2020上海中考数学试卷(含答案)

合集下载

2019-2020上海市中考数学试卷(及答案)

2019-2020上海市中考数学试卷(及答案)

2019-2020上海市中考数学试卷(及答案)一、选择题1.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm2.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数B.中位数C.众数D.方差3.下列命题正确的是()A.有一个角是直角的平行四边形是矩形B.四条边相等的四边形是矩形C.有一组邻边相等的平行四边形是矩形D.对角线相等的四边形是矩形4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是( )A.③④B.②③C.①④D.①②③5.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°6.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3B.7×10﹣3C.7×10﹣4D.7×10﹣57.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A .12B .24C .123D .163 8.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q9.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒ 10.若正比例函数y=mx (m≠0),y 随x 的增大而减小,则它和二次函数y=mx 2+m 的图象大致是( ) A . B .C .D .11.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .1812.如图,在矩形ABCD 中,BC=6,CD=3,将△BCD 沿对角线BD 翻折,点C 落在点C 1处,BC 1交AD 于点E ,则线段DE 的长为( )A .3B .154C .5D .152二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---,则1232014a a a a ++++=__________.15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =k x的图象上,则k 的值为________.16.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____. 17.计算:82-=_______________.18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.先化简,再求值: 233212-),322x x x x x x (其中+-+÷=++ 24.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.(1)A 在甲组的概率是多少?,都在甲组的概率是多少?(2)A B25.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.2.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.3.A解析:A【解析】【分析】运用矩形的判定定理,即可快速确定答案.【详解】解:A.有一个角为直角的平行四边形是矩形满足判定条件;B四条边都相等的四边形是菱形,故B错误;C有一组邻边相等的平行四边形是菱形,故C错误;对角线相等且相互平分的四边形是矩形,则D错误;因此答案为A.【点睛】本题考查了矩形的判定,矩形的判定方法有:1.有三个角是直角的四边形是矩形;2.对角线互相平分且相等的四边形是矩形;3.有一个角为直角的平行四边形是矩形;4.对角线相等的平行四边形是矩形.4.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.5.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0007=7×10﹣4故选C.【点睛】本题考查科学计数法,难度不大.7.D解析:D【解析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=23.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积=AB•AD=23×8=163.故选D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.8.C解析:C【解析】试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.考点:有理数大小比较.9.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】m n,解:直线//∴∠+∠∠+∠=+︒,ABC BAC21180∠,9030∠=︒,ABC=︒BAC∠=︒,140︒︒︒,︒︒=∴∠=---218030904020故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.10.A解析:A【解析】【分析】【详解】∵正比例函数y=mx(m≠0),y随x的增大而减小,∴该正比例函数图象经过第一、三象限,且m<0,∴二次函数y=mx2+m的图象开口方向向下,且与y轴交于负半轴,综上所述,符合题意的只有A选项,故选A.11.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.12.C解析:C【解析】【分析】【详解】解:根据题意易证BE=DE,设ED=x,则AE=8﹣x,在△ABE中根据勾股定理得到关于线段AB、AE、BE的方程x2=42+(8﹣x)2,解方程得x=5,即ED=5故选C.【点睛】本题考查翻折变换(折叠问题);勾股定理;方程思想.二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2解析:20112【解析】【分析】 分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程通过解关于m 的方程求得m 的值即可【详解】∵关于x 的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m 的方程,通过解关于m 的方程求得m 的值即可.【详解】∵关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,∴m 2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.17.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m 由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:5 16.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为5 16.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛解析:11 x【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y 甲关于x 的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y 乙关于x 的函数关系式;(2)分0<x≤1和x >1两种情况讨论,分别令y 甲<y 乙、y 甲=y 乙和y 甲>y 乙,解关于x 的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y 甲=22x ;当1<x 时,y 甲=22+15(x ﹣1)=15x+7.y 乙=16x+3;∴22? (01){157?(1)x x y x x 甲<<=+>,=163y x +乙; (2)①当0<x≤1时,令y 甲<y 乙,即22x <16x+3,解得:0<x <12; 令y 甲=y 乙,即22x=16x+3,解得:x=12; 令y 甲>y 乙,即22x >16x+3,解得:12<x≤1. ②x >1时,令y 甲<y 乙,即15x+7<16x+3,解得:x >4;令y 甲=y 乙,即15x+7=16x+3,解得:x=4;令y 甲>y 乙,即15x+7>16x+3,解得:0<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x <12或x >4时,选甲快递公司省钱. 考点:一次函数的应用;分段函数;方案型. 22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.11;12x -- 【解析】【分析】根据分式的运算顺序及运算法则化简所给的分式,化为最简后再代入求值即可.【详解】原式=()23x 3x 22-)x 2x 1++⨯+-( ,()()22433221x x x x x +--+=⨯+-,()()21221x x x x -+=⨯+-,11x =-, 当x=3时,原式=113-=12- 【点睛】 本题主要考查了分式的化简求值,利用分式的运算顺序及运算法则把分式化为最简是解题的关键.24.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16.利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=1625.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去. 当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.。

2020年上海市中考数学试题及详解(WORD版)

2020年上海市中考数学试题及详解(WORD版)

2020年上海市中考数学试题及详解(WORD版)一.选择题(共6小题)1.下列二次根式中,与 $\sqrt{2}+1$ 是同类二次根式的是()解析:$\sqrt{2}+1$ 可以化简为 $\dfrac{\sqrt{2}+1}{1}$,而 $\sqrt{2}-1$ 可以化简为 $\dfrac{\sqrt{2}-1}{1}$,它们的分母都是 $1$,因此选项 B 正确。

2.用换元法解方程 $y^2-2y+1=x$,则原方程可化为关于$y$ 的方程是()解析:将 $y^2-2y+1=x$ 中的 $x$ 替换为 $y$,得到 $y^2-2y+1=y$,移项化简得到 $y^2-3y+1=0$,因此选项 C 正确。

3.我们经常将调查、收集得来的数据用各类统计图进行整理与表示。

下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()解析:条形图和频数分布直方图主要用于表示数据的数量,扇形图主要用于表示数据的比例,而折线图可以凸显数据的趋势和变化,因此选项 C 正确。

4.已知反比例函数的图象经过点 $(2,-4)$,那么这个反比例函数的解析式是()解析:反比例函数的通式为 $y=\dfrac{k}{x}$,代入点$(2,-4)$ 得到 $-4=\dfrac{k}{2}$,解得 $k=-8$,因此反比例函数的解析式为 $y=-\dfrac{8}{x}$,选项 B 正确。

5.下列命题中,真命题是()解析:对角线互相垂直的梯形不一定是等腰梯形,因此选项 A 错误;对角线互相垂直的平行四边形不一定是正方形,因此选项 B 错误;对角线平分一组对角的平行四边形不一定是菱形,因此选项 C 错误;但是对角线平分一组对角的梯形一定是直角梯形,因此选项 D 正确。

6.如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形。

下列图形中,平移重合图形是()解析:平行四边形和等腰梯形可以沿某个方向平移后重合,因此选项 A 和 B 都可以;正六边形无法沿任何方向平移后重合,因此选项 C 错误;圆也无法沿任何方向平移后重合,因此选项 D 错误。

上海市2020年初中毕业统一学业考试 数学试卷(含答案)

上海市2020年初中毕业统一学业考试 数学试卷(含答案)
图4 =60°,点在边上,联结,如果将 △ACD 沿直线 AD 翻折 后,点 C 的对应点为点 E ,那么点 E 到直线 BD 的距离为________________. 18、在矩形 ABCD 中,AB=6,BC=8 ,点 O 在对角线 AC 上,圆 O 的半径为 2,如果 圆 O 与矩形 ABCD 的各边都没有公共点, 那么线段 AO 长的取值范围是_____________.
= 3 5 ,Байду номын сангаасB=8,CD=5
(1)求梯形 ABCD 的面积; (2)联结 BD ,求∠DBC 的正切值
22、(本题满分 10 分,第一小题 4 分,第二小题 6 分) 去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为 450 万元,第七天
的营业额是前六天总营业额的 12% . (1)求该商店去年“十一黄金周”这七天的总营业额; (2)去年,该商店 7 月份的营业额为 350 万元,8、9 月份营业额的月增长率相同,“十 一黄金周”这七天的总 营业额与 9 月份的营业额相等,求该商店去年 8、9 月份营业额的 月增长率。
15、如图 2, AC、BD 是平行四边形 ABCD 的对角线,设 BC = a , CA = b 那么向量用
向量
a

b
表示为 ____________
图1
图2
图3
16、小明从家步行到学校需走的路程为 1800 米,图 3 中的折线 OAB 反映了小明从家步 行到学校所走的路程 s(米) 与时间 t(分钟)的函数关系,根据图像提供的信息,当小明 从家出发去学校步行 15 分钟时,到学校还需步行________ 米. 17、如图 4,在△ABC 中,AB=4,BC=7,CD=3,∠B

2020年上海市中考数学试卷及答案 (解析版)

2020年上海市中考数学试卷及答案 (解析版)

2020年上海市中考数学试卷一、选择题(共6小题).1.(4( )A B C D 2.(4分)用换元法解方程22121x x x x ++=+时,若设21x y x+=,则原方程可化为关于y 的方程是( )A .2210y y -+=B .2210y y ++=C .220y y ++=D .220y y +-=3.(4分)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A .条形图B .扇形图C .折线图D .频数分布直方图4.(4分)已知反比例函数的图象经过点(2,4)-,那么这个反比例函数的解析式是( )A .2y x =B .2y x =-C .8y x =D .8y x=- 5.(4分)下列命题中,真命题是( )A .对角线互相垂直的梯形是等腰梯形B .对角线互相垂直的平行四边形是正方形C .对角线平分一组对角的平行四边形是菱形D .对角线平分一组对角的梯形是直角梯形6.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( )A .平行四边形B .等腰梯形C .正六边形D .圆二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)计算:23a ab = .8.(4分)已知2()1f x x =-,那么f (3)的值是 . 9.(4分)已知正比例函数(y kx k =是常数,0)k ≠的图象经过第二、四象限,那么y 的值随着x 的值增大而 .(填“增大”或“减小” )10.(4分)如果关于x 的方程240x x m -+=有两个相等的实数根,那么m 的值是 .11.(4分)如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5的倍数的概率是 .12.(4分)如果将抛物线2y x =向上平移3个单位,那么所得新抛物线的表达式是 .13.(4分)为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为 .14.(4分)《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得 1.6AB =米,1BD =米,0.2BE =米,那么井深AC 为 米.15.(4分)如图,AC 、BD 是平行四边形ABCD 的对角线,设BC a =,CA b =,那么向量BD 用向量a 、b 表示为 .16.(4分)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 米.17.(4分)如图,在ABC ∆中,4AB =,7BC =,60B ∠=︒,点D 在边BC 上,3CD =,联结AD .如果将ACD ∆沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为 .18.(4分)在矩形ABCD 中,6AB =,8BC =,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是 .三、解答题:(本大题共7题,满分78分)19.(10分)计算:1231127()|35|252-+-+-+. 20.(10分)解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩21.(10分)如图,在直角梯形ABCD 中,//AB DC ,90DAB ∠=︒,8AB =,5CD =,35BC =.(1)求梯形ABCD 的面积;(2)联结BD ,求DBC ∠的正切值.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.23.(12分)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE DF =,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:BEC BCH ∆∆∽;(2)如果2BE AB AE =,求证:AG DF =.24.(12分)在平面直角坐标系xOy 中,直线152y x =-+与x 轴、y 轴分别交于点A 、B (如图).抛物线2(0)y ax bx a =+≠经过点A .(1)求线段AB 的长;(2)如果抛物线2y ax bx =+经过线段AB 上的另一点C ,且5BC =,求这条抛物线的表达式;(3)如果抛物线2y ax bx =+的顶点D 位于AOB ∆内,求a 的取值范围.25.(14分)如图,ABC ∆中,AB AC =,O 是ABC ∆的外接圆,BO 的延长线交边AC 于点D .(1)求证:2BAC ABD ∠=∠;(2)当BCD ∆是等腰三角形时,求BCD ∠的大小;(3)当2AD =,3CD =时,求边BC 的长.2020年上海市中考数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.(4()A B C D解:3=不是同类二次根式;C=被开方数相同,故是同类二次根式;D=被开方数不同,故不是同类二次根式.故选:C.2.(4分)用换元法解方程22121x xx x++=+时,若设21xyx+=,则原方程可化为关于y的方程是()A.2210y y-+=B.2210y y++=C.220y y++=D.220y y+-=解:把21xyx+=代入原方程得:12yy+=,转化为整式方程为2210y y-+=.故选:A.3.(4分)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图B.扇形图C.折线图D.频数分布直方图解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图,故选:B.4.(4分)已知反比例函数的图象经过点(2,4)-,那么这个反比例函数的解析式是() A.2yx=B.2yx=-C.8yx=D.8yx=-解:设反比例函数解析式为k y x =, 将(2,4)-代入,得:42k -=, 解得8k =-, 所以这个反比例函数解析式为8y x=-, 故选:D . 5.(4分)下列命题中,真命题是( )A .对角线互相垂直的梯形是等腰梯形B .对角线互相垂直的平行四边形是正方形C .对角线平分一组对角的平行四边形是菱形D .对角线平分一组对角的梯形是直角梯形解:A 、对角线相等的梯形是等腰梯形,故错误;B 、对角线互相垂直的平行四边形是菱形,故错误;C 、正确;D 、对角线平分一组对角的梯形是菱形,故错误;故选:C .6.(4分)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是( )A .平行四边形B .等腰梯形C .正六边形D .圆解:如图,平行四边形ABCD 中,取BC ,AD 的中点E ,F ,连接EF .四边形ABEF 向右平移可以与四边形EFCD 重合,∴平行四边形ABCD 是平移重合图形,故选:A .二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.(4分)计算:23a ab = 26a b .解:2236a ab a b =.故答案为:26a b .8.(4分)已知2()1f x x =-,那么f (3)的值是 1 . 解:2()1f x x =-, f ∴(3)2131==-, 故答案为:1.9.(4分)已知正比例函数(y kx k =是常数,0)k ≠的图象经过第二、四象限,那么y 的值随着x 的值增大而 减小 .(填“增大”或“减小” )解:函数(0)y kx k =≠的图象经过第二、四象限,那么y 的值随x 的值增大而减小, 故答案为:减小.10.(4分)如果关于x 的方程240x x m -+=有两个相等的实数根,那么m 的值是 4 . 解:依题意,方程240x x m -+=有两个相等的实数根,∴△224(4)40b ac m =-=--=,解得4m =,故答案为:4.11.(4分)如果从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,那么取到的数恰好是5 解:从1,2,3,4,5,6,7,8,9,10这10个数中任意选取一个数,是5的倍数的有:5,10,∴取到的数恰好是5的倍数的概率是21105=. 故答案为:15. 12.(4分)如果将抛物线2y x =向上平移3个单位,那么所得新抛物线的表达式是 23y x =+ .解:抛物线2y x =向上平移3个单位得到23y x =+.故答案为:23y x =+.13.(4分)为了解某区六年级8400名学生中会游泳的学生人数,随机调查了其中400名学生,结果有150名学生会游泳,那么估计该区会游泳的六年级学生人数约为 3150名 . 解:15084003150400⨯=(名). 答:估计该区会游泳的六年级学生人数约为3150名.故答案为:3150名.14.(4分)《九章算术》中记载了一种测量井深的方法.如图所示,在井口B 处立一根垂直于井口的木杆BD ,从木杆的顶端D 观察井水水岸C ,视线DC 与井口的直径AB 交于点E ,如果测得 1.6AB =米,1BD =米,0.2BE =米,那么井深AC 为 7 米.解:BD AB ⊥,AC AB ⊥,//BD AC ∴,ACE BDE ∴∆∆∽,∴AC AE BD BE =, ∴ 1.410.2AC =, 7AC ∴=(米),答:井深AC 为7米.15.(4分)如图,AC 、BD 是平行四边形ABCD 的对角线,设BC a =,CA b =,那么向量BD 用向量a 、b 表示为 2a b + .解:四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,AB CD =,//AB CD ,∴AD BC a ==,CD CA AD b a =+=+,∴BA CD b a ==+,BD BA AD =+,∴2BD b a a a b =++=+,故答案为:2a b +.16.(4分)小明从家步行到学校需走的路程为1800米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行15分钟时,到学校还需步行 350 米.解:当820t 时,设s kt b =+,将(8,960)、(20,1800)代入,得:8960201800k b k b +=⎧⎨+=⎩, 解得:70400k b =⎧⎨=⎩, 70400s t ∴=+;当15t =时,1450s =,180********-=,∴当小明从家出发去学校步行15分钟时,到学校还需步行350米, 故答案为:350.17.(4分)如图,在ABC ∆中,4AB =,7BC =,60B ∠=︒,点D 在边BC 上,3CD =,联结AD .如果将ACD ∆沿直线AD 翻折后,点C 的对应点为点E ,那么点E 到直线BD 的距离为 332. 解:如图,过点E 作EH BC ⊥于H .7BC =,3CD =,4BD BC CD ∴=-=,4AB BD ==,60B ∠=︒,ABD ∴∆是等边三角形,60ADB ∴=︒,120ADC ADE ∴∠=∠=︒,60EDH ∴∠=︒,EH BC ⊥,90EHD ∴∠=︒,3DE DC ==,33sin 602EH DE ∴=︒=, E ∴到直线BD 332, 332. 18.(4分)在矩形ABCD 中,6AB =,8BC =,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是 102033AO << . 解:在矩形ABCD 中,90D ∠=︒,6AB =,8BC =,10AC ∴=,如图1,设O 与AD 边相切于E ,连接OE ,则OE AD ⊥,//OE CD ∴,AOE ACD ∴∆∆∽, ∴OE AO CD AC =, ∴2106AO =, 103AO ∴=, 如图2,设O 与BC 边相切于F ,连接OF ,则OF BC ⊥,//OF AB ∴,COF CAB ∴∆∆∽,∴OC OF AC AB =, ∴2106OC =, 103OC ∴=, 203AO ∴=, ∴如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是102033AO <<, 故答案为:102033AO <<.三、解答题:(本大题共7题,满分78分)19.(10分)计算:1231127()|35|252-+-+-+. 解:原式133(3)52435=+--+-352435=+--+-0=.20.(10分)解不等式组:1076,713x x x x >+⎧⎪+⎨-<⎪⎩解:1076713x x x x >+⎧⎪⎨+-<⎪⎩①②,解不等式①得2x >,解不等式②得5x <.故原不等式组的解集是25x <<.21.(10分)如图,在直角梯形ABCD 中,//AB DC ,90DAB ∠=︒,8AB =,5CD =,35BC =.(1)求梯形ABCD 的面积;(2)联结BD ,求DBC ∠的正切值.解:(1)过C 作CE AB ⊥于E ,//AB DC ,90DAB ∠=︒,90D ∴∠=︒,90A D AEC ∴∠=∠=∠=︒,∴四边形ADCE 是矩形,AD CE ∴=,5AE CD ==,3BE AB AE ∴=-=,35BC=,226 CE BC BE∴=-=,∴梯形ABCD的面积1(58)6392=⨯+⨯=;(2)过C作CH BD⊥于H,//CD AB,CDB ABD∴∠=∠,90CHD A∠=∠=︒,CDH DBA∴∆∆∽,∴CH CDAD BD=,22228610 BD AB AD=+=+=,∴5 610 CH=,3CH∴=,2222(35)36 BH BC CH∴=-=-=,DBC∴∠的正切值3162 CHBH===.22.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.解:(1)45045012%504+⨯=(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8、9月份营业额的月增长率为x,依题意,得:2350(1)504x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.23.(12分)已知:如图,在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE DF =,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .(1)求证:BEC BCH ∆∆∽;(2)如果2BE AB AE =,求证:AG DF =.【解答】(1)证明:四边形ABCD 是菱形,CD CB ∴=,D B ∠=∠,//CD AB ,DF BE =,()CDF CBE SAS ∴∆≅,DCF BCE ∴∠=∠,//CD BH ,H DCF ∴∠=∠,BCE H ∴∠=∠,B B ∠=∠,BEC BCH ∴∆∆∽.(2)证明:2BE AB AE =, ∴BE AE AB EB=, //AG BC , ∴AE AG BE BC =, ∴BE AG AB BC=, DF BE =,BC AB =,BE AG DF ∴==,即AG DF =.24.(12分)在平面直角坐标系xOy 中,直线152y x =-+与x 轴、y 轴分别交于点A 、B (如图).抛物线2(0)y ax bx a =+≠经过点A .(1)求线段AB 的长; (2)如果抛物线2y ax bx =+经过线段AB 上的另一点C ,且5BC =,求这条抛物线的表达式;(3)如果抛物线2y ax bx =+的顶点D 位于AOB ∆内,求a 的取值范围.解:(1)针对于直线152y x =-+, 令0x =,5y =, (0,5)B ∴,令0y =,则1502x -+=, 10x ∴=,(10,0)A ∴,2251055AB ∴=+=(2)设点1(,5)2C m m -+, (0,5)B ,2215(55)|22BC m m m ∴=+-+-=, 5BC =,∴5|52m =,2m ∴=±,点C 在线段AB 上,2m ∴=,(2,4)C ∴,将点(10,0)A ,(2,4)C 代入抛物线2(0)y ax bx a =+≠中,得100100424a b a b +=⎧⎨+=⎩, ∴1452a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线21542y x x =-+;(3)点(10,0)A 在抛物线2y ax bx =+中,得100100a b +=, 10b a ∴=-,∴抛物线的解析式为2210(5)25y ax ax a x a =-=--,∴抛物线的顶点D 坐标为(5,25)a -,将5x =代入152y x =-+中,得155522y =-⨯+=, 顶点D 位于AOB ∆内,50252a ∴<-<, 1010a ∴-<<; 25.(14分)如图,ABC ∆中,AB AC =,O 是ABC ∆的外接圆,BO 的延长线交边AC 于点D .(1)求证:2BAC ABD ∠=∠;(2)当BCD ∆是等腰三角形时,求BCD ∠的大小;(3)当2AD =,3CD =时,求边BC 的长.【解答】(1)证明:连接OA.=,AB AC=,∴AB AC∴⊥,OA BC∴∠=∠,BAO CAO=,OA OBABD BAO∴∠=∠,∴∠=∠.2BAC BAD(2)解:如图2中,延长AO交BC于H.①若BD CB∠=∠=∠+∠=∠,=,则3C BDC ABD BAC ABD=,AB ACABC C∴∠=∠,∴∠=∠,2DBC ABD180DBC C BDC ∠+∠+∠=︒, 8180ABD ∴∠=︒,367.5C ABD ∴∠=∠=︒.②若CD CB =,则3CBD CDB ABD ∠=∠=∠, 4C ABD ∴∠=∠,180DBC C CDB ∠+∠+∠=︒, 10180ABD ∴∠=︒,472BCD ABD ∴∠=∠=︒.③若DB DC =,则D 与A 重合,这种情形不存在. 综上所述,C ∠的值为67.5︒或72︒.(3)如图3中,作//AE BC 交BD 的延长线于E .则23AE AD BC DC ==, ∴43AO E OH BH ==,设4OB OA a ==,3OH a =, 22222BH AB AH OB OH =-=-, 2222549169a a a ∴-=-,22556a ∴=, 524BH ∴ 5222BC BH ∴==.。

2020年上海市中考数学一模试卷 (含解析)

2020年上海市中考数学一模试卷 (含解析)

2020年上海市中考数学一模试卷一、选择题(本大题共6小题,共24.0分)1.下列根式中,与√3是同类二次根式的是()A. 4√6B. √18C. √32 D. √122.用换元法解方程x2−12x −4xx2−12=3时,设x2−12x=y,则原方程可化为()A. y−1y −3=0 B. y−4y−3=0 C. y−1y+3=0 D. y−4y+3=03.空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是()A. 扇形统计图B. 条形统计图C. 折线统计图D. 以上都可以4.若反比例函数y=kx的图象经过点(2,3),则k的值是()A. 2B. 3C. 6D. 15.下列命题中,正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 有一个角为90°的四边形是平行四边形C. 对角线相等的四边形是矩形D. 对角线相等的菱形是正方形6.下列图形中可由其中的部分图形经过平移得到的是()A. B. C. D.二、填空题(本大题共12小题,共48.0分)7.计算:2a2⋅3ab=______.8.已知函数f(x)=1x−2,那么f(0)=______.9.若正比例函数y=kx(k是常数,k≠0)的图像经过第一、三象限,则k的值可以是____.(写出一个值即可).10.若关于x的方程2x2−3x+k=0有两个相等的实数根,则k值为.11.从0~9这些自然数中,任取一个,是4的倍数的概率是______ .12. 如果将抛物线y =3(x +1)2向上平移1个单位,再向左平移2个单位,那么所得到的抛物线的表达式是______.13. 每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI)标准,体重超标的有15名学生,则估计全校体重超标学生的人数为________名.14. 如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2米的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一直线上,如果测得BD =20米,FD =4米,EF =1.8米,则树的高度为__________.15. 如图,在平行四边形ABCD 中,点E 是边CD 的中点,联结AE 、BD 交于点F ,若BC ⃗⃗⃗⃗⃗ =a ⃗ ,BA ⃗⃗⃗⃗⃗ =b ⃗ ,用a ⃗ 、b ⃗ 表示DF ⃗⃗⃗⃗⃗=______.16. 波波和爸爸两人以相同路线从家出发,步行前往公园.图中OA 、BC 分别表示爸爸和波波所走的路程y(米)与爸爸步行的时间x(分)的函数图象,已知爸爸从家步行到公园所花的时间比波波的2倍还多10分钟.则在步行过程中,他们父子俩相距的最远路程是______ 米.17. 如图,在△ABC 中,∠CAB =90°,AB =6,AC =4,CD 是△ABC 的中线,将△ABC 沿直线CD 翻折,点B′是点B 的对应点,点E 是线段CD 上的点,如果∠CAE =∠BAB′,那么CE 的长是______.18. 如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD =5,AE =2,AF =4.如果以点D 为圆心,r 为半径的圆D 与圆O有两个公共点,那么r 的取值范围是______.三、计算题(本大题共2小题,共20.0分)19. 化简:(12)−2−|2√2−3|+3√18;20. 解不等式组{2x ≤x +4x+33−x <−1.四、解答题(本大题共5小题,共58.0分)21. 如图,在四边形ABCD 中,∠BCD 是钝角,AB =AD ,BD 平分∠ABC ,若CD =3,BD =2√6,sin∠DBC =√33,求对角线AC 的长.22.某旅游商店8月份营业额为15万元,9月份下降了20%.受“十一”黄金周以及经济利好因素的影响,10月份、11月份营业额均比上一个月有所增长,10月份增长率是11月份增长率的1.5倍,已知该旅游商店11月份营业额为24万元.(1)问:9月份的营业额是多少万元?(2)求10月份营业额的增长率.23.如图,已知四边形ABCD是菱形,点E是对角线AC上一点,连接BE并延长交AD于点F,交CD的延长线于点G,连接DE.(1)求证:△ABE≌△ADE;(2)求证:EB2=EF⋅EG;(3)若菱形ABCD的边长为4,∠ABC=60°,AE:EC=1:3,求BG的长.24.在平面直角坐标系xOy中抛物线y=−x2+bx+c经过点A、B、C,已知A(−1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.25.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,连结EB,交OD于点F.(1)求证:OD⊥BE.(2)若DE=√6,AB=6,求AE的长.(3)若△CDE的面积是△OBF面积的2,求线段BC与AC长度之间的等量关系,并说明理由.3【答案与解析】1.答案:D解析:此题主要考查同类二次根式的定义,属于基础题,化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.可先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断.解:A.4√6与√3不是同类二次根式,故本选项错误;B.√18=3√2与√3不是同类二次根式,故本选项错误;C.√32=√62与√3不是同类二次根式,故本选项错误;D.√12=2√3与√3是同类二次根式,故本选项正确;故选D.2.答案:B解析:【试题剖析】【试题解析】解:∵设x2−12x=y,∴x2−12x −4xx2−12=3,可转化为:y−4y=3,即y−4y−3=0.故选:B.直接利用已知将原式用y替换得出答案.此题主要考查了换元法解分式方程,正确得出y与x值间的关系是解题关键.3.答案:A解析:此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.解:根据统计图的特点可知:空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是扇形统计图;故选A.4.答案:C解析:本题主要考查的是反比例函数的图象,求反比例函数的解析式的有关知识.把点(2,3)代入已知函数解析式,列出关于k的方程,通过解方程来求k的值.,解:由题意得3=k2解得k=6.故选C.5.答案:D解析:解:A、一组对边平行,另一组对边相等的四边形还可能是等腰梯形,故错误;B、有一个角是90°的平行四边形是矩形,故错误;C、对角线相等的平行四边形是矩形,故错误;D、对角线相等的菱形是正方形,正确;故选D.利于平行四边形的判定方法、矩形的判定方法及正方形的判定方法分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解平行四边形的判定方法、矩形的判定方法及正方形的判定方法,难度不大.6.答案:A解析:根据平移的性质,平移不改变图形的形状和大小对各选项分析判断即可得解.本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.解:A、可由其中的部分图形经过平移得到,故本选项正确;B、不可由其中的部分图形经过平移得到,故本选项错误;C、不可由其中的部分图形经过平移得到,故本选项错误;D、不可由其中的部分图形经过平移得到,故本选项错误.故选:A.7.答案:6a3b解析:解:2a2⋅3ab=6a3b,故答案为:6a3b.根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,计算可得.本题主要考查单项式乘单项式,解题的关键是掌握单项式乘单项式的运算法则.8.答案:−12解析:本题考查了函数值的知识,将自变量的取值代入函数解析式即可求得答案.将x=0代入f(x)=1x−2求解即可.解:∵函数f(x)=1x−2,∴f(0)=10−2=−12,故答案为:−12.9.答案:2(答案不唯一)解析:本题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y 随x的增大而减小.根据正比例函数的性质可得k>0,写一个符合条件的数即可.解:∵正比例函数y=kx(k≠0)的图象经过一、三象限,∴k>0∴k的值可以是2.故答案为2.10.答案:98解析:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.根据关于x的方程2x2−3x+k=0有两个相等的实数根可得△=(−3)2−4×2k=0,求出k的值即可.解:∵关于x的方程2x2−3x+k=0有两个相等的实数根,∴△=(−3)2−4×2k=0,∴9−8k=0,∴k=9.8故答案为9.811.答案:310解析:解:∵从0−9这10个自然数中任取一个数,每个数被取到的机会相同,即这10个结果出现的机会相同,在这10个数中是4的倍数的有0,4,8共3个数,∴P(是4的倍数)=3.10.故答案为:310首先得出从0−9有10个自然数,在这10个数中是4的倍数的有0,4,8共3个数,进而得出概率.此题主要考查了概率公式,正确理解列举法求概率应用的条件,是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.12.答案:y=3(x+3)2+1解析:解:抛物线y=3(x+1)2的顶点坐标为(−1,0),把点(−1,0)向上平移1个单位,再向右平移2个单位得到点(−3,1),所以所得到的抛物线的表达式为y=3(x+3)2+1.故答案为y=3(x+3)2+1.先得到抛物线y=3(x+1)2的顶点坐标为(−1,0),再根据题意把点(−1,0)向上平移1个单位,再向左平移2个单位得到点(−3,1),则可根据顶点式写出平移后的抛物线的解析式.本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.答案:150解析:本题考查用样本估计总体.用全校学生乘以样本中体重超标学生占的比例,即可求解.=150(名)解:2000×15200故答案为150.14.答案:3米解析:本题考查相似三角形的应用,属于中档题.过E作EH⊥AB于H,交CD于G,利用相似三角形的性质即可得出结论.解:如图,过E作EH⊥AB于H,交CD于G;则:CG=CD−EF=0.2米,EG=FD=4米,EH=BF=BD+DF=24米;可得CG//AH ,可知:△CEG∽△AEH ,则有:CG AH =EG EH ,即:0.2AH =424,解得:AH =1.2米;∴AB =AH +BH =AH +EF =3米,故答案为3米.15.答案:−13a ⃗ −12b ⃗解析:本题考查平面向量,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.根据DF ⃗⃗⃗⃗⃗ =DE ⃗⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ ,求出DE ⃗⃗⃗⃗⃗⃗ ,EF⃗⃗⃗⃗⃗ 即可解决问题. 解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB//CD ,∴CD ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ =b ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ =a ⃗ , ∵DE =DC ,∴DE ⃗⃗⃗⃗⃗⃗ =−12CD ⃗⃗⃗⃗⃗ =−12b ⃗ , ∴AE ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +DE ⃗⃗⃗⃗⃗⃗ =a ⃗ −12b , ∵DE//AB ,∴EF :AF =DE :AB =1:2,∴EF =13AE ,∴EF ⃗⃗⃗⃗⃗ =−13AE ⃗⃗⃗⃗⃗ =−13a ⃗ , ∴DF ⃗⃗⃗⃗⃗ =DE ⃗⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ =−13a ⃗ −12b ⃗ , 故答案为−13a ⃗ −12b ⃗ . 16.答案:1200解析:解:波波所花的时间为(50−10)÷2=20(分钟),爸爸的速度为3000÷50=60(米/分钟),波波的速度为3000÷20=150(米/分钟).根据题意得:线段OA的解析式为y=60x(0≤x≤50);线段BC的解析式为y=150(x−10)=150x−1500(10≤x≤30).当x=10时,60x−(150x−1500)=600;当x=30时,150x−1500−60x=1200.∵1200>600,∴他们父子俩相距的最远路程是1200米.故答案为:1200.根据父子所需时间之间的关系可算出波波所花的时间,由速度=路程÷时间即可分别算出父亲及波波的速度,再根据路程=速度×时间即可找出线段OA、BC的函数解析式,代入x=10及x=30求出y 值,比较后即可得出结论.本题考查了一次函数的应用,根据路程=速度×时间找出线段OA、BC的函数解析式是解题的关键.17.答案:165解析:解:如图,∵△CDB′是由△CDB翻折,∴∠BCD=∠DCB′,∠CBD=∠CB′D,AD=DB=DB′,∴∠DBB′=∠DB′B,∵2∠DCB+2∠CBD+2∠DBB′=180°,∴∠DCB+∠CBD+∠DBB′=90°,∵∠CDA=∠DCB+∠CBD,∠ACD+∠CDA=90°,∴∠ABB′=∠ACE,∵AD =DB =DB′=3,∴∠AB′B =90°,∵∠ACE =∠ABB′,∠CAE =∠BAB′,∴△ACE∽△ABB′,∴∠AEC =∠AB′B =90°,在Rt △ADC 中,∵AC =4,AD =3,∴CD =√AC 2+AD 2=5, ∵12AC ⋅AD =12⋅CD ⋅AE , ∴AE =AC⋅ADCD =125,在Rt △ACE 中,CE =√AC 2−AE 2=√42−(125)2=165.故答案为165. 先证明∠AB′B =90°,再证明△ACE∽△ABB′,得到∠AEC =90°,利用面积法求出AE ,再利用勾股定理求出EC 即可.本题考查翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用翻折不变性解决问题,学会利用相似三角形证明直角,属于中考常考题型.18.答案:√10−√5<r <√10+√5解析:解:如图,连接EF ,∵四边形ABCD 是矩形,∴∠BAC =90°,则EF 是⊙O 的直径,取EF 的中点O ,连接OD ,作OG ⊥AF ,则点G 是AF 的中点,∴GF =12AF =2,∴OG 是△AEF 的中位数,∴OG=12AE=1,∴OF=√OG2+GF2=√5,OD=√OG2+DG2=√10,∵圆D与圆O有两个公共点,∴√10−√5<r<√10+√5,故答案为:√10−√5<r<√10+√5.连接EF,知EF是⊙O的直径,取EF的中点O,连接OD,作OG⊥AF,知点G是AF的中点,据此可得GF=12AF=2,OG=12AE=1,继而求得OF=√OG2+GF2=√5,OD=√OG2+DG2=√10,最后根据两圆的位置关系可得答案.本题主要考查圆与圆的位置关系,解题的关键是掌握圆周角定理、圆心角定理、三角形中位线定理、勾股定理、矩形的性质及圆与圆的位置关系等知识点.19.答案:解:原式=4−(3−2√2)+3√2,=4−3+2√2+√22,=1+52√2.解析:这是一道考查实数的运算的题目,解题关键在于根据负整数指数幂和绝对值以及去分母,将原式进行化简,再进行合并.20.答案:解:解不等式2x≤x+4,得:x≤4,解不等式x+33−x<−1,得:x>3,则不等式组的解集为3<x≤4.解析:求得每一个不等式的解集,再进一步求得公共部分即可.此题考查一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.21.答案:解:过D作DE⊥BC交BC的延长线于E,如图,则∠E=90°,∵sin∠DBC=√3,BD=2√6,3∴DE=2√2,∵CD=3,∴CE=1,BE=4,∴BC=3,∴BC=CD,∴∠CBD=∠CDB,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠CDB,∴AB//CD,同理AD//BC,∴四边形ABCD是菱形,连接AC交BD于O,则AC⊥BD,AO=CO,BO=DO=√6,∴OC=√BC2−BO2=√3,∴AC=2√3.解析:本题考查了菱形的判定和性质,解直角三角形有关知识,过D作DE⊥BC交BC的延长线于E,得到∠E=90°,根据三角形函数的定义得到DE=2√2,推出四边形ABCD是菱形,根据菱形的性质得到AC⊥BD,AO=CO,BO=DO=√6,根据勾股定理得到结论.22.答案:解:(1)9月份的营业额=15×(1−20%)=12(万元);(2)设11月份的增长率为x,则10月份的增长率为1.5x,依题意,得:12(1+1.5x)(1+x)=24,, x2=−2(不合题意,舍去),解得:x1=13=0.5.∴10月份的增长率为1.5×13答:10月份的增长率为50%.解析:本题考查了一元二次方程的应用,若原来的数量为a,平均每次增长或降低的百分率为x,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“−”.(1)用8月份的营业额×(1+增长率)计算九月份的营业额即可;(2)设设11月份的增长率为x,则10月份的增长率为1.5x,依题意,得:12(1+1.5x)(1+x)=24,解方程即可.23.答案:解:(1)∵四边形ABCD是菱形,∴AB=AD,∠BAC=∠DAC,又AE=AE,∴△ABE≌△ADE(SAS);(2)∵AB//CG,∴∠ABG=∠EGD,由(1)得△ABE≌△ADE,∴ED=EB,∠ABG=∠ADE,∴∠EGD=∠ADE,∵∠FED=∠DEG,∴△EDF∽△EGD,∴EDEG =EFED,所以ED2=EF⋅EG;∴EB2=EF⋅EG;(3)∵AB=BC,∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=4.连接BD交AC于O,则AC⊥BD,OA=OC=2,OB=2√3,∵AE :EC =1:3,∴AE =OE =1.∴BE =√(2√3)2+1=√13.∵AD//BC ,∴AE EC =EF BE =13, ∴EF =13BE =√133. 由(2)得EB 2=EF ⋅EG ,∴EG =√13)2√133=3√13, ∴BG =BE +EG =4√13.解析:【试题解析】本题主要考查相似三角形的判定和性质,全等三角形的判定和性质、等边三角形的判定性质菱形的性质.线段间的转化是解题的关键.(1)用SAS 证明即可;(2)先证明△EDF∽△EGD ,得到ED 2=EF ⋅EG ,代换ED =EB 即可;(3)根据已知先求出BE 和EF 值,再根据EB 2=EF ⋅EG 求出EG 值,最后用BG =BE +EG 计算即可.24.答案:解:(1)由题意得:{−1−b +c =0c =3, 解得:{b =2c =3, ∴抛物线解析式为y =−x 2+2x +3;(2)令−x 2+2x +3=0,∴x 1=−1,x 2=3,即B(3,0),设直线BC 的解析式为y =kx +b′,∴{b′=33k +b′=0, 解得:{k =−1b′=3, ∴直线BC 的解析式为y =−x +3,设P(a,3−a),则D(a,−a 2+2a +3),∴PD =(−a 2+2a +3)−(3−a)=−a 2+3a ,∴S △BDC =S △PDC +S △PDB =12PD ⋅a +12PD ⋅(3−a) =12PD ⋅3 =32(−a 2+3a) =−32(a −32)2+278, ∴当a =32时,△BDC 的面积最大,此时P(32,32);(3)由(1),y =−x 2+2x +3=−(x −1)2+4,∴E(1,4),设N(1,n),则0≤n ≤4,取CM 的中点Q(m 2,32),∵∠MNC =90°,∴NQ =12CM ,∴4NQ 2=CM 2,∵NQ 2=(1−m 2)2+(n −32)2, ∴4[(1−m 2)2+(n −32)2]=m 2+9,整理得,m =n 2−3n +1,即m =(n −32)2−54,∵0≤n ≤4,当n =32时,m 最小值=−54,n =4时,,综上,m 的取值范围为:−54≤m ≤5.解析:(1)由y =−x 2+bx +c 经过点A 、B 、C ,A(−1,0),C(0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令−x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b′,由待定系数法即可求得直线BC 的解析式,再设P(a,3−a),即可得D(a,−a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =−32(a −32)2+278,利用二次函数的性质,即可求得当△BDC 的面积最大时点P 的坐标;(3)根据直角三角形斜边上的中线等于斜边的一半列出关系式m =(n −32)2−54,然后根据n 的取值得到最小值和最大值.此题考查了待定系数法求函数的解析式、二次函数的最值问题等知识.此题综合性很强,难度较大. 25.答案:(1)证明见解析;(2)4;(3)AC =√2BC .解析:(1)连接AD.根据直径所对的圆周角是直角、等腰三角形的性质以及平行线的性质即可证明;(2)先证△CDE∽△CAB 得CE CB =DE AB ,据此求得CE 的长,依据AE =AC −CE =AB −CE 可得答案;(3)由BD =CD 知S △CDE =S △BDE ,证△OBF∽△ABE 得,据此知S △ABE =4S △OBF ,结合S ▵CDE S ▵OBF =23知S △ABE =6S △CDE ,S △CAB =8S △CDE ,由△CDE∽△CAB 知,据此得出CDCA =2√2,结合BD =CD ,AB =AC 知BC AB =√2,从而得出答案.【详解】(1)连接AD ,∵AB 是直径,∴∠AEB =∠ADB =90°,∵AB =AC ,∴∠CAD =∠BAD ,BD =CD ,∴BD ⌢=ED ⌢,∴OD ⊥BE ;(2)∵∠AEB =90°,∴∠BEC =90°,∵BD =CD ,∴BC =2DE =2√6,∵四边形ABDE内接于⊙O,∴∠BAC+∠BDE=180°,∵∠CDE+∠BDE=180°,∴∠CDE=∠BAC,∵∠C=∠C,∴△CDE∽△CAB,∴CECB =DEAB,即2√6=√66,∴CE=2,∴AE=AC−CE=AB−CE=4;(3)∵BD=CD,∴S△CDE=S△BDE,∵BD=CD,AO=BO,∴OD//AC,∵△OBF∽△ABE,∴,∴S△ABE=4S△OBF,∵S▵CDES▵OBF =23,∴S△ABE=4S△OBF=6S△CDE,∴S△CAB=S△CDE+S△BDE+S△ABE=8S△CDE,∵△CDE∽△CAB,∴,∴CDCA =2√2,∵BD=CD,AB=AC,∴BCAB =√2,即AC=√2BC.本题是圆的综合问题,解题的关键是掌握圆周角定理、圆内接四边形的性质、相似三角形的判定与性质及等底共高三角形的面积关系的问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
12
x
一. 选择题
1. 下列二次根式中,与 2020 年上海中考数学试卷
是同类二次根式的是(
).
2020.6.28
A.
B .
9
C .
D .
2. 用换元法解方程

).
x +1 x 2 2 + = 2 时,若设 x +1
x +1
x 2
=y ,则原方程可化为关于 y 的方程是
A . y 2 - 2 y +1 = 0 C . y 2 + y + 2 = 0
B . y 2 +2 y +1 = 0 D . y 2 + y - 2 = 0
3. 我们经常将调查、收集得来的数据用各种统计图进行整理与表示,下列统计图中,能表
示由数据所表现出来的部分与整体的关系的是( ).
A .条形图
B .扇形图
C .折线图
D . 频数分布直方图
4. 已知反比例函数的图像经过(2,-4),那么这个反比例函数的解析式是( ).
A. y = 2
x
B. y =- 2
x
C. y = 8
x D. y =- 8
x
5. 下列命题中,真命题是(
).
A. 对角线互相垂直的梯形是等腰梯形
B. 对角线互相垂直的平行四边形是正方形
C. 对角线平分一组对角的平行四边形是菱形
D. 对角线平分一组对角的梯形是直角梯形
6. 如果存在一条线把一个图形分割成两部分,使其中一个部分沿某个方向平移后能与另一部分重合,那么我们把这个图形叫做平移重合图形,下列图形中,平移重合图形是 (
).
A. 平行四边形
B . 等腰梯形
C .正六边形
D . 圆
二. 填空题 7. 计算: 2a ⋅ 3ab
.
8. 已知 f (x ) = 2 x -1
,那么 f (3) 的值是
.
9. 已知正比例函数 y = kx (k 是常数,k ≠0)的图像经过第二、四象限,那么 y 的值随 x 的增大而
.(填“增大”或“减小”)
10. 如果关于 x 的方程 x 2
- 4x + m = 0 有两个相等的实数根,那么 m 的值是 .
3 18
5 B
A
2 11. 如果从 1、2、3、4、5、6、7、8、9、10 这 10 个数中任意选取一个数,那么选到的数恰好是 5 的倍数的概率是
.
12. 如果将抛物线 y = x 2 向上平移 3 个单位,那么所得抛物线的表达式是
.
13. 为了了解某区六年级 8400 名学生中会游泳的学生人数,随机调查了其中 400 名学生, 结果有 150 名学生会游泳,那么估计该区会游泳的六年级学生人数为
.
14. 《九章算术》中记载了一种测量井深的方法,如图所示,在进口 B 处立一根垂直于井口的木杆 BD ,从木杆的顶端 D 观察井水水岸 C ,视线 DC 与井口的直径 AB 交于点 E ,如果测得 AB =1.6 米,BD =1 米,BE =0.2 米,那么井深 AC 为
米.
15. 如图,AC 、BD 是平行四边形 ABCD 的对角线,设 BC = a , CA = b ,那么向量 BD 用向量 a 、b 表示为
.
s (米)
A
D
1800
960
B
C
8 20
t (分钟)
第 14 题 第 15 题 第 16 题 第 17 题
16. 小明从家步行到学校需走的路程为 1800 米,图中的折线 OAB 反映了小明从家步行到学校所走的路程 s (米)与时间 t (分钟)的函数关系,根据图像提供的信息,当小明从家出发去学校步行 15 分钟时,到学校还需步行
米.
17. 如图,在△ABC 中,AB =4,BC =7,∠B =60°,点 D 在边 BC 上,CD =3,联结 AD 。

如果将△ACD 沿直线 AD 翻折后,点 C 的对应点为点 E ,那么点 E 到直线 BD 的距离 为
.
18. 如图,在矩形 ABCD 中,AB =6,BC =8,点 O 在对角线 AC 上,⊙O 的半径为 2,如果 ⊙O 与矩形 ABCD 的各边都没有公共点,那么线段 AO 的长取值范围是
.
D
三. 解答题
1
1
19. 计算: 273 + ⎛ 1 ⎫-2
- ⎪ ⎝ ⎭
+ 3 - .
5+2
5 ⎨⎪
⎧10x > 7x + 6 20. 解不等式组: ⎪
x -1 < ⎩
x + 7 .
3
21. 如图,在直角梯形 ABCD 中,AB ∥CD ,∠DAB =90°,AB =8,CD =5,BC = 3 .
(1) 求梯形 ABCD 的面积; (2) 联结 BD ,求∠DBC 的正切值.
D
C
A
22. 去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为 450 万元,第七天 的营业额是前六天总营业额的 12%.
(1) 求该商店去年“十一黄金周”这七天的总营业额;
(2) 去年,该商店 7 月份的营业额为 350 万元,8、9 月份营业额的月增长率相同,“十
一黄金周”这七天的总营业额与 9 月份的营业额相等,求该商店去年 8、9 月份营业额的月增长率.
23.
已知:如图,在菱形 ABCD 中,点 E 、F 分别在边 AB 、AD 上,BE =DF ,CE 的延长线交 DA 的延长线于点 G ,CF 的延长线交 BA 的延长线于点 H .
(1) 求证: △BEC ∽△BCH ; (2)
如果 BE 2
= AB ⋅ AE ,求证:AG =DF .
F
E
A
H
G
24.在平面直角坐标系xOy 中(如图),直线y =-1
x +
5 与x 轴、y 轴分别交于A、B,
2
抛物线y =ax2 +bx(a ≠ 0) 经过点A.
(1)求线段AB 的长;
(2)如果抛物线y =ax2 +bx 经过AB 上的另一点C,且BC= ,求这条抛物线的表达式;
(3)如果抛物线y =ax2 +bx 的顶点D 位于△AOB 内,求a 的取值范围.
y
x
25.如图,在△ABC 中,AB=AC,⊙O 是△ABC 的外接圆,BO 的延长线交边AC 于点D.
(1)求证:∠BAC = 2∠ABD ;
(2)当△BCD 是等腰三角形时,求∠BCD 的大小;
(3)当AD=2,CD=3 时,求边BC 的长.
5
5 2
2
参考答案
一. 选择题 1. C
2. A
3. B
4. D
5. C
6. A
二. 填空题 7. 6a 2
b
8. 1 9.减小
10. 4
11.
1 5
12.
y = x 2
+3
13. 3150 14. 7
15. 2a + b
16.350
17. 3
3
2
18.
10 < AO < 20 3 3
三. 解答题 19. 0. 20. 2 < x < 5 . 1
21.(1)39;(2) .
2
22.(1)504 万 ;(2)20%. 23.(1)证明略;(2)证明略.
24.(1) 5 ;
(2) y = - 1
x 2
+ 5
x ;(3) - 1
< a < 0 . 4 2 10
25.(1)证明略;(2)72°或 67.5°;(3) BC =
. 5。

相关文档
最新文档