低压电力系统接地型式分析
低压接地系统TN-C、TN-S等介绍,详细!

低压接地系统TN-C、TN-S等介绍,详细!电力系统的接地直接关系到用户的人身和财产安全,以及电气设备和电子设备的正常运行。
如何针对实际选择合适的接地系统,确保配电系统及电气设备的系统安全采用使用,是电气设计人员面临的首要弊病。
根据国际电工委员会(IEC)明定规定的各种保护接地方式的术语概念,低压配电系统按接地方式的不同称为TT系统、TN系统、IT系统。
其中TN系统又分为TN-C、TN-S、TN-C-S系统。
里头对各种供电系统做扼要的介绍。
一、低压系统内的接地形式低压系统接地形式有IT、TT、TN三大类,而TN类又分为TN-C、TN-C-S、TN-S三种形式。
其中字母表示的含义:(1)声称字母第一个部分表示配电系统中性点对地的关系T:电源端中性点一点直接接地;I:电源端与地绝缘或通过高阻抗一点接地。
(2)字母第二部分表示电气的外露可导电部分与地的关系T:外露可导电部分直接接地,与配电系统的接地点无关;N:公用外露可导电部分与配电系统的中性点直接做电气连接(也叫接零系统);(3)“-”号后面的字母是扩大说明C:保护零线与工作零线用同一根零线两线;S:保护零线与教育工作零线彻底维护分开,各自独立用两根线;C-S:保护零线与工作零线前边一部分用同钉子线,后边一部分保护保护零线与工作零线急于分开,用两根线。
二、TN系统TN系统,称作保护接零。
当促使故障使电气设备金属外壳带电前一天,形成相线和零线短路,回路电阻小,电流大,能使熔丝迅速熔断或保护装置动作切断电源。
在TN系统中又分为TN-C、TN-S和TN-C-S三种系统。
(1)TN-C系统在全系统内N线和PE线是合一的。
(2)TN-S系统在全系统内N线和PE线是分开的。
(3)TN-C-S系统在全系统内,通常仅在低压电气装置电源进线点前N线和PE线是合一的,电源进线点后即分为两根线。
三、TT系统TT系统就是电源中性点直接接地,用电设备外露可导电部分也直接接地的系统。
低压施工配电系统三种接地形式:IT、TT、TN解析

低压施工配电系统三种接地形式:IT、TT、TN解析根据现行的国家标准《低压配电设计规范》(GB50054),低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
下面分别对IT系统、TT系统、TN系统进行全面剖析。
一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
IT系统接线图如图1所示。
低压施工配电系统三种接地形式:IT、TT、TN解析图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。
关于某变电站低压侧中性点接地方式的选择概述

关于某变电站低压侧中性点接地方式的选择概述摘要:电力系统中性点接地方式是配电网设计、规划和运行中的一个重要的综合性技术课题。
它对电力系统许多方面都有影响,不仅涉及到电网本身的安全可靠性、设备和线路的绝缘水平,而且对通讯干扰、人身安全有重要影响。
中性点接地方式的选择也是一个复杂的问题,要考虑电网结构、系统运行情况、线路的设备状况和周围自然环境等因素,还必须考虑人身安全、通信的干扰和供电可靠性的要求。
本文依托此现状就某新建变电站35千伏配电装置中性点接地方式的选择进行简要分析。
0背景根据某地电网规划,35千伏电网将逐渐退出电网,未来不新建35千伏变电站,投运的110千伏变电站和220千伏变电站将无35千伏电压等级。
但为某地北部大部分乡镇供电的35千伏变电站扔将运行十年或更久,目前为乡镇提供35千伏电源的上级变电站目前仅有两座,其站内主变长期保持重载,大负荷方式下一旦出现线路或设备故障就有可能导致某地北部大面积停电。
为暂时缓解供电压力,提高35千伏电网转供能力,同时优化35千伏网架结构,需要部分新建变电站在建设初期考虑35千伏电压等级配电设备,远期拆除。
因规划均以高压电缆通过城市综合管廊联络出线,而35千伏电网以架空线为主,此现状导致未来新建35千伏出线存在电缆线路+架空线路并存的情况。
1.1国内外现状综述对于中压配电网的中性点接地方式问题,世界各国有着不同的观点及运行经验。
因此,世界各个国家,甚至一个国家中的不同城市中,中压配电网的中性点接地方式都不尽相同,主要根据各自中压配电网的运行经验和传统来确定。
1.1.1 国外发展现状(1)前苏联及东欧前苏联规定在下列情况下采用中性点不接地方式:6kV电网单相接地电流小于30A;10kV电网单相接地电流小于20A;15~20kV电网单相接地电流小于15A;35kV电网单相接地电流小于10A。
如果单相接地电流超过上述各值,则需采用中性点消弧线圈接地方式。
(2)西欧地区德国是世界上最早使用消弧线圈的国家,白1916年发明消弧线圈、1917年在Pleidelshein电厂首次投运,至今已有90多年的历史。
论低压电力系统的接地

论低压电力系统的接地摘要:确保电力系统的安全、稳定、经济运行需要一个良好、合格的接地网,而接地网的设计对其安全运转有着至关重要的作用。
在低压电力系统中,tn系统、tt系统、it系统都有着各自的适用范围,只有在设计时根据不同场所选择合适的接地型式,才能切实提高接地的安全性。
关键词:电力系统、接地、安全用电中图分类号: f406 文献标识码: a 文章编号:接地网作为设备接地及防雷保护接地,对系统的安全运行起着重要的作用。
但由于接地网作为隐形工程往往容易被人忽视。
随着电力系统电压等级升高及容量的增加,如果没有选取合适的接地形式,会有各种事故发生。
为保证电力系统的安全运行,本文从设计角度浅谈低压电力系统的接地形式。
tn系统电源端有一点直接接地(通常是中性点),电气装置的外漏可导电部分通过保护中性导体或保护导体连接到此接地点。
根据中性导体(n)和保护导体(pe)的组合情况,tn系统的型式有一下三种:tn-s系统:整个系统的n线和pe线是分开的tn-c系统:整个系统的n线和pe线是合一的(pen线)tn-c-s系统:系统中一部分线路的n线和pe线是合一tt系统电源端有一点直接接地,电气装置的外漏可导电部分直接接地,此接地点在电气上独立于电源端的接地点it系统电源端带电部分不接地或有一点通过阻抗接地。
电气装置的外漏可导电部分直接接地系统接地型式的选用整个tn-s配电系统的中性线与保护线是分开的,具有tn-c系统的优点。
但用线多,价格较贵。
正常运行时pe线中没有任何电流流过,因此与pe线相连接的电气设备的金属外壳正常工作时没有电位,所以tn-s系统适用于对数据处理和精密电子仪器设备供电。
tn-s系统还适用于设有变电所的公共建筑、医院、有爆炸和火灾危险的厂房和场所、单项负荷比较集中的场所,数据处理设备、半导体整流设备和晶闸管设备比较集中的场所,洁净厂房,办公楼与科研楼,计算机站,通信局、站以及一般住宅、商店等民用建筑电气装置。
低压供电系统的几种接地形式

国际电工委员会IEC对各接地方式供电系统的规定根据IEC规定的各种保护接地方式的术语概念,低压配电系统按接地方式的不同称为tt 系统、tn系统、it系统。
其中tn系统又分为tn-c、tn-s、tn-c-s系统。
下面对各种供电系统做扼要的介绍。
1、tt方式接地供电系统tt接地方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称tt系统。
第一个符号t表示电力系统中性点直接接地;第二个符号t表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。
在tt系统中负载的所有接地均称为保护接地,如图1-1所示。
这种供电系统的特点如下。
(1)由于三相负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电气设备金属外壳有一定的电压。
(2)如果工作零线断线,则保护接零的漏电设备外壳带电。
(3)如果电源的相线碰地,则设备的外壳电位升高,使中性线上的危险电位蔓延。
(4)tn-c系统干线上使用漏电保护器时,工作零线后面的所有重复接地必须拆除,否则漏电开关合不上;而且,工作零线在任何情况下都不得断线。
所以,实用中工作零线只能让漏电保护器的上侧有重复接地。
(5)tn-c方式供电系统只适用于三相负载基本平衡情况。
4、tn-s方式供电系统它是把工作零线n和专用保护线pe严格分开的供电系统,称作tn-s供电系统,如图1-4所示,tn-s供电系统的特点如下。
(1)系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。
pe线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线pe上,安全可靠。
(2)工作零线只用作单相照明负载回路。
(3)专用保护线pe不许断线,也不许进入漏电开关。
(4)干线上使用漏电保护器,工作零线不得有重复接地,而pe线有重复接地,但是不经过漏电保护器,所以tn-s系统供电干线上也可以安装漏电保护器。
(5)tn-s方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。
电力系统接地短路故障种类及接地保护方式直观分析

电力系统接地短路故障种类及接地保护方式直观分析电力系统按接地方式分类,有中性点接地系统和中性点不接地系统。
其中,两种接地系统按接地故障的方式分类,又有单相接地、两相接地、三相接地3种短路故障。
单相接地是最常见的线路故障,两相接地、三相接地出现几率小,但有明显的相间短路特征。
★中性点接地系统1.单相接地故障2.两相接地故障3.三相接地故障★中性点不接地系统1.单相接地故障2.单相接地故障3.三相接地故障☆单相接地故障特点:1.一相电流增大,一相电压降低;出现零序电流、零序电压。
2.电流增大、电压降低为同一相别。
3.零序电流相位与故障相电流同向,零序电压与故障相电压反向。
4.故障相电压超前故障相电流约80度左右(短路阻抗角,又叫线路阻抗角);零序电流超前零序电压约110度左右。
☆两相短路故障特点:1.两相电流增大,两相电压降低;没有零序电流、零序电压。
2.电流增大、电压降低为相同两个相别。
3.两个故障相电流基本反向。
4.故障相间电压超前故障相间电流约80度左右。
☆两相接地短路故障特点:1.两相电流增大,两相电压降低;出现零序电流、零序电压。
2.电流增大、电压降低为相同两个相别。
3.零序电流向量为位于故障两相电流间。
4.故障相间电压超前故障相间电流约80度左右;零序电流超前零序电压约110度左右。
☆三相短路故障特点:1.三相电流增大,三相电压降低;没有零序电流、零序电压。
2.故障相电压超前故障相电流约80度左右;故障相间电压超前故障相间电流同样约80度左右。
★电力系统工作接地(接地保护)变压器或发电机中性点通过接地装置与大地连接,称为工作接地。
工作接地分为直接接地与非直接接地(包括不接地或经消弧线圈接地)两类,工作接地的接地电阻不超过4?为合格。
☆电网中性点运行方式:大接地电流系统(110kV及以上)1.直接接地,又称为有效接地2.经低电阻接地大接地电流系统(35kV及以下)1.不接地,又称为中性点绝缘2.经消弧线圈接地3.经高阻接地煤矿电网中性点接地方式1.井下3300、1140、660V系统采用中性点不接地方式2.6、10kV主要采用中性点经消弧线圈接地方式3.35kV采用中性点不接地方式4.110kV采用中性点直接接地方式举例:中性点经消弧线圈接地和中性点直接接地★接地保护系统的型式文字代号☆第一个字母表示电力系统的对地关系:T--直接接地I--所有带电部分与地绝缘,或一点经阻抗接地。
低压配电系统IT、TT和TN接地方式的详细图文详解分析

低压配电系统IT、TT和TN接地方式的详细图文详解分析仪表人对仪表接地并不陌生,在本文讲讲低压配电IT系统、TT系统、TN系统的接地方式。
这三种接地方式容易混淆,它们的原理、特点和适用范围各有不同,希望能对广大的仪表人有所帮助。
定义根据现行的国家标准《低压配电设计规范》(GB 50054-2011),低压配电系统有IT系统、TT系统、TN系统三种接地形式。
①IT、TT、TN的第一个字母表示电源端与地的关系T表示电源变压器中性点直接接地;I标志电源变压器中性点不接地,或通过高阻抗接地。
②IT、TT、TN的第二个字母表示电气装置的外露可导电部分与地的关系T标志电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;N表示电气装置的外露可导电部分与电源端接地点有直接电气连接。
低压配电系统IT、TT和TN全面剖析1、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
IT系统特点①IT系统发生第一次接地故障时,仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;②发生接地故障时,对地电压升高1.73倍;③220V负载需配降压变压器,或由系统外电源专供;④安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
⑤IT方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
⑥运用IT方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长的情况下,供电线路对大地的分布电容就不能忽视了。
低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注册安全工程师考点)根据现行的国家相关标准,低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。
(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。
I-电源变压器中性点不接地,或通过高阻抗接地。
(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。
N-电气装置的外露可导电部分与电源端接地点有直接电气连接。
分别对IT系统、TT系统、TN系统进行全面剖析。
一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。
IT系统可以有中性线,但IEC强烈建议不设置中性线。
因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。
IT系统接线图如图1所示。
图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V 负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。
使用场所:供电连续性要求较高,如应急电源、医院手术室等。
IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。
一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。
地下矿井内供电条件比较差,电缆易受潮。
运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。
但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。
在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。
只有在供电距离不太长时才比较安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低压电力系统接地型式分析
摘要:电力系统的接地涵盖面非常广泛,本文主要分析了低压电力系统接地型式的分类及其特点,并据此提出各个不同接地型式对人身安全方面的影响及其应用场合。
关键词:低压电力系统接地分类
中图分类号:f407.61 文献标识码:a 文章编号:
1概述
电力系统、电气装置和电气设备的某一部分与大地作良好的电气连接称为接地。
接地对电力系统的电气设备的安全及其可靠运行,对操作、维护、运行人员的人身安全,都起着很大的作用。
因此,必须根据有关规程、规范的要求,精心地进行接地设计、施工并定期检验接地电阻值,使其低于规定值,只有这样,接地才能起到它应有的作用。
根据接地的不同作用,一般分类如下:1) 功能性接地,用于保证设备(系统)的正常运行,或使设备(系统)可靠而正确地实现其功能。
又分为工作(系统)接地和信号电路接地。
2)保护性接地,以人身和设备的安全为目的的接地。
如装置外壳的保护接地、雷电防护接地、防静电接地和阴极保护接地。
3)电磁兼容性接地,使器件、电路、设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁骚扰。
电力系统的接地是一个庞大而复杂的系统,本文将重点探讨低压
电力系统的不同接地型式的特点和设计原则。
2 低压电力系统接地型式的分类及特点
2.1 低压系统接地型式分类表示方法
以拉丁字母作为代号,表示格式为:口口-口,其意义为:
第一个字母表示电源端(发电机、变压器)与地的关系:
t ——电源端有一点直接接地;
i ——电源端所有带电部分不接地或有一点通过高阻抗接地。
第二个字母表示电气装置的外露可导电部分(如电机外壳)与地的关系:
t ——电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点;
n ——电气装置的外露可导电部分与电源端接地有直接电气连接。
横线后的字母用来表示中性导体与保护导体的组合情况:
s ——中性导体和保护导体是分开的;
c ——中性导体和保护导体是合一的。
这样,可以用符号来表示电力系统的对地关系,一般用于1kv以下的低压系统。
电力系统可分为tn系统、tt系统和it系统。
其中tn系统根据中性导体与保护导体的组合情况又可分为tn-s系统、tn-c系统和tn-c-s系统。
2.2低压电力系统各接地型式的特点
2.2.1 tn-s系统
电源中性点直接接地,整个系统的n线和pe线是分开的(三线五线制),装置外露可导电部分连接在pe线上。
经济上因比tn-c 系统多一根pe线而稍有不如,但安全性好于后者,适用于单相负荷较多的场所,以及设有变电所的公共建筑、医院、有爆炸和火灾危险的厂房和场所、单相负荷比较集中的场所以及一般住宅、商店等民用建筑的电气装置。
2.2.2 tn-c系统
电源中性点直接接地,pe线和n线一直是合一的,即pen线(三相四线制),装置外露可导电部分连接在pen线上。
该系统的安全水平较低,可用于单相负荷不大、有专业人员维护管理、安全要求不高的一般性工业厂房和场所。
2.2.3 tn-c-s系统
电源中性点直接接地, pe线和n线先是合在一起为pen线,在某些用户端,pen线分成pe线和n线,一旦分开,以下线路中,不能再合在一起,它适用于局部用户需要tn-s系统的场合,如工厂的低压配电系统。
tn系统需要重复接地,当pe线或pen线断线时,重复接地可以使断线处后的系统变成tt系统,降低了在断线时所发生故障处的对地电压。
在架空线路的末端、长度超过200m的架空线分支处和分支线末端、直线段每隔1km处、电缆和架空线在引入车间或大型建筑物等处均需要重复接地,重复接地电阻应不大于10ω。
上述tn系统的特点是当电气设备外壳带电时,通过相零回路,
流过单相短路电流,从而迅速切断电源开关,保证人员的安全。
tn 系统的相零回路阻抗足够小时,开关设备动作可靠,tn系统是安全的,但是,一旦零线中断,即使有零线重复接地,也只能看作是一个tt系统,是不安全的。
2.2.4 tt系统
电源端有一点直接接地,电气装置的外露可导电部分直接接地。
在tt系统中,当发生接地故障时,由于工作接地和保护接地电阻都是4ω,这样,故障点对地电压将为110v,通过人体的电流将远超30ma的安全界限,显然不能保证人员安全,因此,tt系统中,应该采用漏电保护装置。
tt系统可用于以三相负荷为主的低压系统中,尤其适用于无等电位联结的户外场所。
2.2.5 it系统
电源端的带电部分不接地或有一点通过阻抗接地,电气装置的外露可导电部分直接接地。
当绝缘损坏时,故障点对地电压接近于零。
当人体触及带电外壳时,有微小的电流流过人体,正常情况下,人不至于受到伤害,安全性比tt系统和tn系统都要高,但当一相接地时,其他两相的对地绝缘将承受倍正常电压的过电压,对设备的绝缘性能提出了更高的要求。
该系统适用于不间断供电要求高的场所,如应急电源装置、消防、矿井下电气装置、手术室以及有防火防爆要求的场所。
3 结束语
低压电力系统各个不同接地型式的特点,决定了它的适用场合也
各有不同,设计时应根据实际情况选择合适的接地型式,使系统的运行更为经济、安全、可靠。