第十一届“希望杯”全国数学邀请赛初二一试

合集下载

2024年初中数学教学工作计划例文(三篇)

2024年初中数学教学工作计划例文(三篇)

2024年初中数学教学工作计划例文一、个人专业背景自____年____月开始工作,至今已有____年的工作经验,专注于中学专业数学教育。

我一直致力于成为一名杰出的中学数学教师,通过不断总结教学经验,有效掌控教学进程。

二、专业发展愿景在理论素养上,我计划通过自我培养与校内培训的结合,提升个人理论知识、专业水平和教学实践能力,实现创新与发展。

在教学能力上,我将以先进的教育理念和科学理论为指导,探索并形成一套适应数学教学的独特方法,以期提升自身综合素质、师德水平和专业精神。

在科研能力上,我将加强理论学习和教学实践,深入开展主题教研活动,引导并激发全体教师积极参与教科研,提升全组对教科研的认识和热情。

三、本学期教学目标及实施策略本学期主要教学目标为七年级的五章内容,旨在确保学生掌握基础知识的提升他们的实践操作、概括、类比猜想和自主学习能力。

为防止早期出现学习分化,我将从以下方面着手:1. 了解并激发学生学习数学的积极性,通过介绍数学在日常生活中的应用,引导学生体验生活与数学的紧密联系。

2. 提高课堂教学效率,精心设计教学内容,分层次设置问题和作业,确保每个学生都能充分参与和学习。

3. 注重学生能力培养,通过有针对性的教学,增强学生的运算能力、思维能力和实际问题解决能力,培养他们的创新意识。

4. 强化学生学习方法的指导,培养他们自我复习和主动学习的习惯,提高学习效率。

四、持续教育规划我将持续参与各类继续教育活动,如网络培训和阅读新课程相关书籍,以更新教育理念,优化教学方式,不断提升自身的教育教学水平。

我将在本学期及未来的工作中,不断充实和改进教学工作,以实现更高的教育目标。

2024年初中数学教学工作计划例文(二)一、指导思想本学期的数学教研工作将以课程改革为中心,严格遵循学校新学期的工作规划。

我们将依据学校计划,塑造学科特色,加强团队文化建设,同时深入研究国家课程的校本化实施,稳步推进课程改革。

我们将致力于创建活动平台,以促进教师的专业发展,重点培养学生良好的学习习惯和对数学的浓厚兴趣。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

历届“希望杯”全国数学邀请赛八年级真题及答案

历届“希望杯”全国数学邀请赛八年级真题及答案

希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .?2.C .±2.D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( )A .0B .a 0.C .a 1D .a 0-a 1 4. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B5.平面上有4条直线,它们的交点最多有( )A .4个B .5个.C .6个.D .76.725-的立方根是[ ](A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式aa 1-⋅化为最简二次根式是[ ] (A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( )A .2组B .3组.C .4组D .5组。

9.已知 1112111222222--÷-+++-⨯--++x y x y xy y y x y xy x 等于一个固定的值, 则这个值是( )A .0.B .1.C .2.D .4. 把f 1990化简后,等于( ) A .1-x x . B.1-x. C.x 1. D.x.二、填空题(每题1分,共10分) 1..________6613022=-2.().__________125162590196.012133=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+÷- 3.89850-+=________.4.如图2,∠A=60°,∠1=∠2,则∠ABC 的度数是______.5.如图3,O 是直线AB 上一点,∠AOD=117°,∠BOC=123°,则∠COD 的度数是____度.6.△ABC 中,∠C=90°,∠A 的平分线与∠B 的平分线交于O 点,则∠AOB的度数是______度.7.计算下面的图形的面积(长度单位都是厘米)(见图4).答:______.8.方程x 2+px+q=0,当p >0,q <0时,它的正根的个数是______个.9.x ,y ,z 适合方程组则1989x-y+25z=______.10.已知3x 2+4x-7=0,则6x 4+11x 3-7x 2-3x-7=______.答案与提示一、选择题提示:1.因为所求角α=5(90°-α),解得α=75°.故选(B).2.因为2的平方是4,4的平方根有2个,就是±2.故选(C).3.以x=1代入,得a 0-a 1+a 0-a 1-a 1+a 1-a 0+a 1-a 0+a 1=2a 0-3a 1+3a 1-2a 0=0.故选(A).<3,根据大边对大角,有∠C >∠B >∠A .5.如图5,数一数即得.又因原式中有一个负号.所以也不可能是(D),只能选(A).7.∵a <0,故选(C).8.有△ABE ,△ABM ,△ADP ,△ABF ,△AMF 等五种类型.选(D).9.题目说是一个固定的值,就是说:不论x ,y 取何值,原式的值不变.于是以x=y=0代入,得:故选(B).故选(A).二、填空题提示:4.∠ADC=∠2+∠ADB=∠1+∠ADB=180°--∠A=120°所以∠ADC的度数是120度.5.∠COD度数的一半是30度.8.∵Δ=p2-4q>p2.9.方程组可化简为:解得: x=1,y=-1,z=0.∴1989x-y+25z=1990.10.∵6x4+11x3-7x2-3x-7=(3x2+4x-7)(2x2+x+1)而3x2+4x-7=0.希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ] A.7.5 B.12. C.4. D.12或42.已知P=2)1988-+⨯,那么P的值是[ ]⨯⨯+198919891(19901991A.1987 B.1988. C.1989 D.19903.a>b>c,x>y>z,M=ax+by+cz,N=az+by+cx,P=ay+bz+cx,Q=az+bx+cy,则[ ]A.M>P>N且M>Q>N. B.N>P>M且N>Q>MC.P>M>Q且P>N>Q. D.Q>M>P且Q>N>P4.凸四边形ABCD中,∠DAB=∠BCD=900, ∠CDA∶∠ABC=2∶1,AD∶CB=1,则∠BDA=[ A.30°B.45°. C.60°. D.不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A.是不存在的. B.恰有一种. C.有有限多种,但不只是一种.D.有无穷多种二、填空题:(每题1分,共5分)1.△ABC中,∠CAB?∠B=90°,∠C的平分线与AB交于L,∠C的外角平分线与BA的延长线交于N.已知CL=3,则CN=______.22(2)0ab +-=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3.已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4.ΔABC 中, ∠B=300三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5.设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D). 又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即a?b=k×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即a?b=177.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.是一个定值.2.如图9,重合部分面积SA'EBF证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A 'B '与A 'B 重合时,必有A 'D '与A 'C 重合,故知∠EA 'B=∠FA 'C .在△A 'FC 和△A 'EB 中,∴S A 'EBF =S △A 'BC .∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n .又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n .即 n 1=4,n 2=7∴ n 1×n 2=4×7=28.第二届(1991年)初中二年级第一试试题一、选择题:(每题1分,共15分)1.如图1,已知AB=8,AP=5,OB=6,则OP 的长是[ ]A .2;B .3;C .4;D .52.方程x 2-5x+6=0的两个根是[ ] A .1,6 ; B .2,3; C .2,3; D .1,63.已知△ABC 是等腰三角形,则[ ]A .AB=AC;B .AB=BC;C .AB=AC 或AB=BC;D .AB=AC 或AB=BC 或AC=BC(1)B O344134b c-==+,则a,b,c的大小关系是[ ]A.a>b>c B.a=b=c C.a=c>b D.a=b>c5.若a≠b,则[ ]6.已知x,y都是正整数,那么三边是x,y和10的三角形有[ ]A.3个B.4个; C.5个D.无数多个7.两条直线相交所成的各角中,[ ]A.必有一个钝角;B.必有一个锐角;C.必有一个不是钝角;D.必有两个锐角8.已知两个角的和组成的角与这两个角的差组成的角互补,则这两个角[ ]A.一个是锐角另一个是钝角;B.都是钝角;C.都是直角;D.必有一个角是直角9.方程x2+|x|+1=0有[ ]个实数根.A.4; B.2; C.1; D.010.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两位数是[ ]A.26; B.28; C.36; D.3811.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ]A.179; B.181; C.183; D.18512.1,>+[ ]A.2x+5 B.2x-5; C.1 D.113.方程2x5+x4-20x3-10x2+2x+1=0有一个实数根是[ ]14.当a<-1时,方程(a3+1)x2+(a2+1)x-(a+1)=0的根的情况是 [ ] A.两负根;B.一正根、一负根且负根的绝对值大C.一正根、一负根且负根的绝对值小;D.没有实数根15.甲乙二人,从M地同时出发去N地.甲用一半时间以每小时a公里的速度行走,另一半时间以每小时b公里的速度行走;乙以每小时a公里的速度行走一半路程,另一半路程以每小时b公里的速度行走.若a≠b时,则[ ]到达N地.A.二人同时; B.甲先;C.乙先; D.若a>b时,甲先到达,若a<b时,乙先二、填空题:(每题1分,共15分)1.一个角的补角减去这个角的余角,所得的角等于______度.2.有理化分母=______________.3.0x=的解是x=________.4.分解因式:x3+2x2y+2xy2+y3=______.5.若方程x2+(k2-9)x+k+2=0的两个实数根互为相反数,则k的值是______.6.如果2x2-3x-1与a(x-1)2+b(x-1)+c是同一个多项式的不同形式,那么a bc+=__.7.方程x2-y2=1991有______个整数解.8.当m______时,方程(m-1)x2+2mx+m-3=0有两个实数根.9.如图2,在直角△ABC中,AD平分∠A,且BD∶DC=2∶1,则∠B等于______度.(2) (3) (4) 10.如图3,在圆上有7个点,A,B,C,D,E,F,和G,连结每两个点的线段共可作出__条.11.D,E分别是等边△ABC两边AB,AC上的点,且AD=CE,BE与CD交于F,则∠BFC 等于__度.12.如图4,△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是△ABD的角平分线,DF∥AB交AE延长线于F,则DF的长为______.13.在△ABC中,AB=5,AC=9,则BC边上的中线AD的长的取值范围是______.14.等腰三角形的一腰上的高为10cm,这条高与底边的夹角为45°,则这个三角形的面积是______.15.已知方程x2+px+q=0有两个不相等的整数根,p,q是自然数,且是质数,这个方程的根是______.答案与提示一、选择题提示:1.∵OP=OB-PB=OB-(AB-AP)=6-(8-5)=3.∴选(B).2.∵以2,3代入方程,适合.故选(B).3.∵有两条边相等的三角形是等腰三角形.∴选(D).4.∵a=1,b=-1,c=1.∴选(C).6.∵x=y>5的任何正整数,都可以和10作为三角形的三条边.∴选(D).7.两直线相交所成角可以是直角,故而(A),(D)均不能成立.∴选(C).8.设两个角为α,β.则(α+β)+(α-β)=180°,即α=90°.故选(D).9.∵不论x为何实数,x2+|x|+1总是大于零的.∴选(D).即7a=2b+2,可见a只能为偶数,b+1是7的倍数.故取(A).11.设这11个连续奇数为:2n+1,2n+3,2n+5,…,2n+21.则(2n+1)+(2n+3)+(2n+5)+…+(2n+21)=1991.即 11(2n+11)=1991.解得n=85.∴第六个数是2×85+11=181.故选(B).∴选(A).13.原方程可化为(2x5-20x3+2x)+(x4-10x2+1)=0.即 (2x+1)(x4-10x2+1)=0.即 x4-10x2+1=0.故取(C).14.a<-1时,a3+1<0,a2+1>0,a+1<0.而若方程的两根为x1,x2,则有15.设M,N两地距离为S,甲需时间t1,乙需时间t2,则有∴t1<t2,即甲先.另外:设a=1,b=2,则甲走6小时,共走了9公里,这时乙走的时间为从这个计算中,可以看到,a,b的值互换,不影响结果.故取(B).二、填空题提示:1.设所求角为α,则有(180°-α)-(90°-α)=90°.4.x3+2x2y+2xy3+y3=(x3+y3)+(2x2y+2xy2)=(x+y)(x2-xy+y2)+2xy(x+y)=(x+y)(x2+xy+y2)5.设二根为x1,-x1,则x1+(-x1)=-(k2-9).即k2-9=0.即k=±3.又,要有实数根,必须有△≥0.即 (k2-9)2-4(k+2)>0.显然 k=3不适合上面的不等式,∴k=-3.6.由2x2-3x-1=a(x+1)2+b(x-1)+c是恒等式,故由x=1代入,得c=-2;x2项的系数相等,有a=2,这时再以x=0代入,得-1=a-b+c.即b=1.7.x2-y2=1991,(x-y)(y+x)=11×181可以是9.BD∶DC=2∶1,故有AB∶AC=2∶1,直角三角形斜边与直角边之比为2∶1,则有∠B=30°.10.从A出发可连6条,从B出发可连5条,(因为BA就是AB),从C出发可连4条,…,从F出发可连一条.共计1+2+3+4+5+6=21(条).另法:每个点出发均可连6条,共有42条.但每条都重复过一次,11.如图28.∠F=∠1+∠A+∠2.又:△ADC≌△CEB.∴∠1=∠3.∴∠F=∠3+∠A+∠2=∠B+∠A=120°.12.△ABC是等腰三角形,D为底边的中点,故AD又是垂线,又是分角线,故∠BAD=60°,∠ADB=90°.又:AE是分角线,故∠DAE=∠EAB=30°.又:DF∥AB,∴∠F=∠BAE=30°.在△ADF中,∠DAF=∠F=30°.∴AD=DF.而在△ADB中,AB=9,∠B=30°.13.∵4<BC<14.∴当BC为4时,BD=CD=2,AD<7.当BC=14时,BC=CD=7,有AD>2.∴2<AD<7.14.等腰三角形一腰上的高与底边的夹角是45°,则顶角是90°,高就是腰,其长为10cm.15.设两根为x1,x2.则x1+x2=-p① x1x2=q②由题设及①,②可知,x1,x2均为负整数.q为质数,若q为奇数,则x1,x2均为奇数.从而p为偶数,而偶质数只有2,两个负整数之和为-2,且不相等,这是不可能的.若q为偶数(只能是2),两个负整数之积为2,且不相等,只能是-1和-2.∴方程的根是-1和-2.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m ,n 的比是t(t >1).若m+n=s ,则m ,n 中较小的数可以表示为( ) A.ts; Bs-ts; C.1ts s +; D.1s t+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a ,b ,c 的关系可以写成( )A .a <b <c.B .(a-b)2+(b-c)2=0.C .c <a <b.D .a=b ≠c5.如图30,AC=CD=DA=BC=DE .则∠BAE 是∠BAC 的 ( )A .4倍.B .3倍.C .2倍.D .1倍6.D 是等腰锐角三角形ABC 的底边BC 上一点,则AD ,BD ,CD 满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 2;B. x 2y 2;C. x 2y 2;D. x 2y 2.9.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989××.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______. 9.2243x x +++的最小值的整数部分是______.10.已知两数积ab ≠1.且2a 22a b=______. 三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1. 已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO ∥FK ,OH ∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF 改成直的.(即两边都是直线)但进水口EF 的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC 边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989××(1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2的一个根,b是方程3y2的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>2?b,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH ,FG .②过O 作EH 平行线交AB 于N ,过K 作FG 平行线交于AB 于M .③连结EN 和FM ,则EN ,FM 就是新渠的两条边界线.又:EH ∥ON∴△EOH 面积=△FNH 面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。

分式的化简求值经典练习题(带答案)

分式的化简求值经典练习题(带答案)

精心整理精心整理分式的化简乘方:()n n n nn a a aa a aa ab b bb b bb b ⋅=⋅=⋅个个n 个=(n 为正整数)整数指数幂运算性质: ⑴m n m n a a a +⋅=(m 、n 为整数) ⑵()m n mn a a =(m 、n 为整数) ⑶()n n n ab a b =(n 为整数)⑷m n m n a a a -÷=(0a ≠,m 、n 为整数)中考要求精心整理精心整理负整指数幂:一般地,当n 是正整数时,1n na a -=(0a ≠),即n a -(0a ≠)是n a 的倒数分式的加减法法则:同分母分式相加减,分母不变,把分子相加减,a b a b ccc+±=异分母分式相加减,先通分,变为同分母的分式再加减,a c ad bc ad bc bdbdbdbd±±=±=分式的混合运算的运算顺序:先算乘方,再算乘除,后算加减,如有括号,括号内先算.【例1【例2【题型】解答 【关键词】【解析】222221(1)()4111(1)a a a a a a a a a ---+÷⋅=-=--++-【答案】4-【例3】 先化简,再求值:22144(1)1a a a a a-+-÷--,其中1a =-..【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,安徽省中考【解析】()()2221144211122a a a a a a a a a a a a --+-⎛⎫-÷=⋅= ⎪----⎝⎭-当1a =-时,原式112123a a -===---【答案】13【例4】 先化简,再求值:2291333x x x x x⎛⎫-⋅ ⎪--+⎝⎭其中13x =.【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖南省长沙市中考试题 【解析】原式()()()33133x x x x x +-=⋅-+ 当13x =时,原式3=【答案】3【例5】 先化简,再求值:211(1)(2)11x x x -÷+-+-,其中x =. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,湖北省十堰市中考试题 【解析】原式()()()111121x x x x x +-=⋅+-+-+当x时,原式224=-=.【答案】4精心整理精心整理【例6】 先化简,后求值:22121(1)24x x x x -++÷--,其中5x =-. 【考点】分式的化简求值 【难度】2星 【题型】解答【关键词】2010年,广东省肇庆市中考试题【解析】22121(1)24x x x x -++÷--=221(1)2(2)(2)x x x x x -+-÷-+-【例7。

2019第二十七届“希望杯”全国数学邀请赛八年级二试获奖名单

2019第二十七届“希望杯”全国数学邀请赛八年级二试获奖名单

2019第二十七届“希望杯”全国数学邀请赛八年级二试获奖名单一等奖准考证编号姓名年级学校奖项指导教师161274485026刘睿恒八宁波镇海蛟川书院一等奖颜胤豪161277284084梁敬勋八温州新星学校一等奖李甫快161274485004陈祉旸八宁波镇海蛟川书院一等奖刘清泉161271180022林超轶八杭州市公益中学一等奖秦雪飞161274485066章严晨八宁波镇海蛟川书院一等奖颜胤豪161274485021李晗芃八宁波镇海蛟川书院一等奖沈文星161271180054周雨扬八绍兴市第一初级中学龙山校区一等奖161277286021戴锦阳八乐清市英华学校一等奖郑克琴161271182026章至枰八富阳永兴学校一等奖陈志华161277283001翁乐其八泰顺育才初级中学一等奖161274485056尹清扬八宁波镇海蛟川书院一等奖冯邵161277284026陈瑞俊八温州新星学校一等奖李甫快161271180056朱涛八杭州文澜中学一等奖161274482055茅恺翔八余姚实验学校一等奖徐敏龙161274485023林听八宁波镇海蛟川书院一等奖冯邵161277284135杨咏乐八温州新星学校一等奖李甫快161274482096徐趱鹏八余姚实验学校一等奖徐敏龙161271180047张津八千岛湖初级中学一等奖张东宏161272783048叶沈镛八长兴县龙山中学一等奖钱津津161277284061黄钱生八温州新星学校一等奖李甫快161274485044王柯予八宁波镇海蛟川书院一等奖沈文星161274486045金扬八宁波外国语学校一等奖李中臣161274485039孙言笑八宁波镇海蛟川书院一等奖刘清泉161274485025凌欣八宁波镇海蛟川书院一等奖颜胤豪161277284140叶德意八温州新星学校一等奖李甫快161274482056梅向东八余姚实验学校一等奖徐敏龙161274485058于梓文八宁波镇海蛟川书院一等奖颜胤豪161274485046韦中敬八宁波镇海蛟川书院一等奖颜胤豪161274485050吴雨衡八宁波镇海蛟川书院一等奖陆丽丽161277284045董桓硕八温州新星学校一等奖李甫快161277284164朱雨楠八温州新星学校一等奖王大珍161277285015陈孝宸八苍南县潜龙学校一等奖李甫状161274485052徐铸八宁波镇海蛟川书院一等奖石莹161274485024林逸舟八宁波镇海蛟川书院一等奖沈文星161274485060虞皓翔八宁波镇海蛟川书院一等奖吴玲161274482065邵楚芮八余姚实验学校一等奖徐敏龙161274485041汤奕骁八宁波镇海蛟川书院一等奖石莹161274485061虞何八宁波镇海蛟川书院一等奖沈文星161277281026叶瑶琦八瑞安市集云实验学校一等奖陈如池161277283011赖铮岩八泰顺育才初级中学一等奖161277287016黄俊宇八乐清市外国语学校(初中)一等奖李富山161274485040孙翌凯八宁波镇海蛟川书院一等奖颜胤豪161271180049赵朗添八杭州文澜中学一等奖161274482057孟雨皓八余姚实验学校一等奖徐敏龙161274485014顾高远八宁波镇海蛟川书院一等奖颜胤豪161277284086林高明八温州新星学校一等奖李甫快161274485045王茁铭八宁波镇海蛟川书院一等奖滕丽161274485047魏欣八宁波镇海蛟川书院一等奖石莹161274482064阮浩展八余姚实验学校一等奖徐敏龙161274485059俞心如八宁波镇海蛟川书院一等奖石莹161274485062张浩博八宁波镇海蛟川书院一等奖颜胤豪161274485030罗煜翔八宁波镇海蛟川书院一等奖王伟鸿161274482041景梦妮八余姚实验学校一等奖王飞宇161277284036陈奕八温州新星学校一等奖李甫快161274485016洪晔婷八宁波镇海蛟川书院一等奖石莹161277282024苏畅八平阳县昆阳镇第二中学一等奖池长泉161277281020潘天乐八北京外国语大学瑞安附校一等奖苏玲玲161271180028罗骏逸八杭州市采荷实验学校一等奖。

第七届“希望杯”全国数学邀请赛初二第1试(1996年)

第七届“希望杯”全国数学邀请赛初二第1试(1996年)

第七届“希望杯”全国数学邀请赛初二第1试一、选择题:1.下列各式中与分式a a b --的值相等的是( ) A.a a b ---;B.a a b +;C.a b a -;D.a b a--; 2.一个角的补角的一半比这个角的余角的2倍小3︒,那么这个角等于( )A .58︒;B .59︒;C .60︒;D .61︒;3.如图23,//,//,AB CD AC DB AD 与BC 交于,O AE BC ⊥于,E DF BC ⊥于F ,那么图中全等的三角形有( )A .5对;B .6对;C .7对;D .8对;4.设19961995199519961995199619961995,,,1995199619951996a b c d ====,则下列不等关系中成立的是( ) A .a b c d >>>;B .c a d b >>>;C .a d c b >>>;D .a c d b >>>;5.如图24,已知在ABC ∆中,,AB AC BAC =∠和ACB ∠的平分线相交于D 点,130ADC ∠=︒,那么CAB ∠的大小是( )A .80︒;B .50︒;C .40︒;D .20︒;6.已知一个三角形中两条边的长分别为,a b ,且a b >,那么这个三角形的周长l 的取值范围是( )A .33a l b >>;B .2()2a b l a +>>;C .22a b l b a +>>+;D .32a b l a b ->>+; 7.若111::2:3:4a b c=,则::a b c 等于( ) A .4:3:2;B .6:4:3;C .3:4:2;D .3:4:6;8.如图25,四边形ABCD 是一个梯形,//,90,9AB CD ABC AB ∠=︒=厘米,8BC =厘米,7CD =厘米,M 是AD 的中点,从M 作AD 的垂线交BC 于N ,则BN 的长等于( )A .1厘米;B .1.5厘米;C .2厘米;D .2.5厘米;9.在一家三口人中,每两个人的平均年龄加上余下一人的年龄分别得到47,61,60,那么这三个人中最大年龄与最小年龄的差是( )A .28;B .27;C .26;D .25;10.已知,,,x y a b 都是正数,且,x a a b y b<=如果x y c +=,则x 与y 中较大的一个是( ) A.ab a b +;B.ab b c +;C.ac a b +;D. bc a b +;二、A 组填空题:1.因式公解:222944a b ab c -+-=________; 2.化简分式:()()()()()()b c a a b b c b c c a c a a b ++=------________; 3.已知多项式32331x ax x +++能被21x +整除,且商式是31x +,那么a 的值是________;4.关于x 的方程(23)1a x -=的根为负数,则a 的取值范围是________;5.如图26,凸四边形ABCD 的四边,,AB BC CD 和DA 的长分别是3,4,12和13,90ABC ∠=︒,则四边形ABCD 的面积S =________;6.如图27,AOB 是一条直线,60,,AOC OD OE ∠=︒分别是AOC ∠和BOC ∠的平分线,则图中互为补角关系的角共有________对;7.如果336,72a b a b +=+=,那么22a b +的值是________; 8.如果2310a a -+=,那么361a a +的值是________; 9.如图28,ABC ∆中,AD 平分,BAC AB BD AC ∠+=,则:B C ∠∠的值是________;10.如图29,已知DO 平分,ADC BO ∠平分ABC ∠,且27,33A O ∠=︒∠=︒,则C ∠的大小是________;三、B 组填空题:1.若24422x a b x x x =--+-,则22a b +的值是________; 2.已知0a b ≥>且326480a b ac b +-=+-=,则c 的取值范围是________;3.一个凸多边形有且仅有4个内角是钝角,这样的多边形的边数最多是________;4.如图30,在ABC ∆中,2,B C AD BC ∠=∠⊥于,D M 为BC 的中点,10AB =厘米,则MD 的长为________;5.已知三个质数,,m n p 的乘积等于这三个质数的和的5倍,则222m n p ++=________;答案·提示一、选择题提示:∴选C .2.设该角为x °.3.在图23中有△ABC ≌△DCB ,△ACD ≌△DBC ,△AOB ≌△DOC ,△AOC ≌△DOB ,△AOE ≌△DOF ,△AEC ≌△DFB ,△AEB ≌△DFC ,共有7对三角形全等,选C .∴a >c >d >b ,选D .5.解法1:如图31,连接BD ,则BD 也是∠ABC 的角平分线.∵AB=AC,∴∠ABC=∠ACB,∠ADB=∠ADC=130°.∴∠BDC=360°-2×130°=100°.∴∠DCB=∠DBC=40°.∴∠ABC=∠ACB=80°.∴∠CAB=180°-2×80°=20°,选D.解法2:设∠CAB=x°,则∠B=∠ACB∴∠ACD+∠CAD=180°-∠ADC.解得x=20°,∴选D.6.三角形中两边长为a,b,且a>b,则第三边为C,满足条件a-b<c<a+b,∴a+b+(a-b)<a+b+c<a+b+(a+b).即 2a<a+b+c<2(a+b),∴选B8.如图32,连接AN,DN.∵M为AD中点,MN⊥AD,∴AN=DN设BN=x,则CN=8-x,∵CD2+CN2=AB2+BN2.∴72+(8-x)2=92+x2.解得x=2,∴选C.9.设三个人年龄分别是x,y,z.①+②+③得2(x+y+z)=168.∴38-10=28,选A.10.∵x,y,a,b均为正数,且a<b,得x<y.∴x,y中较大的数是y.二、A组填空题提示:1.因式分解9a2-4b2+4bc-c2=9a2-(4b2-4bc+c2)=9a2-(2b-c)2=(3a+2b-c)(3a-2b+c)3.由已知3x3+ax2+3x+1=(x2+1)(3x+1),∴3x3+ax2+3x+1=3x3+x2+3x+1,∴a=14.关于x的方程(2-3a)x=1的根为负数,5.连接AC,△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理得AC=5.在△ACD中,AC=5,CD=12,AD=13.∵132=122+52∴△ACD是直角三角形.∠ACD=90°.∴S四边形ABCD=S△ABC+S△ACD6.∵∠AOC=60°,∴∠BOC=120°,又OD,OE分别是∠AOC,∠BOC的平分线,∴∠AOD=∠COD,∠BOE=∠COE=60°.有∠AOD+∠DOB=180°,∠AOC+∠COB=180°,∠AOE+∠BOE=180°,∠COD+∠DOB=180°,∠AOC+∠AOE=180°,∠COE+∠AOE=180°,∠BOE+∠BOC=180°,∠COE+∠BOC=180°,共有8组角互为补角.7.∵a+b=6 ①,a3+b3=(a+b)(a2-ab+b2)=72.∴a2-ab+b2=12 ②①2-② 3ab=24∴ab=8 ③把③代入②得a2+b2=20.8.∵a2-3a+1=0,∴a2+1=3a.∵a≠0,=3(7-1)=18.9.如图33,在AC上取AE=AB.连接DE,在△ABD和△AED中,AB=AE,∠BAD=∠EAD,AD=AD∴△ABD≌△AED.∴BD=DE,∠B=∠AED.又AC=AB+BD,AE=AB,∴EC=BD=DE.∴∠EDC=∠C,∴∠B=∠AED=∠EDC+∠C=2∠C.10.由已知,∠ABO=∠CBO,∠ADO=∠CDO.比较△ABG和△OGD的角的关系得∠A+∠ABG=∠O+∠ODG,①同理比较△OBH和△CDH得∠C+∠CDH=∠O+∠OBH.②①+②得∠A+∠C=2∠O.∴∠C=2×33°-27°=39°.三、B组填空题提示:∴a2+b2=8.①×2-②得(6-c)a=4.∵a≥b>c.∴6-c>0,c<6且4≥12-3c>03.设这个凸多边形的边数为n,其中4个内角为钝角,n-4个内角为直角或锐角.∴(n-2)·180°<4·180°+(n-4)·90°∴n<8,取n=7.当n=7时,可以作4个170°的内角,其余3个内角分别为80°,80°,60°.4.如图34,取AB中点N,连接DN,MN.在Rt△ADB中,N是斜边AB上的中点,∠NDB=∠B,在△ABC中,M,N分别是BC,AB的中点.∴MN∥AC,∠NMB=∠C.又∠NDB是△NDM的外角,∴∠NDB=∠NMD+∠DNM.即∠B=∠NMD+∠DNM=∠C+∠DNM.又∠B=2∠C,∴∠DNM=∠C=∠NMD.又AB=10(厘米),∴DM=5(厘米).5.由已知,mnp=5(m+n+p).由于m,n,p均为质数,5(m+n+p)中含有因数5.∴m,n,p中一定有一个是5.不妨设m=5.则5np=5(5+n+p).即np=5+n+p.∴np-n-p+1=6即(n-1)(p-1)=6又n,p均为质数.。

八年级数学第11届“希望杯”第2试试题

山东省滨州市无棣县埕口中学八年级数学第11届“希望杯”第2试试题一、选择题:1.-20001999, -19991998, -999998, -1000999这四个数从小到大的排列顺序是 (AA )-20001999<-19991998<-1000999<-999998 (B )-999998<-1000999<-19991998<-20001999(C )-19991998<-20001999<-1000999<-999998 (D )-1000999<-999998<-20001999<-199919982.一个三角形的三条边长分别是a , b , c (a , b , c 都是质数),且a +b +c =16,则这个三角形的形状是(A )直角三角形(B )等腰三角形(C )等边三角形(D )直角三角形或等腰三角形3.已知25x=2000, 80y=2000,则y1x 1+等于 (A )2 (B )1 (C )21(D )23 4.设a +b +c =0, abc >0,则|c |ba |b |ac |a |c b +++++的值是 (A )-3 (B )1 (C )3或-1 (D )-3或15.设实数a 、b 、c 满足a <b <c (ac <0),且|c |<|b |<|a |,则|x -a |+|x -b |+|x +c |的最小值是(A )3|c b a |++ (B )|b | (C )c -a (D )―c ―a 6.若一个等腰三角形的三条边长均为整数,且周长为10,则底边的长为 (A )一切偶数 (B )2或4或6或8 (C )2或4或6 (D )2或4 7.三元方程x +y +z =1999的非负整数解的个数有(A )个 (B )个 (C )2001000个 (D )2001999个 一.8.如图1,梯形ABCD 中,AB23215+215-3cm 4cm 5cm 15162161521617217162xy z r zx y q yz x p 222-=-=-zy x rzqy px ++++23246623+--1n 1m 23-+222c 2a 2x 13x 116n 6n 10n 3n 22-+-+3a 2a 3c 5a 7c a b a 1b 12)1b a (--3图1AB C D EF 345ABCDE F 图2AB CD E58°图3A B CD E 图4A BCD E F图5AD F875118 332 a b a 1b 12)1b a (--a 1b 1)]b a (1[ab a b ---① 若a 、b 同为正数,由ab<1,得a >b , ∴ a -b =ab , a 2-ab =b , 解得b =1a a 2+,∴(a 1-b 1)2)1b a (--=)]b a (1[ab a b ---=ab a b -(1-ab )=-2a 1·a ba -=-4ab=-)1a (a 12+.② 若a 、b 同为负数,由ab<1,得b >a , ∴ a -b =-ab , a 2-ab =-b , 解得b =1a a 2-,∴(a 1-b 1)2)1b a (--=)]b a (1[ab a b ---=ab a b(1+ab )=3a b a +=32a 1a a a -+=)1a (a 1a 22--.综上所述,当a 、b 同为正数时,原式的结果为-)1a (a 12+;当a 、b 同为负数时,原式的结果为)1a (a 1a 22--22.将△ADF 绕A 点顺时针方向旋转90°到△ABG 的位置, ∴ AG =AF ,∠GAB =∠FAD =15°, ∠GAE =15°+30°=45°,∠EAF =90°-(30°+15°) =45°, ∴∠GAE =∠FAE ,又AE =AE , ∴△AEF ≌△AEG , ∴EF =EG ,∠AEF =∠AEG =60°,在Rt △ABE 中,AB =3,∠BAE =30°,∴∠AEB =60°,BE =1,在Rt △EFC 中,∠FEC =180°-(60°+60°)=60°,EC =BC -BE =3-1,EF =2(3-1),∴EG =2(3-1),S △AEG =21EG ·AB =3-3, ∴S △AEF =S △AEG =3-3.23.① 将第一个球先放入,有5种不同的的方法,再放第二个球,这时以4种不同的放法,依此类推,放入第三、四、五个球,分别有3、2、1种放法,所以总共有5×4×3×2×1=120种不同的放法。

历届“希望杯”(初二)第二试试题

第十二届“希望杯”(初二)第二试试题一、选择题(每小题5分,共50分)以下每题的四个结论中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内。

1.化简代数式322322++-的结果是( ) A. 3 B. 12+C. 22+D. 222.已知多项式ax bx cx d 32+++除以x -1时,所得的余数是1,除以x -2时所得的余数是3,那么多项式ax bx cx d 32+++除以()()x x --12时,所得的余式是( )A .21x - B. 21x + C. x +1 D. x -1 3.已知a <1且||a b a ba -+=,那么( )A. ab <0B. ab >0C. ab ≤0D. a b +<0 4.若||||a c <,b a c b a =+<22,||||,S a b cS b c a12=-=-||||,,S a c b3=-||,则S S S 123、、的大小关系是( )A. S S S 123<<B. S S S 123>>C. S S S 132<<D. S S S 132>>5.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是( )A. 直角三角形B. 等边三角形C. 等腰三角形D. 等腰直角三角形6. 若∆ABC 的三边长是a 、b 、c ,且满足a b c b c 44422=+-,b c a a c 44422=+-,c a b a b 44422=+-,则∆ABC 是( )A. 钝角三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形7. 平面内有n 条直线(n ≥2),这n 条直线两两相交,最多可以得到a 个交点,最少可以得到b 个交点,则a b +的值是( ) A. n n ()-1 B. n n 21-+ C.n n 22- D.n n 222-+8.In fig. 1, let ∆ABC be an equilateral triangle, D and E be points on edges AB and AC respectively, F be intersection of segments BE and CD, and∠=BFC 120, then the magnitude relation between Ad and CE is ( )A. AD CE >B. AD CE <C. AD CE =D. indefinite(英汉词典:equilateral 等边的;intersection 交点;magnitude 大小,量;indefinite 不确定的)9. 已知两个不同的质数p ,q 满足下列关系:p p m q q m 222001020010-+=-+=,,m 是适当的整数,那么p q 22+的数值是( )A. 4004006B. 3996005C. 3996003D. 400400410.小张上周工作a 小时,每小时的工资为b 元,本周他的工作时间比上周减少10%,而每小时的工资数额增加10%,则他本周的工资总额与上周的工资总额相比( )A. 增加1%B. 减少1%C. 增加1.5%D. 减少1.5% 二、填空题:(每小题6分,共60分) 11. 化简:2532306243+--+的结果是_________。

第十一届希望杯初二第1试

第十一届“希望杯”数学竞赛初二第一试一、选择题: 1.与的关系是( )。

(A )互为倒数 (B )互为相反数 (C )互为负倒数 (D )相等2.已知x ≠0,则的值是( )。

(A )0 (B )-2 (C )0或-2 (D )0或2 3.适合|2a +7|+|2a-1|=8的整数a 的值的个数有( )。

(A )5个 (B )4个 (C )3个 (D )2个4.如图1,四边形ABCD 中,AB//CD ,∠D =2∠B ,若AD =a ,AB =b ,则CD 的长等于( )。

(A )b-a (B )b- (C )(b-a) (D )2(b-a)5.有四条线段,a =14,b =13,c =9,d =7,用a 、c 分别作一个梯形的下、上两底,用b 、d 分别作这个梯形的两腰(作出的全等的梯形算一种),那么这样的梯形( )。

(A )只能作一种 (B )可以作两种 (C )可以作无数种 (D )一种也作不出 6.当1≤x ≤2时,代数式可以化简为( )。

(A )0 (B )2 (C )2 (D )-27.已知=a, =b ,则用a 、b 表示为( )。

(A )(B )(C )(D )8.互不相等的三个正数a 、b 、c 恰为一个三角形的三条边长,则以下列三个数为长度的线 段一定能作成三角形的是( )。

(A ), ,(B )a 2, b 2, c 2 (C ), ,(D )|a-b|, |b-c|, |c-a|9.在一个凸八边形中,每三个顶点形成三个角(如又A 、B 、C 三个顶点形成∠ABC 、∠BAC 、 ∠ACB),一共可以作出168个角,那么这些角中最小的一个一定( )。

(A )小于或等于20° (B )小于或等于22.5° (C )小于或等于25° (D )小于或等于27.5° 10.设a 、b 、c 均为正数,若,则a 、b 、c 三个数的大小关系是( )。

2024年数学教师初中新学期工作计划模版(三篇)

2024年数学教师初中新学期工作计划模版一、教育理念:致力于使学生牢固掌握基本知识和技能,同时注重培养他们的逻辑推理能力、计算能力、空间认知能力和解决实际问题的能力。

引导学生逐步掌握正确的运算方法,学会分析、综合、抽象和概括,运用归纳、演绎、类比进行合理的推理。

强调数学的实践性与应用性,激发学生对数学学习的兴趣,塑造良好的学习习惯,培养实事求是的态度,以及坚韧的学习毅力和独立思考、创新的思维模式。

进一步提升学生运用数学知识解决实际问题的能力。

二、教学流程的关键环节:(1)精心备课:深入研究教材和考试大纲,明确教学目标,把握关键点和难点,精心设计教学流程,注重各章节内容的连贯性和重要性,同时重视课后的自我反思,细致规划每堂课的师生互动环节。

(2)充分利用课堂时间。

本学年的教学内容包括五章:第一章:分式第二章:一元二次方程第三章:圆第四章:图形的全等第五章:样本与总体严格遵循教学计划,统一备课进度和练习,确保教学的连贯性和一致性。

精心设计每个教学环节,确保每节课都能达成教学目标,突出重点,化解难点,增加课堂容量,确保每个学生都能积极参与课堂活动,通过动手、动口、动脑,及时反馈信息以提升教学效果。

(3)课后反馈与指导:选择适当的练习题和测试卷,及时批改作业,一旦发现学生的问题,立即进行面对面的指导,确保学生理解和掌握,不留知识盲点,使学生在学习中不断进步。

三、提升专业素养的策略:积极参与业务学习,广泛阅读,参加学校组织的培训,以适应基础教育改革的需求,掌握新的教学技能和策略,不断自我提升,取长补短,发挥优势,改进不足,使教学更加务实,教学方法更加灵活,教学手段更加先进。

四、确保教学质量的措施:1. 深入研究新课标,熟练掌握教材内容。

2. 认真备课,全面了解学生的学习动态。

3. 上好每一堂课,确保教学质量。

4. 课后辅导,及时查漏补缺。

5. 与其他教师积极交流,提升教学研究和改革的能力。

6. 经常听取学生的反馈,采纳合理的建议。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档