavelength division multiplying technology, the optical soliton communication, the optical fiber exchange technology as well as the quantum communication and so on the basic principle, the superiority, the development condition and the technical level; Had pointed out the future optical fiber communications will be able to face the optical fiber to the household, the entire light network direction is developing, provides the more better information service for the user. Key word:Light passive component ; Light amplifier; Optical soliton correspondence ; Entire optical communication network Coherent

我国光纤通信技术论文.doc

我国光纤通信技术论文 2020年4月

我国光纤通信技术论文本文关键词:光纤通信,我国,论文,技术 我国光纤通信技术论文本文简介:1光纤通信技术的主要特点 1.1损耗低,传输距离远与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用 我国光纤通信技术论文本文内容: 1光纤通信技术的主要特点 1.1损耗低,传输距离远 与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用光纤通信。光纤通信在

长距离传输中的优势非常明显。目前光纤通信的最长通信距离达到10000m以上。 1.2抗干扰能力强 与其他光缆相比,光纤通信具有非常明显的优点———抗电磁干扰能力极强。光纤通信设备的主要成分是SiO 的应用给光纤通信技术带来无可比拟的优势。由于石英具有极强的抗腐蚀性和绝缘性,因此,应用到光纤通讯设备上使其同样具有较强的抗干扰能力。光纤通信不会受到太阳黑子活动、电离层变化、雷电以及人为释放的电磁等方面的干扰,这一特性使得光纤可以应用到军事领域中。 1.3安全性和保密性高 因为光纤主要依靠光波的全反射原理进行传输,光信号完全被限制在包层内,光波泄露的现象很少发生。而且一个光缆内的很多光纤线之间也不会相互干扰,因此,光通信的抗干扰能力很强,保密性和安全性非常高。此外,光纤的重量很轻、体积较小,这样既节省空间又使得设备的安装非常方便。另外,用来制作光纤通信设备的原材料越来越丰富,而且价格低廉,稳定性好,同时受环境温度影响小,使

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

光纤通信技术特点和发展

光纤通信技术特点和发展

光纤通信技术的特点和发展趋势 摘要:光纤通信是指利用光与光纤传递信息的一种方式,光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,既有经济优势又有技术优势,光纤通信由于超高速、低误码、高可靠,价格低廉,已成为信息的最重要传输手段和信息社会的重要基础设施。本文探讨光纤通信技术的优点和缺点以及光纤通信的发展和现状。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

关键词:光纤通信技术特点现状发展趋势 1、光纤通信技术 2、 光纤通信是利用光导纤维传输光信号,以实现信息传递的一种通信方式,属于有线通信的一种,光经过调变后便能携带信息,利用光波作载体,以光纤作为传输媒介,将信息从一处传至另一处,是光信息科学与技术的研究与应用领域。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层成为包层,包层的作用是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆,由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路,光波在光纤中传输,不会发生信息传播中的信息泄露现象,光纤很细,占用的体积小,这解决了实施的空间问题。光纤通信系统的组成,现代的光纤通信系统多半包括一个发射器,将电信号转换成光信号,再通过光纤将光信号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光信号转换回电信号。在光纤通信系统中传递的多半是数位信号,来源包括计算机、电话系统,或是有线电

光纤通信技术的发展及趋势

光纤通信技术的发展及趋势 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 1、导言 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 2、光纤通信技术的发展历史总结

近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。 光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。 上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0. 2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。 由以上光纤通信技术的发展历程,可以把光纤通信技术分为大致五个阶段,即850纳米波段的多模光波,到1310纳米多模光纤,到1310纳米单模光纤,再到1550纳米单模光纤,最后是长距离进行传输的光纤通信技术。 3、光纤通信技术的现状研究

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

————————————————————————————————作者:————————————————————————————————日期: 2

学号:20085044013 本科学年论文 学院物理电子工程学院 专业电子科学与技术 年级2008级 姓名王震 论文题目光纤通信技术发展历程、特点及现状 指导教师张新伟职称讲师 成绩

2012年1月10日 目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特

光纤通信综述

一、概述 随着社会信息技术的发展,3G网络的实施,4G网络的开发与研 究,IPTV三网融合、物联网等的实施和提出,对现有的网络提出了革 命性的要求,人类对于信号传输带宽的需求一直在以惊人的速度增长。移动性、无线化、数字化和宽带化是当今信息业发展的趋势,超高速、超大容量成为信息传送追求的主要目标。 光纤通信(Optical Fiber Communications)技术是利用光波作为载波来传递信息的技术。当今,光纤以其传输频带宽、抗干扰性高和信号衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。 在20世纪60年代初期,由于人们无法解决光的散射等问题,光通信一直没有重大的发展。直到20世纪60年代中期,情况才发生改变,而改变这一现状的正是一位中国人-高锟。1966年,高锟发表了关于通信传输新介质的论文,提出可以利用光导纤维进行信息传输的可能性和技术途径,这才奠定了光通信的基础。1970年,美国康宁公司 按照高锟的思路造出了损耗为20dB/km的石英光纤,使得光纤的研制取得重大突破。1972年,该公司生产的高纯石英多模光纤的损耗下 降到4dB/km。到了20世纪80年代初,单模光纤在波长1.55um的损耗已经下降到0.2dB/km,而目前G.654光纤在1.55um波长附近损耗仅0.1510.2dB/km,接近光纤的理论极限。由于高锟在开创光纤通信历史上的卓越贡献,2009年10月6日被授予了诺贝尔物理学奖。

光纤通信(Optical Fiber Communications)技术是利用光波作为载波来传递信息的技术。当今,光纤以其传输频带宽、抗干扰性高和信号.衰减小,而远优于电缆、微波通信的传输,已成为世界通信中主要传输方式。 在20世纪60年代初期,由于人们无法解决光的散射等问题,光通信一直没有重大的发展。直到20世纪60年代中期,情况才发生改变,而改变这一现状的正是一位中国人-高锟。1966年,高锟发表了关于通信传输新介质的论文,提出可以利用光导纤维进行信息传输的可能性和技术途径,这才奠定了光通信的基础。1970年,美国康宁公司按照高锟的思路造出了损耗为20dB/km的石英光纤,使得光纤的研制取得重大突破。1972年,该公司生产的高纯石英多模光纤的损耗下降到4dB/km。到了20世纪80年代初,单模光纤在波长1.55um的损耗已经下降到0.2dB/km,而目前G.654光纤在1.55um波长附近损耗仅0.1510.2dB/km,接近光纤的理论极限。由于高锟在开创光纤通信历史上的卓越贡献,2009年10月6日被授予了诺贝尔物理学奖。 目前,随着数据业务的爆炸性增长,通信道路越来越拥挤,光通信将成为唯一的出路。因此,现在世界上所有新建的通信干线均采用光纤。波分复用(WDM)系统也在海底光缆系统上使用,Tyco全球网大西洋部分有对光纤,目标容量为每对光纤传输64个10Gb/s WDM信道。2002年阿10.2Tb/s(25642.7Gb/s)L波段成功进行了距离为尔卡特在C波段和3100km的传输实验。根据OFC2009年报道,NTT 2007年演示了一个线路容量为10Tb/s的系统[NThB1],该系统采用DWDM的DQPSK

光纤通信技术发展历程、特点及现状

本科学年论文 学 院 物理电子工程学院 专 业 电子科学与技术 年 级 2008级 姓 名 王震 论文题目 光纤通信技术发展历程、特点及现状 指导教师 张新伟 职称 讲师 成 绩 2012年1月10日 学号:

目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

我国光纤光缆行业的发展现状及前景

我国光纤光缆行业的发展现状及前景近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。 一、我国光纤光缆发展的现状 1.普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G..652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G..653规定的色散位移单模光纤实现了这样的改进。 2.核心网光缆 我国已在干线(包括国家干线、省内干线和区内干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G..652光纤和G..655光纤。G..653光纤虽然在我国曾经采用过,但今后不会再发展。G..654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。干线光缆中采用分立的光纤,不采用光纤带。干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 3.接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加

光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G..652普通单模光纤和G..652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 4.室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并且还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。结合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 5.电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的缠绕式结构。ADSS光缆因其可以单独布放,适应范围广,在当前我国电力输电系统改造中得到了广泛的应用。ADSS光缆在国内的近期需求量较大,是目前的一种热门产品。 二、光纤通信技术的发展趋势 对光纤通信而言,超高速度、超大容量和超长距离传输一直是人们追求的目标,而全光网络也是人们不懈追求的梦想。

我国光纤通信的现状分析及发展前景

我国光纤通信的现状分析及发展前景 1、光纤通信技术当前发展现状 近些年来,最为流行与最受关注的通信技术可以说是光纤通信技术、卫星通信应用技术以及无线通讯技术。而光纤通信技术在这三种支柱性通信技术中,所涉及到的领域技术最为广泛,这是由于光纤通信技术有着非常多的显著优势与实用特性。 1.1 实用性强、频带宽、容量大 一般光纤能够利用的频宽数量大概可达50000GHz,并且其传输损耗低、实用性强。自1987年我国投入使用时,其就能以1.7Gb/s的一对光纤就能同时对两万多路电话进行传输;2.4Gb/s时,同样也能对三万多组电话进行传输。其频宽能力强大,不仅仅是数据承载通信容量大,而且还能够满足宽带营运实施的综合性业务流转,协调于综合业务宽带的利用效率与开发,如其能够满足数字网B-ISDN发展的需求。 1.2 信号光功率损失小,中继距离长,成本低 由于光纤本身的损耗程度一般低于0.2dB/km,这和其他传输媒介的损耗程度比较而言,光纤传导的信号功率损失程度非常小,也就是说其满足一定的比特率要求的光接收机灵敏度很高,即满足系统误比特率要求的最低接收光功率越小,中继距离就越长。其中其存在的最大中继距离可能高达上千米甚至是上万米,这对光纤通信传输系统所投成本的稳定性,以及实现传输可靠性的现实意义来说,非常重要。 1.3 抗电磁干扰 光纤自身是绝缘体材料,本身不受高空电离层的强度环境变化与雷电或是太阳表面黑子变化活动的干扰,也不受电路系统高压馈电线与相关设施、设备的诸多方面干扰。总的来说,光纤传导受电磁干扰的特性以及受其他方面干扰自身传导通信功能的可能性很小。 1.4 光波传输良好,即保密性好 光波当在光缆中运行传输时,由于自身材料的传导性能,使其光波在传输过程当中也就很难外泄出来,即使存在外漏现象,也很微弱,是在正常损益范畴之内。所以有时对于光纤表面上会上一层消除光谱色散损耗的消光剂。从而使波形因为客观性其他原因引起的失真外泄现象大幅度降低,也使系统传输信息的保密性程度提升了。 2、光纤通信技术的发展趋势

光纤现状及其发展

光纤通信的现状及其发展 光缆通信在我国已有20多年的使用历史,这段历史也就是光通信技术的发展史和光纤光缆的发展史。光纤通信因其具有的损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,备受业内人士青睐,发展非常迅速。目前,光纤光缆已经进入了有线通信的各个领域,包括邮电通信、广播通信、电力通信、石油通信和军用通信等领域。 光纤通信的发展依赖于光纤通信技术的进步。近年来,光纤通信技术得到了长足的发展,新技术不断涌现,这大幅提高了通信能力,并使光纤通信的应用范围不断扩大。下面简单描述我国光纤光缆发展的现状: 1.1 普通光纤 普通单模光纤是最常用的一种光纤。随着光通信系统的发展,光中继距离和单一波长信道容量增大,G.652.A光纤的性能还有可能进一步优化,表现在1550rim区的低衰减系数没有得到充分的利用和光纤的最低衰减系数和零色散点不在同一区域。符合ITUTG.654规定的截止波长位移单模光纤和符合G.653规定的色散位移单模光纤实现了这样的改进。 1.2 核心网光缆 我国已在主干线(包括国家主干线、省内主干线和区内主干线)上全面采用光缆,其中多模光纤已被淘汰,全部采用单模光纤,包括G.652光纤和G.655光纤。G.653光纤虽然在我国曾经采用过,但今

后不会再发展。G.654光纤因其不能很大幅度地增加光纤系统容量,它在我国的陆地光缆中没有使用过。主干线光缆中采用分立的光纤,不采用光纤带。主干线光缆主要用于室外,在这些光缆中,曾经使用过的紧套层绞式和骨架式结构,目前已停止使用。 1.3 接入网光缆 接入网中的光缆距离短,分支多,分插频繁,为了增加网的容量,通常是增加光纤芯数。特别是在市内管道中,由于管道内径有限,在增加光纤芯数的同时增加光缆的光纤集装密度、减小光缆直径和重量,是很重要的。接入网使用G.652普通单模光纤和G.652.C低水峰单模光纤。低水峰单模光纤适合于密集波分复用,目前在我国已有少量的使用。 1.4 室内光缆 室内光缆往往需要同时用于话音、数据和视频信号的传输。并目还可能用于遥测与传感器。国际电工委员会(IEC)在光缆分类中所指的室内光缆,笔者认为至少应包括局内光缆和综合布线用光缆两大部分。局用光缆布放在中心局或其他电信机房内,布放紧密有序和位置相对固定。综合布线光缆布放在用户端的室内,主要由用户使用,因此对其易损性应比局用光缆有更严格的考虑。 1.5 电力线路中的通信光缆 光纤是介电质,光缆也可作成全介质,完全无金属。这样的全介质光缆将是电力系统最理想的通信线路。用于电力线杆路敷设的全介质光缆有两种结构:即全介质自承式(ADSS)结构和用于架空地线上的

光纤通信的发展前景

光纤通信的现状及其未来发展 光信息科学与技术08-1班 韩欣欣 08133102 关键词:光纤通信 光纤到户 未来发展 摘要:光纤通信自问世以来,给整个通信领域带来了一场革命,它使高速率,大容量的通信成为可能。目前它已经成为一种不可替代的、最主要的信息传输技术。 引言: 光无处不在。在人类发展的早期,人类已经开始使用光传递信息了。但那时候传递的信息容量非常少,局限性也很大。 随着社会的发展,信息传输与交换量与日俱增,传统的电通信方式已不能满足人们的需要。为了扩大通信容量,通信方式从中波、短波发展到微波、毫米波,这实际上就是通过提高通通信载波频率来扩大通信容量的。这样就出现了现在的光通信技术,就是光纤通信。 光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。 与传统的电通信相比,光纤通信是以很高频率的光波作为载波,以光纤为传输介质的通信。由于光纤通信具有损耗低、传输频带宽、容量大、体积小、重量轻、抗电磁干扰、不易串音等优点,自其出现以来就备受业内人士的青睐,发展非常迅速。光纤通信系统的传输容量从1980年至今增加了近一万倍 传输速度在过去的10年中大约提高了100倍。 光纤发展与应用 为了发展光通信技术,人们又考虑和尝试了各种传输介质,但是他们的损耗都非常的高。直到1966年美籍华人高锟博士和霍克哈姆发表论文,预见了低损耗的光纤能够应用于通信,敲开了光纤通信的大门。从此光纤在通信中的应用引起了人们的重视。 很快在1970年8月美国康宁公司首次研制成功损耗为20dB/kM光纤。光纤通信的时代由此开始了。 1972年,随着光纤制备工艺中的原材料提纯、制棒和拉丝技术水平

光纤通信技术的发展史及其现状_论文[1]

光纤通信技术的发展史及其现状 【内容摘要】 光纤通信符合了高速度、大容量、高保密等要求,但是,光纤通信能实际应用到人类传输信息中并不是一帆风顺的,其发展中经历了很多技术难关,解决了这些技术难题,光纤通信才能进一步发展。 本文从光源及传输介质、光电子器件、光纤通信系统的发展来展示光纤通信技术的发展。 【关键词】 光纤通信技术光纤光缆光有源器件光无源器件光纤通信系统 【正文】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。 光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。 将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。 一、光纤通信技术的形成 (一)、早期的光通信 光无处不在,这句话毫不夸张。在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。 打手势是一种目视形式的光通信,在黑暗中不能进行。白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。 另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。望远镜的出现则又极大地延长了这类目视形式的光通信的距离。 这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。 近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。这种光电话利用太阳光或弧光灯作光源,通过透镜把光束聚焦在送话器前的振动镜片上,使光强度随话音的变化而变化,实现话音对光强度的调制。在接收端,用抛物面反射镜把从大气传来的光束反射到硅光电池上,使光信号变换为电流传送到受话器。 光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。其所利用的自然光为非相干光,方向性不好,不易调制和传输;而以空气作为传输介质,损耗会很大,无法实现远距离传输,又易受天气影响,通信极不稳定可靠。

光通信的历史及其发展现状

光通信的历史、现状、发展趋势 06007235 方云龙光通信的历史: 原始形式的光通信是通过中国古代的“烽火台”报警,欧洲人用旗语传送信息。1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏型。 1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器,给光通信带来了新的希望。激光器的发明和应用,使沉睡了80年的光通信进入一个崭新的阶段。 1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆(C.A.Hockham)发表了关于传输介质新概念的论文,指出了利用光纤(Optical Fiber)进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。通过“原材料的提纯制造出适合于长距离通信使用的低损耗光纤”这一发展方向。 1970年,美国康宁(Corning)公司研制成功损耗20dB/km的石英光纤。把光纤通信的研究开发推向一个新阶段。 1973 年,美国贝尔(Bell)实验室的光纤损耗降低到2.5dB/km。1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司将光纤损耗降低到0.47 dB/km(波长1.2μm)。在以后的10 年中,波长为1.55 μm的光纤损耗:1979 年是0.20 dB/km,1984年是0.157 dB/km,1986 年是0.154 dB/km,接近了光纤最低损耗的理论极限。 1970年,美国贝尔实验室、日本电气公司(NEC)和前苏联先后,研制成功室温下连续振荡的镓铝砷(GaAlAs)双异质结半导体激光器(短波长)。虽然寿命只有几个小时,但它为半导体激光器的发展奠定了基础。1977 年,贝尔实验室研制的半导体激光器寿命达到10万小时。1979年美国电报电话(AT&T)公司和日本电报电话公司研制成功发射波长为1.55 μm的连续振荡半导体激光器。 1976 年,美国在亚特兰大(Atlanta)进行了世界上第一个实用光纤通信系统的现场试验。1980 年,美国标准化FT - 3光纤通信系统投入商业应用。 1976 年和1978 年,日本先后进行了速率为34 Mb/s的突变型多模光纤通信系统,以及速率为100 Mb/s的渐变型多模光纤通信系统的试验。1983年敷设了纵贯日本南北的光缆长途干线。 随后,由美、日、英、法发起的第一条横跨大西洋TAT-8海底光缆通信系统于1988年建成。第一条横跨太平洋TPC-3/HAW-4 海底光缆通信系统于1989年建成。从此,海底光缆通信系统的建设得到了全面展开,促进了全球通信网的发展。 现状: 目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH(光纤到户)用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM(Wavelength Division Multiplexing:波分复用)和PON(Passive Optical Network:无源光纤网络),这两个已经相对比较成熟。 今天,40Gbps的光通信系统得到广泛商用。作为新一代光网络的领军技术,40G商用大门的开启,满足日益增长的带宽需求同时,还为ROADM、先进光调制技术、超强EFC等新技术的应用赢得了市场发展空间,并为全光网的演进、升级创造了条件。不过,这只是40Gbps的一个开始,要承担起未来传输主力的重任,40G还需要很多路要走。现在对40Gbps,乃至更高速率的100Gbps而言,光学硬件的发展是关键,同时还必须与其他光通讯技术协同发展,包括复杂的调制技术、信号处理技术、并行接口、主动追踪和补偿技术,这些条件

光纤通信技术的发展与展望论文.

光纤通信技术的发展与展望论文 2019-02-13 [摘要]分析光纤通信技术的发展历史与发展现状,并对光纤通信技术的发展趋势进行了展望。 [关键词]光纤通信技术发展现状趋势展望 一、光纤通信技术的发展及现状 光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。 目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。 二、光纤通信技术的趋势及展望 目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。 (一)向超高速系统的发展 目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

光纤通信的发展趋势

光纤通信的发展趋势 光纤通信一直是推动整个通信网络发展的基本动力之一,是现代电信网络的基础。本文对光纤通信的主要发展趋势作一简述与展望,包括纳米技术与光纤通信、光交换、PON、光孤子通信。 关键词:光纤通信光交换PON 光孤子通信 光纤通信的诞生与发展是电信史上的一次重要革命,光纤通信技术发展所涉及的范围,无论从影响力度还是影响广度来说都已远远超越其本身,并对整个电信网和信息业产生深远的影响。它的演变和发展结果将在很大程度上决定电信网和信息业的未来大格局,也将对社会经济发展产生巨大影响。 1.纳米技术与光纤通信 纳米是长度单位,为10-9米,纳米技术是研究结构尺寸在1至100纳米范围内材料的性质和应用。建立在微米/纳米技术基础上的微电子机械系统(MEMS)技术目前正在得到普遍重视。在无线终端领域,对微型化、高性能和低成本的追求使大家普遍期待能将各种功能单元集成在一个单一芯片上,即实现SOC(Sy stem On a Chip),而通信工程中大量射频技术的采用使诸如谐振器,滤波器、耦合器等片外分离单元大量存在,MEMS技术不仅可以克服这些障碍,而且表现出比传统的通信元件具有更优越的内在性能。德国科学家首次在纳米尺度上实现光能转换,这为设计微器件找到了一种潜在的能源,对实现光交换具有重 要意义。 可调光学元件的一个主要技术趋势是应用MEMS技术。MEMS技术可使开发就地配置的光器件成为可能,用于光网络的MEMS动态元件包括可调的激光器和滤波器、动态增益均衡器、可变光衰减器以及光交叉连接器等。此外,MEMS技术已经在光交换应用中进入现场试验阶段,基于MEMS的光交换机已经能够传递实际的业务数据流,全光MEMS光交换机也正在步入商用阶段,继朗讯科技公司的“Lamda-Router”光MEMS交换机之后,美国Calient Networks公司的光交叉连接装置也采用了光MEMS交换机。 2.光交换是实现高速全光网的关键 光交换是指光纤传送的光信号直接进行交换。长期以来,实现高速全光网一直受交换问题的困扰。因为传统的交换技术需要将数据转换成电信号才能进行交换,然后再转换成光信号进行传输,这些光电转换设备体积过于庞大,并且价格昂贵。而光交换完全克服了这些问题。因此,光交换技术必然是未来通信网交换 技术的发展方向。 未来通信网络将是全光网络平台,网络的优化、路由、保护和自愈功能在未来光通信领域越来越重要。光交换技术能够保证网络的可靠性,并能提供灵活的信号路由平台,光交换技术还可以克服纯电子交换形成的容量瓶颈,省去光电转换的笨重庞大的设备,进而大大节省建网和网络升级的成本。若采用全光网技术,将使网络的运行费用节省70%,设备费用节省90%。所以说光交换技术代表着人们对光通信技术发展的 一种希望。 目前,全世界各国都正在积极研究开发全光网络产品,其中关键产品便是光变换技术的产品。目前市场上的光交换机大多数是光电和光机械的,随着光交换技术的发展和成熟,基于热学、液晶、声学、微机电技术的光交换机将会研究和开发出来,其中以将纳米技术为基础的微电子机械系统MEMS应用于光交换产品 的开发更会加速光交换技术的发展。 3.无源光网络(PON)技术 无源光网络是一种很有吸引力的纯介质网络,避免了外部设备的电磁干扰和雷电影响,减少了线路和外部设备的故障率,提高了系统可靠性,同时节省了维护成本,是电信维护部门长期以来期待的技术。无源光网络作为一种新兴的覆盖“最后一公里”的宽带接入光纤技术,其在光分支点不需要节点设备,只需安装一个简单的光分支器即可,因此具有节省光缆资源、带宽资源共享、节省机房投资、设备安全性高、建网速 度快、综合建网成本低等优点。

相关文档
最新文档