数据挖掘与知识发现-课程

合集下载

2.数据挖掘技术基础知识

2.数据挖掘技术基础知识

8 8 8
3. 现在的问题是:网络之后的下一个技术 热点是什么?
㈡ 网 络 之 后 的 下 一 个 技 术 热 点
让我们来看一些身边俯拾即是的现象: 《纽约时报》由 60 年代的 10~20 版扩张至 现在的 100~200 版,最高曾达 1572 版; 《北京青年报》也已是 16~40 版;市场营 销报已达 100 版。 然而在现实社会中,人均日阅读时间通常 为 30~45 分钟,只能浏览一份 24 版的报纸。
数据

80

KDD
,的
,
18 18 18
以后人们却在逐渐使用数据挖掘中, 发现有 以后 许多工作可以由统计方法来完成, 并认为最好的 策略是将统计方法与数据挖掘有机的结合起来。
数 据 挖 掘 逐 渐 演 变 的 过 程 ㈥
数据仓库的发展促使数据挖掘越来越热 越来越热。 越来越热 数据仓库技术的发展与数据挖掘有着密切 的 。 。 是, 数据仓库并 为有 掘 。 多数据挖掘可 是数据挖掘的 作数据 , 中挖 的发展是促 数据挖掘越来越热的
的数据 ,
的 技术 的数据 数数据挖掘技术已可以马上投入使用, 因 为支持的它的基础技术已成熟,他们是: 1. 海量数据搜集
㈣ 支 持 数 据 挖 掘 技 术 的 基 础
商业数据库正以一个空前的速度增长,且数 据仓库正在广泛地应用于各行业。 2. 强大的多处理器计算机 已成熟的 行 cpu 的技术可以 越 越 的 。 3. 数据挖掘算法 ,且 10 于 的 已 成为一 的技术。 成熟,
了 用的阶段;
17 17 17
㈥ 数据挖掘逐渐演变的过程
数据 的 , , 过
一 、 数 据 挖 掘 技 术 的 由 来
KDD (Knowledge discovery in database) 的 数据 数据 , 的 的过程 , 的 ,掘 的 的 , KDD 数据 的 的 程 , 过 掘的过程, 的 的 , 的 的 80 , 数据挖掘 (data mining) 的 程 , ,挖掘 的 数据挖掘的 的 , 过程 ; , , 的 ,

数据挖掘分析课程设计数据

数据挖掘分析课程设计数据

数据挖掘分析课程设计数据一、课程目标知识目标:1. 让学生掌握数据挖掘的基本概念、流程及常用算法,如分类、聚类和关联规则挖掘;2. 使学生了解数据预处理、特征工程等关键步骤,提高数据质量;3. 帮助学生掌握至少一种数据挖掘工具,如Python、R等,并运用至实际项目中;4. 让学生掌握数据分析的基本方法,能够运用统计图表展示数据挖掘结果。

技能目标:1. 培养学生运用数据挖掘技术解决实际问题的能力,如从大量数据中发现规律、趋势和关联性;2. 培养学生运用编程工具进行数据处理、分析和可视化的能力;3. 培养学生的团队协作和沟通能力,能够就数据挖掘项目进行有效讨论和展示。

情感态度价值观目标:1. 培养学生对数据挖掘的兴趣,激发他们探索未知、追求真理的精神;2. 培养学生具备良好的数据伦理观念,尊重数据隐私,遵循数据安全规范;3. 使学生认识到数据挖掘在现实生活中的广泛应用,增强社会责任感和时代使命感。

课程性质:本课程为选修课,适用于高年级学生,具有较强的实践性和应用性。

学生特点:学生具备一定的数学、计算机基础,对数据分析有一定了解,具备一定的自主学习能力。

教学要求:结合实际案例,注重理论与实践相结合,提高学生的动手操作能力和创新能力。

通过课程学习,使学生能够独立完成数据挖掘项目,并为后续相关课程和实际工作打下坚实基础。

二、教学内容1. 数据挖掘基本概念与流程:介绍数据挖掘的定义、任务、应用领域,以及数据挖掘的基本流程,包括数据收集、数据预处理、数据挖掘、结果评估和知识应用。

教材章节:第一章 数据挖掘概述2. 数据预处理与特征工程:讲解数据清洗、数据集成、数据变换等预处理方法,以及特征选择、特征提取等特征工程操作。

教材章节:第二章 数据预处理与特征工程3. 常用数据挖掘算法:学习分类、聚类、关联规则挖掘等常用算法,如决策树、支持向量机、K-means、Apriori等。

教材章节:第三章 分类与预测;第四章 聚类分析;第五章 关联规则挖掘4. 数据挖掘工具与实战:介绍Python、R等数据挖掘工具,通过实际案例让学生动手操作,提高实践能力。

数据挖掘与知识发现

数据挖掘与知识发现

前期基础课程:数据库、人工智能参考书:《知识发现》,清华大学出版社,史忠植编,2004第1章概述随着信息社会和知识经济时代的来临,信息正以前所未有的速度膨胀。

面对浩如烟海的信息资源,人类的自然智能越来越显得难于驾驭。

如何用人造的智能去模仿和扩展人类的自然智能,实现信息的智能化处理,是信息社会和知识经济所面临的一个重大课题。

人工智能作为一门研究机器(计算机)智能的学科,其目的是要用人工的方法和技术,研制智能机器或智能系统,来模仿、延伸和拓展人的智能。

因此,人工智能是人类迈向信息、迎接知识经济挑战所必须具备的一项核心技术。

难怪有人把人工智能同原子能技术、空间技术一起称为20世纪的三大尖端科技成就。

但人工智能系统较率低,不能应用于实际。

随着计算机、Internet的普及,以及数据库(DB)技术的迅速发展和数据库管理系统(DBMS)的广泛应用,导致许多领域积累了海量数据(如,从普通的超市业务数据、信用卡记录数据、电话呼叫清单、政府统计数据到不太普通的天体图像、分子数据库和医疗记录等)。

现有的DB技术大多可高效地实现数据查询、统计和维护等管理功能,但却无法发现数据中存在的关联和规则,无法根据现有的数据预测未来的发展趋势。

数据库中存在着大量数据,却缺乏从这些数据中自动、高效地获取知识的手段,出现了“数据丰富,知识贫乏”的现象。

此外,在数据操纵方面:信息的提取及其相关处理技术却远远落后。

为此,针对庞大的数据库及其中的海量数据信息源,仅依靠传统的数据检索机制和统计分析方法已远不能满足需要。

需求是发展之母,数据管理系统(DBMS)和人工智能中机器学习两种技术的发展和结合,促成了在数据库中发现知识这一新技术的诞生,即基于数据库知识发现(Knowledge Discovery in Database,KDD)及其核心技术---数据挖掘产生并迅速发展起来。

它的出现为自动和智能地把海量数据转化成有用的信息和知识提供了手段。

信息科学中的数据挖掘与知识发现

信息科学中的数据挖掘与知识发现

信息科学中的数据挖掘与知识发现引言:在当今信息爆炸的时代,大量的数据被持续地产生和积累。

这些数据蕴含着宝贵的知识和信息,但如何从海量的数据中获取有用的信息成为一个挑战。

数据挖掘与知识发现作为信息科学领域的重要技术,可以帮助人们从海量数据中提取出有价值的知识。

本文将从数据挖掘的基本概念和流程、常用的数据挖掘技术、数据挖掘的应用以及数据挖掘的挑战与发展趋势等方面进行论述,旨在探讨数据挖掘与知识发现在信息科学中的重要性和应用前景。

一、数据挖掘的基本概念和流程数据挖掘是指从大量的数据中发现隐藏在其中的有价值的信息和知识的过程。

数据挖掘的基本流程包括问题定义、数据收集和预处理、数据挖掘模型的构建、模型验证和评估以及应用结果的解释与应用。

问题定义是数据挖掘流程的起点,它确定了数据挖掘的目标和需求。

在问题定义阶段,挖掘者需要明确自己想要从数据中获得的知识,并考虑如何实现这个目标。

数据收集和预处理是数据挖掘流程的重要环节。

在这个阶段,挖掘者需要收集和整理相关的数据,并进行数据清洗、数据集成、特征选择和数据变换等步骤,以准备挖掘所需的数据。

数据挖掘模型的构建是数据挖掘流程的核心步骤。

在这个阶段,挖掘者需要选择合适的数据挖掘算法,并通过算法建立数据挖掘模型。

常用的数据挖掘算法包括分类、聚类、关联规则挖掘、时序模式挖掘等。

模型验证和评估是数据挖掘流程的重要环节。

在这个阶段,挖掘者需要对构建的数据挖掘模型进行验证和评估,以确保模型的准确性和可靠性。

应用结果的解释与应用是数据挖掘流程的最后一步。

在这个阶段,挖掘者需要解释和应用所挖掘出的知识和信息,从而为实际问题的解决提供参考和支持。

二、常用的数据挖掘技术在数据挖掘的过程中,有许多常用的数据挖掘技术可以帮助挖掘者从数据中发现有价值的知识。

常见的数据挖掘技术包括分类、聚类、关联规则挖掘、时序模式挖掘等。

分类是一种常用的数据挖掘技术,它将数据划分为不同的类别,从而建立起不同类别之间的关系模型。

数据与知识工程 7 KDD(1)

数据与知识工程 7 KDD(1)
欢迎参加
数据与知识工程 ——数据挖掘与知识发现 数据挖掘与知识发现
Outline
Motivation: Why data mining? What is data mining? Data Mining: On what kind of data? Data mining functionality Are all the patterns interesting? Classification of data mining systems Major issues in data mining
主要的数据挖掘功能 (6)
趋势和演变分析
描述行为随时间变化的对象的发展规律或趋势
趋势和偏差: 回归分析 序列模式匹配:周期性分析 基于类似性的分析
例如:预测股票市场价格的未来走向。
其他定向模式或统计分析
挖掘后得到的所有模式都是有趣的吗? 挖掘后得到的所有模式都是有趣的吗?
数据挖掘可能产生数以千计的模式或规则,但并不是所 有的模式或规则都是令人感兴趣的。 模式兴趣度的度量
空间数据库
空间数据库是指在关系型数据库(DBMS)内部对地理 信息进行物理存储。空间数据库中存储的海量数据包括 对象的空间拓扑特征、非空间属性特征以及对象在时间 上的状态变化。 常见的空间数据库数据类型
地理信息系统(GIS) 遥感图像数据 医学图像数据
数据挖掘技术的应用:通过空间分类和空间趋势分析, 引入机器学习算法,对有用模式进行智能检索

从大量的数据中抽取出潜在的、不为人知的有用信息、模式 和趋势。 Alternative names:
Knowledge discovery in databases (KDD), knowledge extraction, data/pattern analysis, business intelligence, etc.

知识发现与数据挖掘

知识发现与数据挖掘

知识发现与数据挖掘2007-6-12宋利【摘要】本文介绍了知识发现及其数据挖掘的发展历史,数据挖掘常用技术及应用。

【关键词】知识发现,数据挖掘1、引言随着数据库技术的成熟和数据应用的普及,人类积累的数据量正在以指数速度迅速增长。

进入九十年代,伴随着因特网(Internet)的出现和发展,以及随之而来的企业内部网(Intranet)和企业外部网(Extranet)以及虚拟私有网(VPNVirtualPrivatenetwork)的产生和应用,将整个世界联成一个小小的地球村,人们可以跨越时空地在网上交换数据信息和协同工作。

这样,展现在人们面前的已不是局限于本部门,本单位和本行业的庞大数据库,而是浩瀚无垠的信息海洋,数据洪水正向人们滚滚涌来。

当数据量极度增长时,如果没有有效的方法,由计算机及信息技术来提取有用信息和知识,人们也会感到面对信息海洋像大海捞针一样束手无策。

据估计,一个大型企业数据库中数据,只有百分之七得到很好应用。

这样,相对于“数据过剩”和“信息爆炸”,人们又感到“信息贫乏”(Informationpoor)和数据关在牢笼中”(datainjail),奈斯伯特(JohnNaisbett)惊呼“Wearedrowningininformation,butstarvingforknowledge”(人类正被数据淹没,却饥渴于知识)。

面临浩渺无际的数据,人们呼唤从数据汪洋中来一个去粗存精、去伪存真的技术。

从数据库中发现知识(KDD)及其核心技术——数据采掘(DM)便应运而生了。

2、知识发现过程知识发现(KDD)是从数据中发现有用知识的整个过程;数据开采(DM)是KDD过程中的一个特定步骤,它用专门算法从数据中抽取模式(patterns)。

1996年,Fayyad、PiatetskyShapiror和Smyth将KDD过程定义为:从数据中鉴别出有效模式的非平凡过程,该模式是新的、可能有用的和最终可理解的。

研究生《知识发现与数据挖掘》教学大纲

研究生《知识发现与数据挖掘》教学大纲

《知识发现与数据挖掘》教学大纲Knowledge Discovery and Data Mining第一部分大纲说明1. 课程代码:1030812082. 课程性质:专业非学位课3. 学时/学分:20/24. 课程目标和任务:数据挖掘是一门新兴的交叉性学科,在很多重要领域,数据挖掘技术发挥着重要作用,如地球科学领域、矿业工程领域、生物工程工程、商业领域、金融和保险领域等。

本课程课程主要讲授数据挖掘技术的基本原理、方法、算法,具体包括:数据挖掘技术内涵、数据特征、聚类分析,关联规则分析、分类等,以及数据挖掘技术在地矿领域的应用。

通过本课程的学习,使研究生掌握数据挖掘技术的基本原理、方法和算法,了解数据挖掘技术的研究与应用热点、数据挖掘技术能够解决的问题和今后研究与应用的发展方向,以及如何利用数据挖掘技术解决实际问题。

5. 教学方式:课堂教学6. 考核方式:考查7. 先修课程:掌握一定的计算机基础知识9. 教材及教学参考资料:(一)教材:Pang-Ning Tan, Michael Steinbach and Vipin Kumar.《Introduction to Data Mining》,北京:人民邮电出版社,2006(二)教学参考资料:Jia-Wei Han and Micheline Kamber.《数据挖掘概念与技术》,北京:机械工业出版社,2003第二部分教学内容和教学要求第一章数据挖掘概述1.1 教学目的与要求重点讲解数据挖掘的起源、数据挖掘过程与功能,以及面临的主要问题。

1.2 教学内容理解和掌握数据挖掘的基本概念、数据挖掘过程以及数据挖掘功能;了解数据挖掘的应用和面临的问题;重点是对数据挖掘能够解决的问题和解决问题思路有清晰的认识。

1.2.1 什么是数据挖掘数据挖掘(Data Mining)就是从大量的、不完全的、模糊的、随机的实际应用数据中,提取隐含在其中的、事先不知道的但又是潜在有用的信息和知识的过程。

浅谈数据挖掘与知识发现

浅谈数据挖掘与知识发现
1 . 2 知识发 现 的概 念
数据 挖掘 ( Da t a Mi n i n g, D M), 也 叫数据 开 采 、 数 据采 掘 。它 的概念 有 很 多 种 解 释 , 最 常 见 的 有 3个
方面。
知 识 发 现 可 以 简 称 为 KDD ( Kn o w l e d g e Di s c o v — e r y I n Da t a b a s e s ), 其定 义 随着研 究 的深 入一 直 不 断
寻 找 模 式 的决 策 支 持 过 程 , 数 据 挖 掘 的 对 象 不仅 是
数 据库 , 也 可 以是 文 件 系 统 , 或其 他任 何组 织在 一起
的数据 集合 。
些概 念之 间 的相互 区别 和 联 系 , 是深 入 研 究 数 据 挖
掘相 关理论 和 应用研 究 的首要 前 提 。 1 数 据挖 掘等 相关 概念
第1 1期 总第 2 8 5期
浅 谈 数 据 挖 掘 与知 识 发 现
王 继 娜
( 河南省 图书馆 , 河南 郑州 4 5 0 0 0 5 )
摘 要 : 详 细 介 绍 了数 据 挖 掘 、 知识 发现 的概 念 、 区别 与 联 系 , 为深入研 究数据挖 掘 相 关理论提 供 了 些参考 。 关键词 : 数 据挖 掘 ; 知 识 发 现
1 . 1 数 据 挖 掘 的概 念
综 上所 述 , 数据挖 掘 的定 义虽然 表达 方式 不 同 ,
但 本 质都是 一样 的 , 我 们 认 为数 据 挖 掘 是 指 从各 种
数 据库 或观 察 的数 据集 合 中提 取 人 们 事 先未 知 的 、 隐含 的 、 潜 在有 用 的 、 感 兴 趣 的概 念 、 规则 、 规律 、 模 式等 形式 的知识 , 用 以 支 持 用 户 的决 策 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

IBM、Microsoft
态数据信息
数据仓库;决策支 持(90年代)
“在新英格兰的分部去年三 月的销售额是多少?波士 顿据此可得出什么结论?”
联机分析处理(OLAP)、多 维数据库、数据仓库
Pilot、Comshare、Arbor、 Cognos、Microstrategy
在各种层次上提供回溯的、 动态的数据信息
的局限性
知识发现的过程
数据挖掘
➢ 探索性数据分析:利用图形化方式对数据进行探索 ➢ 描述建模:描述数据的所有特征 ➢ 预测建模:建立一个根据已知变量预测其它变量的模型
✓ 分类 ✓ 回归 ➢ 寻找模式和规则:进行模式探测 ➢ 根据内容检索:根据用户感兴趣的模式建立相似的模式
知识发现的过程
结果的解释和评估
➢ 自动趋势预测
➢ 自动探测以前未发现的模式
数据挖掘的范围
“数据挖掘”这个名字来源于它有点类似于在山脉中挖掘 有价值的矿藏
知识发现系统管理器 知识库和商业分析员 数据仓库的数据库接口 数据选择 知识发现引擎 知识发现评价 知识发现描述
知识发现系统的结构
知识发 现管理

知识 库

数据
接口 数据
据 选
仓库 库

知识发 现描述
知识发现系统管理器:
知识发现 评价
知 识 发 现 引 擎
商业分析 员
作用是控制并管理整个知 识发现过程
知识发现系统的结构
知识发 现管理

知识 库

数据
数据 库
据 选
仓库 接口

知识发 现描述
知识发现 评价
知 识 发 现 引 擎
商业分析 员
知识库和商业分析员
知识库包含了源于各方面 的知识。商业分析员要按 一种有效的方式指导关注 信息的发现。
知识发现系统的结构
知识发 现管理

知识 库

数据
数据 库
据 选
仓库 接口

知识发 现描述
知识发现 评价
数据仓库的数据库接口
商业分析 知识发现系统的数据库接口

可以直接与数据仓库通信。
知 识 发 现 引 擎
知识发现系统的结构
知识发 现管理

知识 库

数据
数据 库
据 选
仓库 接口

知识发 现描述
知识发现 评价
数据选择
商业分析 确定从数据仓库中需要抽

取的数据及数据结构
数据挖掘 (正在流行)
“下个月波士顿的销售会怎 高级算法、多处理器计算机、
么样?为什么?”
海量数据库
Pilot、Lockheed、IBM、 SGI、其他初创公司
提供预测性的信息
数据挖掘的进化历程
数据挖掘的范围 数据库可以由此拓展深度和广度
数据挖掘的进化历程
数据挖掘的范围 数据库可以由此拓展深度和广度
数据挖掘与知识发现 —课程 2016、
2
提纲
知识发现与数据挖掘的基本概念 数据挖掘方法和技术 数据挖掘的知识表示
知识发现与数据挖掘的基本概 念
知识发现的定义 知识发现的研究问题 知识发现的过程 知识发现系统的结构
知识发现的定义
(KDD,Knowledge Discovery in Database)
知识发现 评价
知识发现评价
商业分析 有助于商业分析员筛选模式, 员 选出那些关注性的信息
知 识 发 现 引 擎
知识发现系统的结构
知识发 现管理

知识 库

数据
数据 库
据 选
仓库 接口

知识发 现描述
知识发现 评价
知 识 发 现 引 擎
知识发现描述 发现、评价并辅助商业分 商业分析 析员在知识库中保存关注 员 性发现结果以备将来引用, 并保持知识发现与管理人 员的通信
数据挖掘的范围
“数据挖掘”这个名字来源于它有点类似于在山脉中挖掘 有价值的矿藏
在商业应用里,它就表现为在大型数据库里面搜索有价值 的商业信息
这两种过程都需要对巨量的材料进行详细地过滤,并且需 要智能且精确地定位潜在价值的所在。
对于给定了大小的数据库,数据挖掘技术可以用它如下的 超能力产生巨大的商业机会:
知识发现意味着在数据仓库或数据集市的几千兆、几万兆 字节数据中寻找预先未知的商业模式与事实。
知识发现的研究问题
定性知识和定量知识的发现 知识发现方法 知识发现的应用
知识发现的过程
数据准备 数据挖掘 结果的解释和评估
知识发现的过程
数据准备
➢ 数据集成:对数据进行合并处理、数据检查和清洗工作 ➢ 数据选择:缩小处理数据的范围,提高数据挖掘的质量 ➢ 数据预处理:削减数据维数或降维,克服数据挖掘工具
➢ 结果的解释 ✓ 结果不满足用户要求,换一种挖掘方法 ✓ 结果非常抽象,换一种容易理解的方法
➢ 结果的评估 ✓ 所采用的数据挖掘技术的有效性 ✓ 用于挖掘的数据质量和数量
知识发现系统的结构
知识发 现管理

知识 库

数据
接口 数据
据 选
仓库 库

知识发 现描述
知识发现 评价
商业分析 员
知 识 发 现 引 擎
知识发现与数据挖掘的 基本概念
数据挖掘的进化历程 数据挖掘的任务 数据挖掘的分类 数据挖掘的对象 数据挖掘与专家系统的区别
知识发现与数据挖掘的 基本概念
数据挖掘的进化历程 数据挖掘的任务 数据挖掘的分类 数据挖掘的对象 数据挖掘与专家系统的区别
数据挖掘的进化历程
进化阶段
商业问题
知 识 发 现 引 擎
知识发现系统的结构
知识发 现管理

知识 库

数据
数据 库
据 选
仓库 接口
择ቤተ መጻሕፍቲ ባይዱ
知识发 现描述
知识发现 评价
知 识 发 现 引 擎
知识发现引擎
将知识库中的抽取算法提
商业分析
员 供给数据选择构件抽取的
数据
知识发现系统的结构
知识发 现管理

知识 库

数据
数据 库
据 选
仓库 接口

知识发 现描述
知识发现是用一种简洁的方式从大量数据中抽取信息的一 种技术,所抽取的信息是隐含的、未知的,并且具有潜在 应用价值。
知识发现可看成是一种有价值信息的搜寻过程,它不必预 先假设或提出问题,仍然能够找到那些非预期的令人关注 的信息,这些信息表示了不同研究对象之间的关系和模式。 它还能通过全面的信息发现与分析,找到有价值的商业规 则。
支持技术
产品厂家
产品特点
数据搜集 (60年代)
“过去五年中我的总收入是 多少?”
计算机、磁带和磁盘
IBM, CDC
提供历史性的、静态的数据 信息
数据访问 (80年代)
“在新英格兰的分部去年三 月的销售额是多少?”
关系数据库(RDBMS),结 构化查询语言(SQL), ODBC
Oracle、Sybase、Informix、 在记录级提供历史性的、动
相关文档
最新文档