最新第四章聚类分析法复习进程
4 第四章 聚类分析 -数据挖掘算法与应用(Python实现)-孙家泽-清华大学出版社

西安邮电大学
18
K-means算法概述
K-means算法对初始聚类中心较敏感,相似度 计算方式会影响聚类的划分。 常见的相似度计算方法有:
欧式距离 曼哈顿距离 闵可夫斯基距离
19
多选题 1分 对象i和对象j距离 d(i,j)满足性质( )
基于密度的聚类
➢常见的基于密度的方法:
➢ DBSCAN(具有噪声的基于密度的聚类方法) ➢ OPTICS(通过点排序识别聚类结构)
➢基于网格的方法把对象空间量化为有限个单元,形 成一个网络结构。所有的聚类操作都在这个网络结 构(即量化空间)上进行。这种方法主要优点是处 理速度很快,其处理时间通常独立于数据对象的个 数,而依赖于量化空间中每一维的单元数。
模式
聚类分析的目标
聚类分析的目标就是形成多个数据簇,并且数据 簇需要满足下面两个条件:
同一个簇内的数据尽量相似(high intra-class similarity);
不同簇的数据尽量不相似(low inter-class similarity)。
聚类分析常用算法介绍
常见的聚类分析算法有:
层次聚类算法
无论使用凝聚方法还是分裂方法,一个核心的问题是度量两 个簇间的距离,其中每个簇一般是一个对象集.
西安邮电大学
11
➢ 基于距离的聚类方法的缺点:只能发现球状的簇,难以发现任意形状的 簇。
➢ 基于密度的聚类:只要临近区域的密度(对象或数据点的数目)超过某 个临界值,就继续聚类。
优点:可以过滤掉“噪声”和“离群点”,发现任意形状的簇
第四章聚类分析
西安邮电大学
1
聚类分析
1. 聚类分析 2.基于划分的聚类方法 3.基于层次的聚类方法 4.基于密度的聚类方法 5.基于概率的聚类方法 6.聚类图数据
第四章 系统模型与模型化技术(聚类分析-理论)

• 得到新矩阵
G6 G1 G 2 G 5 G 6 0 D1 G1 13.12 0 G 2 24.06 11.67 0 G 5 2.21 12.80 23.54 0
合并类6和类5,得到新类7
• 类7与剩余的1、2之间的距离分别为:
d(5,6)1=min(d51,d61)=min(12.80,13.12)=12.80 d(5,6)2=min(d52,d62)=min(23.54,24.06)=23.54 d12=11.67
例题1(最短距离法).
为了研究辽宁等5省1991年城镇居民生活消费情 况的分布规律,根据调查资料做类型分类,用欧 式距离作为样本距离,最短距离作为类间分类。 数据如下: x1
辽宁1 7.90
x2
x3
x4
x5
x6
x7
x8
13.29
39.77 8.49 27.93 8.20 27.98 9.01
12.94 19.27 11.05 2.04 8.14 9.32 16.17 9.42 15.99 9.10 1.55 1.82
二、聚类分析的形式 聚类分析有两种形式,一种是对样本(个 案)进行分类,称为Q型聚类,它使具有共同 特点的样本聚齐在一起,以便对不同类的样本 进行分析;另一种是对研究对象的观察变量进 行分类,称为R型聚类。它使具有共同特征的 变量聚在一起,以便从不同类中分别选出具有 代表性的变量作分析,从而减少分析变量的个 数。
聚类分析法ppt课件全

8/21/2024
25
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(3)分类函数
按照修改原则不同,动态聚类方法有按批修改法、逐个修改法、混合法等。 这里主要介绍逐步聚类法中按批修改法。按批修改法分类的原则是,每一步修 改都将使对应的分类函数缩小,趋于合理,并且分类函数最终趋于定值,即计 算过程是收敛的。
8/21/2024
23
1.2.2 动态聚类分析法
1.2 聚类分析的种类
(2)初始分类 有了凝聚点以后接下来就要进行初始分类,同样获得初始分类也有不同的
方法。需要说明的是,初始分类不一定非通过凝聚点确定不可,也可以依据其 他原则分类。
以下是其他几种初始分类方法: ①人为分类,凭经验进行初始分类。 ②选择一批凝聚点后,每个样品按与其距离最近的凝聚点归类。 ③选择一批凝聚点后,每个凝聚点自成一类,将样品依次归入与其距离
8/21/2024
14
1.2 聚类分析的种类
(2)系统聚类分析的一般步骤 ①对数据进行变换处理; ②计算各样品之间的距离,并将距离最近的两个样品合并成一类; ③选择并计算类与类之间的距离,并将距离最ቤተ መጻሕፍቲ ባይዱ的两类合并,如果累的个
数大于1,则继续并类,直至所有样品归为一类为止; ④最后绘制系统聚类谱系图,按不同的分类标准,得出不同的分类结果。
8/21/2024
18
1.2 聚类分析的种类
(7)可变法
1 2 D kr
2 (8)离差平方和法
(D k 2 pD k 2 q)D p 2q
D k 2 rn n ir n n p i D i2 pn n ir n n q iD i2 qn rn in iD p 2 q
8/21/2024
《多元统计分析》第四章 聚类分析

G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6
G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
x1:食品
x5:交通和通讯
x2:衣着
x6:娱乐教育文化服务
x3:家庭设备用品及服务 x7:居住
x4:医疗保健
x8:杂项商品和服务
分别用最短距离法、重心法和Ward方法对各地区作聚类分析。为同等
地对待每一变量,在作聚类前,先对各变量作标准化变换。
18
地区 北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东
类与类之间的距离定义为两类最远样品间的距离,即
DKL
max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
xi*
xi
xi sii
《多元统计分析》第四章 聚类分析

类与类之间的距离定义为两类最远样品间的距离,即
DKL
max
iGK , jGL
dij
最长距离法与最短距离法的并类步骤完全相同,只是递推公式不同。
10
最长距离法的递推公式
DMJ maxDKJ , DLJ
11
最长距离法容易被异常值严重地扭曲。
12
3.类平均法
有两种定义。
记G1={1},G2={2},G3={6},G4={8},G5={11},样品间采用绝对值 距离。
G1
G2
G3
G4
G5
G1
0
G2
1
0
G3
5
4
0
G4
7
6
2
0
G5
10
9
5
3
0
G6=G1∪G2={1,2}。
6
G6
G3
G4
G5
G6
0
G3
4
0
G4
6
2
0
G5
9
5
3
0
G7=G3∪G4={6,8}。
xi*
xi
xi sii
,
i 1, 2,, p
其中 xi 和sii分别为xi的样本均值和样本方差。
4
绝对值距离
v
p
d x, y xi yi
i 1
v 常被形象地称作“城市街区”距离,
当我们对某城市(需考虑彼此之间
路程)的位置点进行聚类时,使用
绝对值距离一般是合适的。
5
马氏距离
3
《多元统计分析》
4.2 距离Байду номын сангаас相似系数
聚类分析法 PPT课件

(二)聚类方法和类相似系数
成组技术 GT
单一样品对之间可以根据原始数据构造一定的相似系数统 计量来描述它们之间的相似性。同样,当样品合并成类时, 也可以按一定的法则构造相似系数统计量,以描述样品与 类之间或类与类之间的相似程度。
这种构造样品与类与类之间的相似系数统计量的法则称为 聚类方法,该统计量称为类相似系数。
比如学生成绩数据就可以对学生按照理科或文科成绩(或 者综合考虑各科成绩)分类。
当然,并不一定事先假定有多少类,完全可以按照数据本 身的规律来分类。
如何度量远近?
成组技术 GT
如果想要对100个学生进行分类,如果仅仅知道他们的数 学成绩,则只好按照数学成绩来分类;这些成绩在直线上 形成100个点。这样就可以把接近的点放到一类。
如果还知道他们的物理成绩,这样数学和物理成绩就形成 二维平面上的100个点,也可以按照距离远近来分类。
三维或者更高维的情况也是类似;只不过三维以上的图形 无法直观地画出来而已。在饮料数据中,每种饮料都有四 个变量值。这就是四维空间点的问题了。
成组技术 GT
如果以n个数值型变量(n维空间)来描述某一类事物,则 一个事物就是n维空间中是一个点。
令加工零件Xi与Xj使用的机床总数目分别为CI与CJ,则 有:
Ci CI Cij C j CJ Cij 将以上两式代入式1得:
Sij
CI
Cij
(式2)
CJ —Cij
相似系数Sij可以用来判定一对零件的相似程度。若一对零 件加工机床的类型与数目完全相同,则Sij=1,若没有相同 的机床,则Sij=0 。
聚类分析作分类时各类群乃至类群数事先未知,而是根据数 据的特征确定的,又称为无师可循的分类。
聚类分析方法

聚类分析方法聚类分析是一种常用的数据分析方法,它可以帮助我们将数据集中的对象按照它们的相似性进行分组。
通过聚类分析,我们可以发现数据中的内在结构和规律,从而更好地理解数据。
在本文中,我们将介绍聚类分析的基本概念、常见的聚类方法以及聚类分析的应用场景。
首先,让我们来了解一下聚类分析的基本概念。
聚类分析是一种无监督学习方法,它不需要预先标记的训练数据,而是根据数据对象之间的相似性来进行分组。
在聚类分析中,我们通常会使用距离或相似度作为衡量对象之间关系的指标。
常见的距离指标包括欧氏距离、曼哈顿距离和余弦相似度等。
通过计算对象之间的距离或相似度,我们可以将它们划分到不同的类别中,从而实现数据的聚类。
接下来,让我们来介绍一些常见的聚类方法。
最常用的聚类方法包括层次聚类、K均值聚类和密度聚类。
层次聚类是一种基于对象之间相似性构建层次结构的方法,它可以分为凝聚式层次聚类和分裂式层次聚类。
K均值聚类是一种迭代的聚类方法,它将数据对象划分为K个类别,并通过迭代优化来找到最优的聚类中心。
密度聚类是一种基于数据密度的聚类方法,它可以发现任意形状的聚类簇,并对噪声数据具有较强的鲁棒性。
最后,让我们来看一些聚类分析的应用场景。
聚类分析可以应用于各个领域,例如市场营销、生物信息学、社交网络分析等。
在市场营销中,我们可以利用聚类分析来识别不同的消费群体,并针对不同群体制定个性化的营销策略。
在生物信息学中,聚类分析可以帮助我们发现基因表达数据中的基因模式,并识别相关的生物过程。
在社交网络分析中,我们可以利用聚类分析来发现社交网络中的社区结构,并识别影响力较大的节点。
总之,聚类分析是一种非常有用的数据分析方法,它可以帮助我们发现数据中的内在结构和规律。
通过本文的介绍,相信大家对聚类分析有了更深入的了解,希望能够在实际应用中发挥其价值,为各行各业的发展提供有力支持。
聚类分析课件

聚类分析课件聚类分析课件聚类分析是一种常用的数据分析方法,它可以将一组数据分成不同的类别或簇,每个簇内的数据点具有相似的特征,而不同簇之间的数据点具有较大的差异。
聚类分析在各个领域都有广泛的应用,如市场细分、社交网络分析、医学诊断等。
在本文中,我们将介绍聚类分析的基本概念、常用算法和实际应用案例。
一、聚类分析的基本概念聚类分析的目标是通过对数据进行分组,使得每个组内的数据点相似度较高,而不同组之间的相似度较低。
聚类分析的基本概念包括距离度量和聚类算法。
1. 距离度量距离度量是衡量数据点之间相似度或差异度的标准。
常用的距离度量方法包括欧氏距离、曼哈顿距离和闵可夫斯基距离等。
欧氏距离是最常用的距离度量方法,它计算数据点在多维空间中的直线距离。
曼哈顿距离则计算数据点在坐标轴上的绝对距离,而闵可夫斯基距离则是这两种距离的一种泛化形式。
2. 聚类算法常用的聚类算法包括K-means算法、层次聚类算法和DBSCAN算法等。
K-means算法是一种迭代的、基于距离的聚类算法,它将数据点分成K个簇,使得每个簇内的数据点与该簇的中心点的距离最小。
层次聚类算法则是一种自底向上的聚类算法,它通过计算数据点之间的相似度来构建一个层次结构。
DBSCAN算法是一种基于密度的聚类算法,它将数据点分为核心点、边界点和噪声点三类,具有较好的鲁棒性和灵活性。
二、常用的聚类分析算法1. K-means算法K-means算法是一种迭代的、基于距离的聚类算法。
它的基本思想是随机选择K个初始中心点,然后将每个数据点分配到距离其最近的中心点所对应的簇中。
接着,重新计算每个簇的中心点,并重复这个过程直到收敛。
K-means算法的优点是简单易实现,但它对初始中心点的选择敏感,并且需要预先指定簇的个数K。
2. 层次聚类算法层次聚类算法是一种自底向上的聚类算法。
它的基本思想是将每个数据点看作一个独立的簇,然后通过计算数据点之间的相似度来构建一个层次结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.37 0
1.34 0.63
0
1.67
1.30
0.67
0
0
D(2)
1.37 0
1.67 1.30
0
0 1.67
D(3)
0
G1 G2 G3 G4 G5
0.4
0.8 1.2 1.6 2.0
聚类距离
G1 G2 G3 G4 G5
0.2 0.4 0.6 0.8 1.0
G1 G2 G3 G4 G5
0
D(0)
0.34 0
1.37 1.03
0
1.34 1
0.63 0
1.33 1.67 1.3 0.67
0
D 6 3m d 1 a ,3 d 2 x 3 1 .37
D 6 4m d 1 a ,4 d 2 x 4 1 .34
D 6 4m d 1 a ,4 d 2 x 4 1 .67
0
D(1)
0
5)重复以上步骤,直到所有样品都成一 类为止。
0 1 1.33
D( 2 )
0 0.67
0
0 1
D(3)
0
(6)将聚类过程作出聚类谱系图,根据 谱系图进行分类。
G1 G2 G3 G4 G5
0.2 0.4 0.6 0.8 1.0
聚类距离
最长距离法
最长距离法对类之间距离的定义与最短 距离法正好相反,类与类之间的距离为 他们之间两个最远样品之间的距离。并 类步骤与最短距离法完全一样。
(4)计算新类与其它类的距离
D 6 3m d 1 i,3 d n 23 1 .03
D 6 4m d 1 i,4 d n 24 1
D 6 5m d 1 i,5 d n 25 1 .33
G6 D(1) G3
G4 G5
G6 G3 G4 G5
0 1.03 1 1.33
0 0.63 1.30
0 0.67
重复2,直至将所有的样品都合并成一类; 绘制聚类谱系图 。
最短距离法
把一个类的所有样品与另一个类的所有 样品的两两样品之间的最短距离找出来, 并将其定义为两个类之间的距离。
推销员 1 2 3 4 5
推销能力 1.2 1.2 7.1 9.6 9.6
教育程度 1.2 2.4 3.6 2.4 0
(2)计算样品的距离。
dijxi xj yi yj
G1
D(0)
G2 G3
G4
G5
G1 G2 G3 G4 G5
0 0.34 1.37 1.34 1.33
0 1.03 1 1.67
0 0.63 1.3
0 0.67
0
(3)找出D(0)非对角线上的最小元素, 将其对应的两个类合并为一个新类。
0.4
0距离
聚类距离
某村对5个地块就其土壤质地和土壤有机 质含量进行了评估,结果如下。请分别 使用最长距离法和最短距离法对这5个地 块进行聚类分析,要求分为两类。
地块 A
B
C
D
E
质地 8
3
6
6
4
有机质 5
7
4
9
7
含量
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好! 谢谢!
第四章聚类分析法
聚类分析
将具有相似(similarity)性质(或距离) 的个体(样本)聚为一类,具有不同性 质的个体聚为不同的类。
方法包括:
系统聚类法 非系统聚类法 分解法 模糊聚类等
基本思想
将n个样品各自看成一类,并规定样品与 样品之间的距离和类与类之间的距离;
在所有的类中,选择距离最小的一对合 并成一个新类,并计算出所得新类和其 他各类的距离;
(1)数据变换处理。
x ijm 1 i n x ix a ji1 m j i x n 1 m x i iin jx n iij,n i 1 ,2 , ,n ;j 1 ,2 , ,p
推销 1 2 3 4 5 员
推销 0 0 0.70 1 1 能力
教育 0.33 0.67 1 0.67 0 程度