导数的综合应用优秀课件
合集下载
高中数学理科专题讲解高考大题专项(一)《导数的综合应用》教学课件

--
题型二 讨论函数的单调性例2(2019湖北八校联考一,21)已知函数f(x)=x3+ x2-4ax+1(a∈R).(1)略;(2)若函数h(x)=a(a-1)ln x-x3+3x+f(x),讨论函数h(x)的单调性.
--
--
解题心得在判断函数f(x)的单调性时,若f'(x)中含有参数不容易判断其正负时,需要对参数进行分类讨论,分类的标准:(1)按导函数是否有零点分大类;(2)在大类中按导函数零点的大小分小类;(3)在小类中按零点是否在定义域中分类.
当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.
--
--
题型二 求函数的极值、最值例2(2019四川成都七中一模,21)已知函数f(x)=xsin x+2cos x+ax+2,其中a为常数.(1)略;(2)求函数f(x)在[0,π]上的最小值.
--
解: (2)对∀x∈[0,π],f'(x)=xcos x-sin x+a,令g(x)=xcos x-sin x+a,g'(x)=-xsin x≤0,所以f'(x)在区间[0,π]上单调递减.当a≤0时,f'(x)≤f'(0)=a≤0,∴f(x)在区间[0,π]上单调递减,故fmin(x)=f(π)=aπ.当a≥π时,f'(x)≥f'(π)=a-π≥0,∴f(x)在区间[0,π]上单调递增,故fmin(x)=f(0)=4.当0<a<π时,因为f'(0)=a>0,f'(π)=a-π<0,且f'(x)在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x0∈(0,π),使得f'(x0)=0,且f(x)在[0,x0]上单调递增,在[x0,π]上单调递减.故f(x)的最小值等于f(0)=4和f(π)=aπ中较小的一个值.
题型二 讨论函数的单调性例2(2019湖北八校联考一,21)已知函数f(x)=x3+ x2-4ax+1(a∈R).(1)略;(2)若函数h(x)=a(a-1)ln x-x3+3x+f(x),讨论函数h(x)的单调性.
--
--
解题心得在判断函数f(x)的单调性时,若f'(x)中含有参数不容易判断其正负时,需要对参数进行分类讨论,分类的标准:(1)按导函数是否有零点分大类;(2)在大类中按导函数零点的大小分小类;(3)在小类中按零点是否在定义域中分类.
当-1<x<0时,g'(x)<0;当x>0时,g'(x)>0.故当x>-1时,g(x)≥g(0)=0,且仅当x=0时,g(x)=0,从而f'(x)≥0,且仅当x=0时,f'(x)=0.所以f(x)在(-1,+∞)单调递增.又f(0)=0,故当-1<x<0时,f(x)<0;当x>0时,f(x)>0.
--
--
题型二 求函数的极值、最值例2(2019四川成都七中一模,21)已知函数f(x)=xsin x+2cos x+ax+2,其中a为常数.(1)略;(2)求函数f(x)在[0,π]上的最小值.
--
解: (2)对∀x∈[0,π],f'(x)=xcos x-sin x+a,令g(x)=xcos x-sin x+a,g'(x)=-xsin x≤0,所以f'(x)在区间[0,π]上单调递减.当a≤0时,f'(x)≤f'(0)=a≤0,∴f(x)在区间[0,π]上单调递减,故fmin(x)=f(π)=aπ.当a≥π时,f'(x)≥f'(π)=a-π≥0,∴f(x)在区间[0,π]上单调递增,故fmin(x)=f(0)=4.当0<a<π时,因为f'(0)=a>0,f'(π)=a-π<0,且f'(x)在区间[0,π]上单调递减,结合零点存在定理可知,存在唯一x0∈(0,π),使得f'(x0)=0,且f(x)在[0,x0]上单调递增,在[x0,π]上单调递减.故f(x)的最小值等于f(0)=4和f(π)=aπ中较小的一个值.
导数的综合应用优秀课件

导数的综合应用优秀
2021/1/17
§3.3 导数的综合应用
基础知识 自主学习
要点梳理 1.利用导数研究函数单调性的步骤
(1)求导数 f′(x);(2)在函数 f(x)的定义域内解不等式 f′(x)>0 或 f′(x)<0;(3)根据(2)的结果确定函数 f(x)的单 调区间. 2.求可导函数极值的步骤 (1)确定函数的定义域;(2)求导数 f′(x);(3)解方程 f′(x) =0,求出函数定义域内的所有根;(4)列表检验 f′(x)在 f′(x)=0 的根 x0 左右两侧值的符号,如果左正右负,那 么 f(x)在 x0 处取极大值,如果左负右正,那么 f(x)在 x0间[a,b]内的最大值与最小值 (1)确定函数 f(x)在闭区间[a,b]内连续、可导; (2)求函数 f(x)在开区间(a,b)内的极值; (3)求函数 f(x)在[a,b]端点处的函数值 f(a),f(b); (4)比较函数 f(x)的各极值与 f(a),f(b)的大小,其中 最大的一个是最大值,最小的一个是最小值.
2021/1/17
4.经过点(3,0)的直线 l 与抛物线 y=x22交于两点,且两个 交点处的切线相互垂直,则直线 l 的斜率 k= -16 .
解析 设直线 l 的斜率为 k,则其方程为 y=k(x-3),设
直线 l 与抛物线的两个交点为 A(x1,y1),B(x2,y2),
由y=x22,
得 x2-2kx+6k=0,
2021/1/17
又函数 g(x)=-x3+bx+c+3 是奇函数,g(0)=0,
∴c=-3.
∴a=-2,b=4,c=-3,∴f(x)=-x3-2x2+4x-3.
(2)f′(x)=-3x2-4x+4=-(3x-2)(x+2), 令 f′(x)=0,得 x=23或 x=-2,
2021/1/17
§3.3 导数的综合应用
基础知识 自主学习
要点梳理 1.利用导数研究函数单调性的步骤
(1)求导数 f′(x);(2)在函数 f(x)的定义域内解不等式 f′(x)>0 或 f′(x)<0;(3)根据(2)的结果确定函数 f(x)的单 调区间. 2.求可导函数极值的步骤 (1)确定函数的定义域;(2)求导数 f′(x);(3)解方程 f′(x) =0,求出函数定义域内的所有根;(4)列表检验 f′(x)在 f′(x)=0 的根 x0 左右两侧值的符号,如果左正右负,那 么 f(x)在 x0 处取极大值,如果左负右正,那么 f(x)在 x0间[a,b]内的最大值与最小值 (1)确定函数 f(x)在闭区间[a,b]内连续、可导; (2)求函数 f(x)在开区间(a,b)内的极值; (3)求函数 f(x)在[a,b]端点处的函数值 f(a),f(b); (4)比较函数 f(x)的各极值与 f(a),f(b)的大小,其中 最大的一个是最大值,最小的一个是最小值.
2021/1/17
4.经过点(3,0)的直线 l 与抛物线 y=x22交于两点,且两个 交点处的切线相互垂直,则直线 l 的斜率 k= -16 .
解析 设直线 l 的斜率为 k,则其方程为 y=k(x-3),设
直线 l 与抛物线的两个交点为 A(x1,y1),B(x2,y2),
由y=x22,
得 x2-2kx+6k=0,
2021/1/17
又函数 g(x)=-x3+bx+c+3 是奇函数,g(0)=0,
∴c=-3.
∴a=-2,b=4,c=-3,∴f(x)=-x3-2x2+4x-3.
(2)f′(x)=-3x2-4x+4=-(3x-2)(x+2), 令 f′(x)=0,得 x=23或 x=-2,
导数的综合应PPT课件

又 f12=1-ln2,f(2)=-12+ln2, f(12)-f(2)=32-2ln2=lne3-2 ln16, ∵e3>16,∴f12-f(2)>0,即 f12>f(2). ∴f(x)在区间12,2上的最大值 f(x)max=f12=1-ln2.
综上可知,函数 f(x)在12,2上的最大值是 1-ln2,最小值是 0.
(2)因为当x<1时,f′(x)>0; 当1<x<2时,f′(x)<0;当x>2时,f′(x)>0, 所以当x=1时,f(x)取极大值f(1)=52-a; 当x=2时,f(x)取极小值f(2)=2-a. 故当f(2)>0或f(1)<0时,方程f(x)=0仅有一个实根. 解得a<2或a>52.
考点2 利用导数证明不等式问题
例 2:已知函数 f(x)=1- axx+lnx. (1)若函数 f(x)在[1,+∞)上为增函数,求正实数 a 的取值范 围; (2)当 a=1 时,求 f(x)在12,2上的最大值和最小值; (3)当 a=1 时,求证:对大于 1 的任意正整数 n,都有 lnn>12+ 13+14+…+1n.
解析:(1)∵f(x)=1- ax x+lnx,∴f′(x)=axa-x2 1(a>0). ∵函数 f(x)在[1,+∞)上为增函数, ∴f′(x)=axa-x21≥0 对 x∈[1,+∞)恒成立. ∴ax-1≥0 对 x∈[1,+∞)恒成立. 即 a≥1x对 x∈[1,+∞)恒成立. ∴a≥1.
图4-3-3
关于导数的应用,课标要求 (1)了解函数的单调性与导数的关系,能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间. (2)了解函数在某点取得极值的必要条件和充分条件;会用导 数求不超过三次的多项式函数的极大值、极小值,以及闭区间上 不超过三次的多项式函数的最大值、最小值.
导数及其应用PPT教学课件

• 若设Δx=x2-x1, Δf=f(x2)-f(x1)
这里Δx看作是对于x1的一
个“增量”可用x1+Δx代
替x2
则平均变化率为
Vf 同样Δf=Δfy(=x=2f()x2)-ff(x(1x)1)
Vx
x2 x1
思考?
• 观察函数f(x)的图象
平均变化率 表示什么?
f(x2 ) f (x1)
x x y
r(V ) 3 3V
4
• 当V从0增加到1时,气球半径增加了 r(1) r(0) 0.62(dm)
气球的平均膨胀率为 r(1) r(0) 0.62(dm / L)
1 0
• 当V从1增加到2时,气球半径增加了 r(2) r(1) 0.16(dm
气球的平均膨胀率为
r(2) 2
r(1) 1
=6Δx+(Δx)2
再求 Vf 6 Vx Vx
再求 lim Vy 6 Vx0 Vx
小结:
时,原由的温度(单位:0C)为 f(x)=x2-
7x+15(0≤x≤8).计算第2(h) 和第6(h)时,原由键是求出:Vf Vx 3 Vx
lim 再求出 Vf Vx0 Vx
它说明在第2(h)附近,原油 温度大约以3 0C/H的速度下降; 在第6(h)附近,原油温度大
又如何求 瞬时速度呢?
如何求(比如, t=2时的)瞬时速度?
: 当Δt趋近于0时,平均
通过列表看出平均速度的变化速度趋有势什么变化趋势?
瞬时速度?
• 我们用 lim h(2 t) h(2) 13.1
t0
t
表示 “当t=2, Δt趋近于0时,平均速度趋于确定值 -13.1”.
• 那么,运动员在某一时刻t0的瞬时速度?
高等数学导数的应用pptPPT课件演示文档

证明 令 f(x ) 1 x ln (x 1 x 2)1 x 2
则 f'(x)ln(x 1x2) 0 (x 0)
所以:当x>0时, y>0 ,函数在[0,+ )上单调增加 又因为: f(0)=0, 所以x∈ [0,+ ),有f(x)>f(0),即不等式成立.
二、函数的极值
设函数 y = ƒ(x)在(a ‚ b)内图形如下图: yM y= ƒ(x)
a
o 1
2
m
bx
在1处的函数值f(1) 比它附近各点的函数值都要小; 而在2处的函数值f(2)比它附近各点的函数值都要大;
但它们又不是整个定义区间上的最小、最大值,为此,我 们引入极值与极值点的概念.
定义,定x义3N.2.(1x0,设)函,数都f有(x)在x0的某领域N(x0,)内有
(1)f(x)<f(x0)成立,则称f(x0)为函数f(x)的极大值;
解
函数的定义域为(-,+); y
2
1
x3
2
3
33 x
当x>0时, y>0 ,函数在( 0,+ )上单调增加
当x<0时, y<0,函数在(-, 0)上单调减少
当x=0时, y不存在. x=0为单调区间的分界点
当f(x)在定义区间除去有限个点外导数均存在,那么 只要用导数为零的点(驻点)和导数不存在的点来划分 f(x)的定义域,就能保证在各个部分区间上单调。 (单调区间的分界点为驻点和不可导点)
说明:
1、可导函数的极值点必是它的驻点.
从而有几何意义: 可导函数的图形在极值点处的切线是
与 x 轴平行的 (罗尔定理) .
2、对可导函数来说, 驻点不一定是极值点.
则 f'(x)ln(x 1x2) 0 (x 0)
所以:当x>0时, y>0 ,函数在[0,+ )上单调增加 又因为: f(0)=0, 所以x∈ [0,+ ),有f(x)>f(0),即不等式成立.
二、函数的极值
设函数 y = ƒ(x)在(a ‚ b)内图形如下图: yM y= ƒ(x)
a
o 1
2
m
bx
在1处的函数值f(1) 比它附近各点的函数值都要小; 而在2处的函数值f(2)比它附近各点的函数值都要大;
但它们又不是整个定义区间上的最小、最大值,为此,我 们引入极值与极值点的概念.
定义,定x义3N.2.(1x0,设)函,数都f有(x)在x0的某领域N(x0,)内有
(1)f(x)<f(x0)成立,则称f(x0)为函数f(x)的极大值;
解
函数的定义域为(-,+); y
2
1
x3
2
3
33 x
当x>0时, y>0 ,函数在( 0,+ )上单调增加
当x<0时, y<0,函数在(-, 0)上单调减少
当x=0时, y不存在. x=0为单调区间的分界点
当f(x)在定义区间除去有限个点外导数均存在,那么 只要用导数为零的点(驻点)和导数不存在的点来划分 f(x)的定义域,就能保证在各个部分区间上单调。 (单调区间的分界点为驻点和不可导点)
说明:
1、可导函数的极值点必是它的驻点.
从而有几何意义: 可导函数的图形在极值点处的切线是
与 x 轴平行的 (罗尔定理) .
2、对可导函数来说, 驻点不一定是极值点.
高三数学精品课件:第三课时 导数的综合应用

解析:设 g(x)=f(x)+2x,则 g(x)=ax2-ax+ln x,只要 g(x)在 (0,+∞)上单调递增,即 g′(x)≥0 在(0,+∞)上恒成立即可.而 g′(x)=2ax-a+1x=2ax2-xax+1(x>0). ①当 a=0 时,g′(x)=1x>0,此时 g(x)在(0,+∞)上单调递增;
[考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点二 利用导数研究与不等式有关问题(核心考点——合作探究)
导数在不等式中的应用问题是每年高考的必考内容,且以 解答题的形式考查,难度较大,属中、高档题.常见的命题角度 有:1证明不等式.2不等式恒成立问题.3存在型不等式成立 问题.
[考点分类·深度剖析] 课时作业
角由度ex≥2 k+不x等,式得恒k成≤立ex-问x题.
令 f(x)=(1e)xe-x≥x,k+所x以在f′R(上x)=恒e成x-立1,. 则实数 k 的取值范围为 令 f′(x)=0,解得 x=0,x<0 时,f′(x)<0,x>0 时,f′(x)>0. ( A) A所.以k≤f(x1)在(-∞,0)上B是.减k≥函1数,在(0,+∞)上是增函数.
答案:[0,8]
[考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点二 利用导数研究与不等式有关问题(核心考点——合作探究)
[方法总结] 利用导数解决不等式的恒成立中参数范围问题的 策略 1.首先要构造函数,利用导数研究函数的单调性,求出最值, 进而得出相应的含参不等式,从而求出参数的取值范围. 2.也可分离变量,构造函数,直接把问题转化为函数的最值 问题.
[考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点一 利用导数研究函数的零点或方程根(核心考点——合作探究)
[考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点二 利用导数研究与不等式有关问题(核心考点——合作探究)
导数在不等式中的应用问题是每年高考的必考内容,且以 解答题的形式考查,难度较大,属中、高档题.常见的命题角度 有:1证明不等式.2不等式恒成立问题.3存在型不等式成立 问题.
[考点分类·深度剖析] 课时作业
角由度ex≥2 k+不x等,式得恒k成≤立ex-问x题.
令 f(x)=(1e)xe-x≥x,k+所x以在f′R(上x)=恒e成x-立1,. 则实数 k 的取值范围为 令 f′(x)=0,解得 x=0,x<0 时,f′(x)<0,x>0 时,f′(x)>0. ( A) A所.以k≤f(x1)在(-∞,0)上B是.减k≥函1数,在(0,+∞)上是增函数.
答案:[0,8]
[考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点二 利用导数研究与不等式有关问题(核心考点——合作探究)
[方法总结] 利用导数解决不等式的恒成立中参数范围问题的 策略 1.首先要构造函数,利用导数研究函数的单调性,求出最值, 进而得出相应的含参不等式,从而求出参数的取值范围. 2.也可分离变量,构造函数,直接把问题转化为函数的最值 问题.
[考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点一 利用导数研究函数的零点或方程根(核心考点——合作探究)
导数的应用教学课件ppt

乘法法则
对于两个函数f(x)和g(x),其导数分别为f'(x)和g'(x),则两函数积的导数为(fg)'(x)=f'(x)g(x)+f(x)g'(x)。
幂法则
对于一个函数f(x),其导数为f'(x),则(x^n)'=nx^(n-1)。
导数计算的常见问题与解决方案
常见问题
在导数计算中,容易出现一些错误,如符号错误、运算错误 、化简错误等。
导数可以用来求函数的极值、单调区间、凹凸区间等
导数在其他领域中的应用
导数可以用来解决物理、经济、工程等领域中的一些问题,如物体运动时的加速 度、经济学中的边际效应、工程中的曲率等等
02
导数的计算
极限与导数
极限的定义
极限是函数在某一变化过程中, 某个变量的变化趋势,通常用符 号lim表示。
导数的定义
与其他学生或老师交流讨论,及时解决学习中遇 到的问题。
THANKS
导数的深入研究
1
深入理解导数的定义和计算方法,包括高阶导 数和复合函数的导数。
2
研究导数在函数性质、曲线形状、极值等方面 的应用,以及在实际问题中的应用。
3
探讨导数在数学中的地位和作用,以及与其他 数学分支的联系。
导数在未来的应用前景
分析导数在金融、经济、工程等领域 的应用前景,例如最优化问题、供应 链管理、计算机图形学等。
导数的应用教学课件ppt
xx年xx月xx日Biblioteka contents目录
• 导数的概念及背景 • 导数的计算 • 导数在函数性质研究中的应用 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的进一步探讨与展望
01
对于两个函数f(x)和g(x),其导数分别为f'(x)和g'(x),则两函数积的导数为(fg)'(x)=f'(x)g(x)+f(x)g'(x)。
幂法则
对于一个函数f(x),其导数为f'(x),则(x^n)'=nx^(n-1)。
导数计算的常见问题与解决方案
常见问题
在导数计算中,容易出现一些错误,如符号错误、运算错误 、化简错误等。
导数可以用来求函数的极值、单调区间、凹凸区间等
导数在其他领域中的应用
导数可以用来解决物理、经济、工程等领域中的一些问题,如物体运动时的加速 度、经济学中的边际效应、工程中的曲率等等
02
导数的计算
极限与导数
极限的定义
极限是函数在某一变化过程中, 某个变量的变化趋势,通常用符 号lim表示。
导数的定义
与其他学生或老师交流讨论,及时解决学习中遇 到的问题。
THANKS
导数的深入研究
1
深入理解导数的定义和计算方法,包括高阶导 数和复合函数的导数。
2
研究导数在函数性质、曲线形状、极值等方面 的应用,以及在实际问题中的应用。
3
探讨导数在数学中的地位和作用,以及与其他 数学分支的联系。
导数在未来的应用前景
分析导数在金融、经济、工程等领域 的应用前景,例如最优化问题、供应 链管理、计算机图形学等。
导数的应用教学课件ppt
xx年xx月xx日Biblioteka contents目录
• 导数的概念及背景 • 导数的计算 • 导数在函数性质研究中的应用 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的进一步探讨与展望
01
第3章 第16讲 导数的综合应用

研题型 ·技法通关
第11页
栏目导航
第三章 导数及其应用
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
导数的几何意义和函数单调性 已知函数f(x)=xln x. (1)求曲线y=f(x)在点(1,f(1))处的切线方程; 【解答】 因为函数f(x)=xln x,所以f′(x)=lnx+1,当x=1时,f′(1)=ln1+1 =1,f(1)=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
第20页
栏目导航
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
(2)若f(x)<0对x∈(1,+∞)恒成立,求a的取值范围.
【解答】f(x)=xlnx-a(x-1)2-x+1<0在(1,+∞)上恒成立.因为x>0,即lnx- ax-1x2+x-1<0在(1,+∞)上恒成立.
不妨设h(x)=lnx-ax-1x2+x-1,x∈(1,+∞), 则h′(x)=-x-1axx2+a-1. ①当a≤0时,ax+a-1<0,故h′(x)>0,所以h(x)在(1,+∞)上单调递增,从而 h(x)>h(1)=0,所以h(x)<0不成立.
第12页
栏目导航
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
(2)求f(x)的单调区间;
【解答】函数f(x)=xlnx的定义域为(0,+∞),f′(x)=lnx+1.令f′(x)=0,得x
=1e.当x变化时,f(x),f′(x)的变化情况如下表:
x
0,1e
1 e
1e,+∞
f′(x)
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
第11页
栏目导航
第三章 导数及其应用
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
导数的几何意义和函数单调性 已知函数f(x)=xln x. (1)求曲线y=f(x)在点(1,f(1))处的切线方程; 【解答】 因为函数f(x)=xln x,所以f′(x)=lnx+1,当x=1时,f′(1)=ln1+1 =1,f(1)=0,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=x-1.
第20页
栏目导航
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
(2)若f(x)<0对x∈(1,+∞)恒成立,求a的取值范围.
【解答】f(x)=xlnx-a(x-1)2-x+1<0在(1,+∞)上恒成立.因为x>0,即lnx- ax-1x2+x-1<0在(1,+∞)上恒成立.
不妨设h(x)=lnx-ax-1x2+x-1,x∈(1,+∞), 则h′(x)=-x-1axx2+a-1. ①当a≤0时,ax+a-1<0,故h′(x)>0,所以h(x)在(1,+∞)上单调递增,从而 h(x)>h(1)=0,所以h(x)<0不成立.
第12页
栏目导航
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
(2)求f(x)的单调区间;
【解答】函数f(x)=xlnx的定义域为(0,+∞),f′(x)=lnx+1.令f′(x)=0,得x
=1e.当x变化时,f(x),f′(x)的变化情况如下表:
x
0,1e
1 e
1e,+∞
f′(x)
高考总复习 一轮复习导学案 ·数学理科
第三章 导数及其应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 4.经过点(3,0)的直线 l 与抛物线 y= 交于两点,且两个 2 交点处的切线相互垂直,则直线 l 的斜率 k=
1 -6
.
解析 设直线 l 的斜率为 k,则其方程为 y=k(x-3),设 直线 l 与抛物线的两个交点为 A(x1,y1),B(x2,y2), x2 y= , 2 由 得 x2-2kx+6k=0, y=k(x-3), 所以 x1x2=6k. x2 ∵y′= 2 ′=x, ∴抛物线在 A、B 两点的切线的斜率分别为 x1,x2,于是 1 有 x1x2=6k=-1,故 k=-6.
∴不存在这样的两点使结论成立.
探究提高 探索性问题的求解应先假设要证的结论成立, 然后依据结论出发求解.若得到一个与已知条件或定理等 矛盾的结论,则该探究性问题不存在,否则是存在的.
变式训练 1 已知函数 f(x)=-x3+ax2+bx+c 图象上的点 P(1,f(1))处的切线方程为 y=-3x+1,函数 g(x)=f(x) -ax2+3 是奇函数. (1)求函数 f(x)的表达式; (2)求函数 f(x)的极值.
题型分类
题型一
深度剖析
利用导数的几何意义解题
例 1 设函数 f(x)=ax3+bx2+cx+d (a、b、c、d∈R)的图 2 象关于原点对称,且当 x=1 时 f(x)有极小值- . 3 (1)求 a、b、c、d 的值; (2)当 x∈[-1,1]时,问图象上是否存在两点使过此两点 处的切线互相垂直?试证明你的结论.
∴x2 0=4.∴x0=-2,∴y0=15. ∴P 点的坐标为(-2,15).
2.奇函数 f(x)=ax 3 +bx 2 +cx 在 x=1 处有极值x)=x+asin x 在 R 上递增,则实数 a 的取值范 围为________ [-1,1] .
解
(1)f′ (x)=-3x2+ 2ax+ b,
∵函数 f(x)在 x= 1 处的切线斜率为-3, ∴ f′ (1)=- 3+2a+b=-3,即 2a+b= 0, 又 f(1)=-1+ a+b+ c=-2,得 a+ b+c=-1,
(2)假设存在两点 A(x1, y1)、B(x2, y2),过此两点的切线互 相垂直.
2 由 f′ (x)= x2-1 得 k1= x2 - 1 , k = x 1 2 2- 1, 2 ∴ (x2 1- 1)(x2- 1)=- 1. 2 ∵- 1≤ x1≤1,-1≤ x2≤ 1,∴x2 - 1 ≤ 0 , x 1 2- 1≤0, 2 2 2 ∴ (x2 1- 1)(x2- 1)≥ 0,这与(x1- 1)(x2- 1)=- 1 矛盾.
基础自测 1.在平面直角坐标系 xOy 中,点 P 在曲线 C:y=x3- 10x+ 3 上,且在第二象限内,已知曲线 C 在点 P 处的
(-2,15). 切线斜率为 2,则点 P 的坐标为________
解析 设 P(x0,y0)(x0<0),由题意知:
2 y |xx0 3x0 10 2,
§3.3
导数的综合应用
基础知识 自主学习
要点梳理 1.利用导数研究函数单调性的步骤 (1)求导数 f′(x);(2)在函数 f(x)的定义域内解不等式 f′(x)>0 或 f′(x)<0;(3)根据(2)的结果确定函数 f(x)的单 调区间. 2.求可导函数极值的步骤 (1)确定函数的定义域; (2) 求导数 f′(x); (3)解方程 f′(x) =0,求出函数定义域内的所有根;(4)列表检验 f′(x)在 f′(x)=0 的根 x0 左右两侧值的符号,如果左正右负,那 么 f(x)在 x0 处取极大值,如果左负右正,那么 f(x)在 x0 处取极小值.
5.若函数 f(x)=x3-3x+a 有 3 个不同的零点,则实数 a 的 取值范围是(-2,2) .
解析 由于函数 f(x)是连续的,故只需要两个极值异号
即可.f′(x)=3x2-3,令 3x2-3=0,则 x=±1,只需 f(-1)f(1)<0,即(a+2)(a-2)<0,故 a∈(-2,2).
解析 ∵f′(x)=1+acos x, ∴要使函数 f(x)=x+asin x 在 R 上递增,则 1+a cos x≥0 对任意实数 x 都成立. ∵-1≤cos x≤1, ①当 a>0 时,-a≤acos x≤a,∴-a≥-1,∴0<a≤1; ②当 a=0 时适合; ③当 a<0 时,a≤acos x≤-a,∴a≥-1,∴-1 ≤a<0. 综上,-1≤a≤1.
3.求函数 f(x)在闭区间[a,b]内的最大值与最小值 (1)确定函数 f(x)在闭区间[a,b]内连续、可导; (2)求函数 f(x)在开区间(a,b)内的极值; (3)求函数 f(x)在[a,b]端点处的函数值 f(a),f(b); (4)比较函数 f(x)的各极值与 f(a),f(b)的大小,其中 最大的一个是最大值,最小的一个是最小值. 4.利用导数解决实际生活中的优化问题 (1)分析实际问题中各变量之间的关系,建立实际问 题的数学模型,写出相应的函数关系式 y=f(x); (2)求导数 f′(x),解方程 f′(x)=0; (3)判断使 f′(x)=0 的点是极大值点还是极小值点; (4)确定函数的最大值或最小值,还原到实际问题中 作答.一般地,对于实际问题,若函数在给定的定义 域内只有一个极值点,那么该点也是最值点.
思维启迪:函数图象关于原点对称,则函数 f(x)是一个 奇函数.又在 x=1 处有极小值,则说明 f′(1)=0.
解
(1)∵f(x)的图象关于原点对称,
∴ f(- x)=-f(x), ∴- ax3+ bx2- cx+ d=-ax3-bx2- cx- d, ∴ bx2+ d= 0 恒成立, ∴ b= 0, d= 0.∴f(x)= ax3+ cx, ∴ f′ (x)= 3ax2+ c. 2 ∵当 x= 1 时,f(x)有极小值为- , 3 3a+ c= 0, 1 a= , ∴ 解得 3 2 a+ c=- , 3 c=- 1. 1 ∴ a= , b= 0, c=- 1, d= 0. 3