最新高中数学必修2空间几何体综合练习题及答案

合集下载

人教版必修二高一数学:空间几何体练习与答案

人教版必修二高一数学:空间几何体练习与答案

人教版必修二高一数学:空间几何体练习与答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.有下列三组定义:①有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;②用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;③有一个面是多边形,其余各面都是三角形的几何体是棱锥.其中正确定义的个数为()A.0 B.1C.2 D.32.如图,正方体ABCD﹣A1B1C1D1中,E、F分别是AA1,C1D1的中点,G是正方形BCC1B1的中心,则空间四边形AEFG在该正方体各面上的投影不可能是()A.B.C.D.3.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为①长方形;②正方形;③圆;④椭圆中的()A.①②B.②③C.③④D.①④4.用斜二测画法画出水平放置的正方形ABCD ABCD 的面积为( )A .4B .2C .2D5.已知边长为1的正方体的所有顶点在一个球面上,则这个球的表面积为( )A .43π B .2π C .3π D .4π6.如图,一竖立在水平地面上的圆锥形物体的母线长为4m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处,若该小虫爬行的最短路程为,则圆锥底面圆的半径等于( )A .1mB .3m 2C .4m 3D .2m7.已知圆锥的母线长为5,底面周长为8π,则它的体积为( ) A .48π B .64π3 C .16πD .80π38.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143C.3 D.69.一圆锥的侧面展开图是半径为4的半圆,则该圆锥表面积为()A.12πB.4πC.3D.16π310.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为()A.4 B..11.边长为)A.4B.1C.D.812.如图所示为某三棱锥的三视图,则该三棱锥外接球的表面积为()A.B.24πC.16πD.8π二、填空题:请将答案填在题中横线上.13.下列四个平面图形都是正方体的展开图,还原成正方体后,数字排列规律完全一样的两个是________.(1) (2) (3) (4)14.棱长为a的正方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长为__________.15.若将边长为2 cm的正方形绕着它的一边所在的直线旋转一周,则所得圆柱的侧面积为__________ cm2.16.已知一个几何体的三视图如图所示(单位: cm),则该几何体的体积为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.如图是一个正四棱台的直观图,它的上底面是边长为2的正方形,下底面是边长为4的正方形,侧棱长为2,侧面是全等的等腰梯形,求此四棱台的表面积.18.在正方形ABCD中,E、F分别为AB、BC的中点,现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.问:①依据题意画出这个几何体;②这个几何体由哪几个面构成,每个面的三角形是什么三角形;③若正方形边长为2a,则每个面的三角形面积为多少.19.已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.20.如果一个几何体的正视图与侧视图都是全等的长方形,边长分别是4 cm与2 cm.如图所示,俯视图是一个边长为4 cm的正方形.(1)求该几何体的全面积;(2)求该几何体的外接球的体积.21.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.(尺寸不作严格要求)22.一个几何体的三视图如图所示.已知正视图是底边长为11的矩形,俯视图为两个边长为1的正方形拼成的矩形. (1)求该几何体的体积V ; (2)求该几何体的表面积S .1.【答案】B【解析】由棱柱的定义可知只有①正确;②截面必须平行于底面;③其余各三角形应有一个公共顶点,所以②③都不正确.故选B . 2.【答案】B【解析】光线由上向下照射可以得到A 的投影,光线有面ABB 1A 1照射,可以得到C 的投影,光线由侧面照射可以得到D 的投影,故选B . 3.【答案】B【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.所以其俯视图不可能为②正方形;③圆,故选B . 4.【答案】A【解析】斜二测画法画出水平放置的正方形ABCD 的直观图,如图所示,设正方形的边长为a ,则直观图的面积为a •12a •sin45° a =2,∴正方形ABCD 的面积为a 2=4.故选A .5.【答案】C【解析】由题意,正方体的中心为其外接球的球心,∵正方体的棱长为12,∴外接球的表面积为24π3π⨯=.故选C . 6. 【答案】C【解析】作出该圆锥的侧面展开图,如下图所示:该小虫爬行的最短路程为PP ',在OPP '△中,OP =OP '=4,P P '=120P OP '∠=.设底面圆的半径为r ,则有1202ππ4180r =⋅,∴34=r .故C 正确.7.【答案】C【解析】∵圆锥的底面周长为8π,∴圆锥的底面半径r =4; 又∵圆锥的母线长l =5,∴圆锥的高h =3, 所以圆锥的体积为V 13=⨯π•42×3=16π,故选C . 8.【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2, 所以几何体的体积为11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A9.【答案】A【解析】底面圆的半径为r ,则12π2π42r =⋅⋅,所以r =2,所以圆锥的表面积为:221π2π412π2⋅+⋅=.故选A . 10.【答案】B【解析】设长方体的三条棱的长分别为:,,x y z ,则2()524()36xy yz zx x y z ++=⎧⎨++=⎩,===.故选B .11.【答案】C【解析】边长为(2=8,水平放置的正方形的面积与斜二测画法所得的直观图的面积之比为:1,=C .12.【答案】B【解析】由已知中的三视图可得,该几何体的外接球,相当于一个棱长为1,1,2的长方体的外接球,故外接球直径2R ==S =4πR 2=24π,故选B .13.【答案】(2)(3)【解析】 (2)(3)中,①④为相对的面,②⑤为相对的面,③⑥为相对的面,故它们的排列规律完全一样.14【解析】因为正方体内接于球,所以2R =R 2a =, 过球心O 和点E 、F 的大圆的截面图如图所示, 则直线被球截得的线段为QR ,过点O 作OP ⊥QR 于点P ,所以在△QPO 中,QR =2QP =. 15.【答案】8π【解析】将边长为2 cm 的正方形绕着它的一边所在的直线旋转一周, 所得圆柱的底面圆半径为r =2 cm ,母线长为l =2 cm .则圆柱的侧面积为S 侧=2πrl =2π×2×2=8π( cm 2).故答案为:8π. 16.【答案】363π2-【解析】几何体的直观图如图是一个棱柱挖去一个圆柱的几何体,几何体的体积为:213334π()232⨯⨯-⋅⋅⋅=363π2-.故答案为:363π2-.17.【答案】20+【解析】依题意,上底面和下底面的面积分别是222,4, ∵侧面是全等的等腰梯形,且侧棱长2,∴侧面高==,∴侧面面积为()1242⨯+=∴该四棱台的表面积2224420S =++=+. 18.【解析】①如图所示.②这个几何体由四个面构成,即面DEF 、面DFP 、面DEP 、面EFP . 由题意可知DE =DF ,∠DPE =∠EPF =∠DPF =90°,所以△DEF 为等腰三角形,△DFP 、△EFP 、△DEP 为直角三角形.③由②可知,DE =DF =,EF =,所以,S △DEF 32=a 2.DP =2a ,EP =FP =a , 所以S △DPE =S △DPF =a 2,S △EPF 12=a 2.19.【解析】设圆台的母线长为l ,∵圆台的上下底面半径分别是2、5,∴圆台的上底面面积:2π2S =⨯=上4π, 圆台的下底面面积:2π525πS =⨯=下,∴圆台的底面面积:S =S 上+S 下=29π, 又圆台的侧面积:S 侧=π(2+5)l =7πl . ∵圆台的侧面面积等于两底面面积之和,∴7πl =29π,解得l 297=. ∴该圆台的母线长为297.20.【解析】(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64 cm 2. 所以几何体的全面积是64 cm 2.(2)由长方体与球的性质可得,长方体的对角线是球的直径,记长方体的体对角线为d ,球的半径是r ,则d =,所以球的半径r =3. 因此球的体积V =344π27π36π 33r =⨯=(cm 3), 所以外接球的体积是36π cm 3.21.【解析】由题可知题目所述几何体是正六棱台,画法如下:画法: (1)画轴画x 轴、y 轴、z 轴,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°(图1) (2)画底面以O ′为中心,在XOY 坐标系内画正六棱台下底面正方形的直观图ABCDEF . 在z ′轴上取线段O ′O 1等于正六棱台的高;过O 1 画O 1M 、O 1N 分别平行O ’x ′、O ′y ′,再以O 1为中心,画正六棱台上底面正方形的直观图A ′B ′C ′E ′F ′(3)成图连接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱台的直观图(如图2).22.【解析】(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1∴V=1×1=(2)由三视图可知,该平行六面体中,A1D⊥面ABCD,CD⊥面BCC1B1,∴AA1=2,侧面ABB1A1,CDD1C1均为矩形∴S=2×(1×1+11×2)。

必修二_1.3_空间几何体的表面积和体积同步练习和详细答案

必修二_1.3_空间几何体的表面积和体积同步练习和详细答案

1.3空间几何体的表面积和体积【知识总结】1. 多面体的面积和体积公式名称 侧面积(S 侧) 全面积(S 全)体积(V )棱 棱柱 直截面周长x IS 侧+2S 底S底• h=S 直截面• h柱直棱柱 chS 底• h「棱锥棱锥 各侧面积之和1S 底• h3 正棱锥 1『 —ch 2S 侧+S 底棱台各侧面面积之和1—h(S 上底+S 下底+3棱 台正棱台1一 (c+c ' )h '2S 侧+S 上底+S 下底S 下底’S 下底)表中表示面积,'、分别表示上、下底面周长,表斜咼,'表示斜咼,表示侧棱长。

2 .旋转体的面积和体积公式名称圆柱圆锥圆台球S 侧 2 n rl n rl n (r 1+「2)lS 全 2 n r(l+r) n r(l+r) 2 2n (r 1+r 2)l+ n (r 1+r24 n RVn r 2h(即 n r 2l)1r 2h —n r h312 2—n h(r 1+r 1「2+r 2)3 43—n R3 表中I 、h 分别表示母线、咼,r 表示圆柱、圆锥与球冠的底半径,r i 、「2分别表示圆台上、下底面半径,R 表示半径。

【知能训练】A:多面体的表面积和体积 一•选择题1.如图,在直三棱柱 ABC-ABC i 中,AA=AB=2 BC=1, / ABC=90,若规 定主(正)视方向垂直平面 ACCA ,则此三棱柱的左视图的面积为 ( )A.—— B . 2 - C . 4 D . 22•某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底 边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、 高为4的等腰三角形,则该几何体的表面积为()3.—个棱锥被平行于底面的平面所截,如果截面面积与底面面积之比为1: 2,则截面把棱锥的一条侧棱分成的两段之比是()A . 1 : 4B . 1 : 2C . 1 : ( "- 1 )D . 1: ( 一+1 ) 4.正六棱台的两底边长分别为1cm, 2cm,高是1cm,它的侧面积为()A . 80B . 24 一+88C. 24 一+40 D . 118A .9 ~ 2cm2B . 9 cmC. - cm 22D. 3 cm5. 要制作一个容积为 4卅,高为1m 的无盖长方体容器,已知该容器的底面造价是每平方米 20元,侧面造价是每平方米 10元,则该容器的最低总造价是( )A . 80 元B . 120 元C . 160 元D. 240 元6. (文) 四棱锥S-ABCD 的底面是矩形,锥顶点在底面的射影是矩形对角线的交点,四棱 锥及其三视图如图(AB 平行于主视图投影平面)则四棱锥 A . 24 B . 18 C . - - D . 87. 某空间组合体的三视图如图所示,则该组合体的体积为( A . 48B . 56C . 64D. 72&各棱长均为a 的三棱锥的表面积为( )A. 4 _a 2B . 3 "a 2C .2 _a 2D9.已知一个四棱锥的高为 3,其底面用斜二测画法所画出的水平放置的直观图是一个边长为1的正方形,则此四棱锥的体积为()10. 如图,在三棱柱 ABC-ABC 中,D, E , F 分别是AB, AC, AA 的中点,设三棱锥 F-ADE的体积为V 1,三棱柱 ABG-ABC 的体积为V 2,则V 1: V ___________________________________ .11. _______ 将边长为2的正方形沿对角线 AC 折起,以A, B, C, D 为顶点的三棱锥的体积最大值等 于 ____ .12.如图,一个三棱柱形容器中盛有水,且侧棱AA=8.若AAB 1B 水平放置时,液面恰好过AC BC, AC , BC 的中点,则当底面 ABC 水平放置时,液面的高为 _________________ . 13. 四棱锥P-ABCD 的底面ABCE 为正方形,且PD 垂直于底面 ABCD N 为PB 中点,则三棱锥 P-ANC 与四棱锥P-ABCD 的体积比为 ________________ .14.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为S-ABCD 的体积=( )A .B . 6C. -D . 2直角三角形,则它的体积为_________________15.如图所示,在三棱柱ABC-ABQ 中,AB=AC=AA=2, BC=2 ;且/ AAB=/ A i AC=60,则该三棱柱的体积是_________________________ .B:旋转体的表面积和体积1•如果圆锥的底面半径为,高为2,那么它的侧面积是()A. 4 n B . 2 n C . 2 n D . 4 n2.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()A. 5 nB. 4 nC. 3 nD. 2 n3•如果圆锥的轴截面是正三角形(此圆锥也称等边圆锥),则此圆锥的侧面积与全面积的比是()A. 1 : 2 B. 2: 3 C. 1 : 一 D. 2: _4•圆锥侧面积为全面积的,则圆锥的侧面展开图圆心角等于()A. - nB. nC. 2 nD.以上都不对5.圆台的上、下底面半径和高的比为 1 : 4: 4,母线长为10,则圆台的侧面积为()A. 81 nB. 100 nC. 14 nD. 169 n6.已知球的直径SC=8 A, B是该球球面上的两点,AB=2 ,/ SCAN SCB=60,则三棱锥S-ABC 的体积为()A. 2 ~B. 4 ~C. 6 ~D. 8 ~7.若圆柱的底面直径和高都与球的直径相等,圆柱、球的表面积分别记为S、S,则S:Sa=()A. 1 : 1B. 2: 1C. 3: 2D. 4: 1&若两个球的表面积之比为1: 4,则这两个球的体积之比为()A. 1 : 2B. 1 : 4C. 1 : 8D. 1 : 169.体积相等的正方体、球、等边圆柱(即底面直径与母线相等的圆柱)的全面积分别为S , S, S3,那么它们的大小关系为()A. S1 v S2 v S3B. S1 v S3V S2C. S2V S3 v S1D. S2 v S1 v S3二.填空题(共5小题)10.圆锥和圆柱的底面半径和高都是R,则圆锥的全面积与圆柱的全面积之比为________________n和n的矩形, 11 .已知一个圆柱的侧面展开图是一个长和宽分别为则该圆柱的体积是____________________12.在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm,母线长最短50cm,最长80cm,则斜截圆柱的侧面面积S= cm 2.13.球的体积与其表面积的数值相等,则球的半径等于14•已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球为O的表面积为15.已知A, B, C是球面上三点,且AB=AC=4cm/ BAC=90,若球心O到平面ABC的距离为2 ,则该球的表面积为cm3.11.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为1,此时四面体ABCD7卜接球表面积为三.解答题(共3小题)16•如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成•已知球的直径是6cm,圆柱筒长2cm.(1)这种“浮球”的体积是多少cm (结果精确到0.1 ) ?(2 )要在这样2500个“浮球”表面涂一层胶质,如果每平方米需要涂胶100克,共需胶多少?17.(文)如图,球O的半径长为10(1)求球O的表面积;(2)求球O的体积;(3)若球O的小圆直径AB=3Q求A、B两点的球面距离.18.设底面直径和高都是4厘米的圆柱的内切球为O.(1)求球O的体积和表面积;(2)与底面距离为1的平面和球的截面圆为M AB是圆M内的一条弦,其长为2 ,求AB 两点间的球面距离.参考答案: A:I、A 2、B 3、C 4、A 5、C 6、D 7、C 8、D 9、D10、解:因芮D,E,分S]是Ab肌的中自所以血虫DE;S AA BC=1:仆又F是宜納的中点,所以A T aS面的范离H为F到虧面距离h的2倍• 即三複栓盘卩1门-2匚的壽是三棱穩F-ME高的7倍-斷以如;畑空兰空=4T=1:西.故答案为1; 24.II、铅:妇也肪示,评正方也就口叭対術钱M * 3DSt + iO>甲n折更启的位豈为F・连揺即‘ *苛一TAZJLBC,AC l-BD* - BaflD- QrO--ACX 耶®IT g匡b> =楼帕的作祗対V D -kBC"v^EOC' -^Vc-BCC~ ;BCD' k AO*j52kBOD' x J S^ISOD_卞航:王方世的迪丢为2・可J?■■- BOD ft AH - To LABC谜劉昴尢值■*:S/\ 二 0D* =? x j^x忑小血乂目□力'二w in上aoii *’,丄i ?rv「.q-TTY-M' l「=丄工」•王5V.怡巧「此t」导.乂RJ农虻-土故告案为;半12、解:不妨令此三棱柱为直三棱柱,如图当侧面AA1B1B水平放置时,水的形状为四棱柱形,底面是梯形.设△ ABC的面积为S,贝U S梯形ABFE= S,V水=S? AA1=6S .当底面ABC水平放置时,水的形状为三棱柱形,设水面高为h,则有V水=Sh,••• 6S=Sh,.•• h=6 .故当底面ABC水平放置时,液面高为6 .故答案为:613、1:4 14、15、2解:團柱的側面展开囹星长利员务别为和TT的矩用,当毋线为戈氏时,區1桂的庙面半襌是扌此时囿桂体粮是(l)1 2Ttx3it=^;当母线为H时,圆柱酌展面半轻是学此时圆柱的体釈是(芥II"二竺匕£-t 4综上所求圈柱的体稅杲:—16、解:(1 )T该“浮球”的圆柱筒直径d=6cm ,•••半球的直径也是6cm,可得半径R=3cm,•两个半球的体积之和为V球=-冗R = - n ? 27 = 6 n cm3 * S 6…(2分)斗412、解:将相同的两个几何体,对接为圆柱,则圆柱的侧面展开,侧面展开图的面积 S=[ ( 50+80) X 20 n x 2]/2=2600 n cm2. 故答案为:2600 n13、 3 14、8 n 15、64 n学习参考而V 圆柱=n R ? h= n X 9X = n cm3…(2 分)•该“浮球”的体积是:V=V球+V圆柱=36 n +18 n =54 n" 169.6cm 3…(4分)(2)根据题意,上下两个半球的表面积是S 球表= n R = Xn X 9= 6 n cm?…(6 分)而“浮球”的圆柱筒侧面积为:S圆柱侧=2 n Rh=2 Xn X 3 X 2=12 n cm2…(8分)6 n n n• 1个“浮球”的表面积为S = —0一= —m因此,2500个“浮球”的表面积的和为2500 S = 00 X —= n m2…(10分)•/每平方米需要涂胶100克,•总共需要胶的质量为:100 X 12 n =1200 n (克)…(12分)答:这种浮球的体积约为169.6cm 3;供需胶1200 n克.…(13分)17、解:(1)球的表面积为4 n r 2=1200 n ; …(4分)(2)球的体积V=-n r3= 4000 _n ; …(8 分)(3)设球心为O,在△ AOB中,球O的小圆直径AB=30,球O的半径长为10解得Z AOB=",所以A、B两点的球面距离为0 n n . …(15分)18、解:(1)•••底面直径和高都是4厘米的圆柱的内切球为O,•球O的半径为2cm,.•.球O的体积为-n ? 2=,表面积4 n ? 22=16 n ;(2)•/ AB是圆M内的一条弦,其长为2 ,• Z AOB= n , • AB两点间的球面距离为".。

高一数学必修2测试题及答案全套

高一数学必修2测试题及答案全套

(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示;这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5;且它的8个顶点都在 同一球面上;则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.2:D35.在△ABC 中;02, 1.5,120AB BC ABC ==∠=;若使绕直线BC 旋转一周;则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长 分别是9和15;则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点; 顶点最少的一个棱台有 ________条侧棱。

主视图 左视图 俯视图2.若三个球的表面积之比是1:2:3;则它们的体积之比是_____________。

3.正方体1111ABCD A B C D - 中;O 是上底面ABCD 中心;若正方体的棱长为a ; 则三棱锥11O AB D -的体积为_____________。

4.如图;,E F 分别为正方体的面11A ADD 、面11B BCC 的中心;则四边形E BFD 1在该正方体的面上的射影可能是____________。

5.已知一个长方体共一顶点的三个面的面积分别是2、3、6;这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15;则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12M ;高4M ;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。

高中数学必修2 空间几何体的表面积与体积最全试题及答案

高中数学必修2 空间几何体的表面积与体积最全试题及答案

空间几何体的表面积与体积一.相关知识点1.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各个面的面积的和。

(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环。

(3)若圆柱、圆锥的底面半径为r,母线长l,则其表面积为S柱=2πr2+2πrl,S锥=πr2+πrl。

(4)若圆台的上下底面半径为r1,r2,母线长为l,则圆台的表面积为S=π(r21+r22)+π(r1+r2)l。

(5)球的表面积为4πR2(球半径是R)。

2.几何体的体积(1)V柱体=Sh。

(2)V锥体=13Sh。

(3)V台体V圆台=13π(r21+r1r2+r22)h,V球=43πR3(球半径是R)。

一、细品教材1.(必修2P28A组T3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________。

2.(必修2P36A组T10改编)一直角三角形的三边长分别为6 cm,8 cm,10 cm,绕斜边旋转一周所得几何体的表面积为________。

细品教材答案:1.1∶47; 2.3365π cm2二、基础自测1.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20π B.24πC.28π D.32π2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为()A.12π B.36πC.72π D.108π3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为__________。

4.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________。

5.(2016·赤峰模拟)已知三棱柱ABC-A1B1C1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为7π,则此三棱柱的体积为________。

基础自测答案1.C;2.B;3.2;4.32;5.94三.直击考点考点一空间几何体的表面积【典例1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+22B.11+22C.14+2 2 D.15(2)(2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径。

高一数学必修2__1.1空间几何体的结构(练习题)

高一数学必修2__1.1空间几何体的结构(练习题)

必修2 1.1空间几何体的结构(练习题)一、选择题1.在棱柱中()A.只有两个面平行 B.所有的棱都平行C.所有的面都是平行四边形 D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A.正方体 B.正四棱锥C.长方体D.直平行六面体4.下面命题中,正确的是()①底面是正方形,侧面都是等腰三角形的棱锥是正四棱锥;②对角线相等的四棱柱必是直棱柱;③底面边长相等的直四棱柱为正四棱柱;④四个面都是全等的三角形的几何体是正四面体5.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、46.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4D.AB=A1B1,BC=B1C1,CA=C1A17.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2) B.(2)(3) C.(1)(3) D.(2)(4)8.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形9.一个三棱锥四个面中,是直角三角形的最多有()A.1个 B.2个 C.3个 D.4个10.图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是_______________.(注:把你认为正确的命题的序号都填上)11.高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是_______________.三、解答题12.察以下几何体的变化,通过比较,说出他们的特征.13.一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm,求圆锥的母线长__________.。

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

高二数学同步单元练习(必修2) 专题01 空间几何体的结构(A卷) Word版含解析

(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列图形中,不是三棱柱的展开图的是()答案:C2.有两个面平行的多面体不可能是()A.棱柱B.棱锥C.棱台D.以上都错解析:选B棱柱、棱台的上、下底面是平行的,而棱锥的任意两面均不平行.3.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行4.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15C.12 D.10解析:选D从正五棱柱的上底面1个顶点与下底面不与此点在同一侧面上的两个顶点相连可得2条对角线,故共有5×2=10条对角线.5.下列命题中正确的是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.两个底面平行且相似,其余各面都是梯形的多面体是棱台C.棱台的底面是两个相似的正方形D.棱台的侧棱延长后必交于一点解析:选D A中的平面不一定平行于底面,故A错;B中侧棱不一定交于一点;C中底面不一定是正方形.6.观察如图的四个几何体,其中判断不正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台解析:结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.答案:B7.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一条棱将正方体剪开,外面朝上展平得到右侧的平面图形,则标“△”的面的方位是()A.南B.北C.西D.下答案:B8.如图,在三棱台A'B'C'-ABC中,截去三棱锥A'-ABC,则剩余部分是()A.三棱锥B.四棱锥C.三棱柱D.三棱台解析:剩余部分是四棱锥A'-BCC'B'.答案:B9.棱锥的侧面和底面可以都是()A.三角形B.四边形C.五边形D.六边形解析:三棱锥的侧面和底面均是三角形.答案:A10.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()解析:动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.答案:C11.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定形状.答案:A12.用一个平面去截四棱锥,不可能得到()A.棱锥B.棱柱C.棱台D.四面体解析:根据棱椎的特点,侧棱不平行,所以肯定得不到棱柱答案:B第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.面数最少的棱柱为________棱柱,共有________个面围成.解析:棱柱有相互平行的两个底面,其侧面至少有3个,故面数最少的棱柱为三棱柱,共有五个面围成.答案:三 514.如图,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,沿正方体表面从点A 到点M的最短路程是________ cm.答案:1315.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请根据上述定义,回答下面的问题:(1)直四棱柱________是长方体;(2)正四棱柱________是正方体.(填“一定”、“不一定”、“一定不”)解析:根据上述定义知:长方体一定是直四棱柱,但是直四棱柱不一定是长方体;正方体一定是正四棱柱,但是正四棱柱不一定是正方体.答案:(1)不一定(2)不一定16.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为cm.解析:n棱柱有2n个顶点,因为此棱柱有10个顶点,所以此棱柱为五棱柱.又棱柱的侧棱都相等,五条侧棱长的和为60 cm,可知每条侧棱长为12 cm.答案:12三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.观察下列四张图片,结合所学知识说出这四个建筑物主要的结构特征.18.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.解:如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的14,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底. 19.按下列条件分割三棱台ABC-A 1B 1C 1(不需要画图,各写出一种分割方法即可). (1)一个三棱柱和一个多面体; (2)三个三棱锥.20.正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是多少? 解析:如图,MF=OF-O'E=. 在Rt △EMF 中,∵EM=2, ∴EF=.所以斜高是21.如图,在棱锥A-BCD中,截面EFG平行于底面,且AE∶AB=1∶3,已知△DBC的周长是18,求△EFG的周长.解:由已知得EF∥BD,FG∥CD,EG∥BC,∴△EFG∽△BDC.∴.又,∴.∴△EFG的周长=18×=6.22.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.。

高中数学必修二(空间几何体)测试题练习




②∠ BAC=60°; ③三棱锥 D-ABC是正三棱锥; ④平面 ADC的法向量和平面 ABC的法向量互相垂直. 其中正确结论的序号是 ______.(请把正确结论的序号都填上) 5.在三棱锥 P-ABC中,给出下列四个命题: ①如果 PA⊥ BC,PB⊥ AC,那么点 P 在平面 ABC内的射影是△ ABC的垂心;
高中必修二数学测试题(一)
一.单选题(共 __小题) 1.一个正四棱锥的底面面积为 Q,则它的中截面 (过各侧棱的中点的截C.
D.
水平放置的正方体的六个面分别用 “前面、 后面、 上面、 下面、 左面、 右面”
表示,如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的
评卷人
得分
二.填空题(共 __小题) 3.若空间四边形 ABCD的两条对角线 AC,BD 的长分别为 4,6,过 AB 的中点 E且平行 BD, AC 的截面四边形的周长为 ______ . 答案: 10 解析:
解:设截面四边形为 EFGH,F、G、H 分别是 BC、
CD、 DA 的中点,∴ EF=GH=2, FG=HE=3, ∴周长为 2 ×( 2+3) =10. 故答案为: 10.
A.
B.
C.
D.
答案: A 解析: 解:由棱锥的几何特征可得 棱锥的中截面与棱锥的底面是相似图形 且相似比为 [MISSING IMAGE]
则棱锥的中截面与棱锥的底面的面积之比为相似比的平方
又∵棱锥的底面面积是 Q,
∴棱锥的中截面面积是 ,则它的中截面的边长是
故选 A.
水平放置的正方体的六个面分别用 “前面、 后面、 上面、 下面、 左面、 右面”
表示,如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的

高中数学必修2_空间几何经典提升培优题组(含答案)

(数学2必修)第一章 空间几何体[基础训练A组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对主视图左视图俯视图2.棱长都是的三棱锥的表面积为( )A. B. C. D.3.长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是()A. B. C. D.都不对4.正方体的内切球和外接球的半径之比为( )A. B. C. D.5.在△ABC中,,若使绕直线旋转一周,则所形成的几何体的体积是()A. B. C. D.6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为,它的对角线的长分别是和,则这个棱柱的侧面积是()A. B. C. D.二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。

2.若三个球的表面积之比是,则它们的体积之比是_____________。

3.正方体中,是上底面中心,若正方体的棱长为,则三棱锥的体积为_____________。

4.如图,分别为正方体的面、面的中心,则四边形在该正方体的面上的射影可能是____________。

5.已知一个长方体共一顶点的三个面的面积分别是、、,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大(高不变);二是高度增加 (底面直径不变)。

(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?2.将圆心角为,面积为的扇形,作为圆锥的侧面,求圆锥的表面积和体积(数学2必修)第一章 空间几何体[综合训练B组]一、选择题1.如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是()A. B.C. D.2.半径为的半圆卷成一个圆锥,则它的体积为()A. B. C. D.3.一个正方体的顶点都在球面上,它的棱长为,则球的表面积是( )A. B. C. D.4.圆台的一个底面周长是另一个底面周长的倍,母线长为,圆台的侧面积为,则圆台较小底面的半径为()A.B.C.D.5.棱台上、下底面面积之比为,则棱台的中截面分棱台成两部分的体积之比是( )A. B. C. D.6.如图,在多面体中,已知平面是边长为的正方形,,,且与平面的距离为,则该多面体的体积为()A.B.C.D.二、填空题1.圆台的较小底面半径为,母线长为,一条母线和底面的一条半径有交点且成,则圆台的侧面积为____________。

高中数学1.4空间几何体的表面积与体积练习(含解析)新人教A版必修2

1.4空间几何体的表面积与体积练习1.棱长都是1的三棱锥的表面积为().A. B.2 C.3 D.4【解析】因为四个面是全等的正三角形,所以S表面积=4S底面积=4×=.【答案】A2.已知正六棱台的上、下底面边长分别为2和4,高为2,则体积为().A.32B.28C.24D.20【解析】上底面积S1=6××22=6,下底面积S2=6××42=24,体积V=(S1+S2+)·h=(6+24+)×2=28.【答案】B3.充满氢气的气球飞艇可以供游客旅行,现有两飞艇,它们的半径之比为1∶2,那么它们的体积之比为.【解析】由于球的体积公式为V=πR3,所以体积比等于半径比的立方,所以体积比为1∶8.【答案】1∶84.把长和宽分别为6和3的矩形卷成一个圆柱的侧面,求这个圆柱的体积.【解析】如图所示,当BC为底面周长时,半径r1=,则体积V=π·AB=π()2×6=;当AB的底面周长时,半径r2==,则体积V=π·BC=π()2×3=.综上可知,圆柱的体积为或.5.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为().A. B. C. D.【解析】设底面半径为r,侧面积为4π2r2,全面积为2πr2+4π2r2,其比为.【答案】A6.若正方体的棱长为,则以该正方体各个面的中心为顶点的凸多面体的体积为().A. B. C. D.【解析】由题意知,以正方体各个面的中心为顶点的凸多面体是正八面体(即由两个同底等高的正四棱锥组成),所有的棱长均为1,其中每个正四棱锥的高均为,故正八面体的体积V=2V正四棱锥=2××12×=.故选B.【答案】B7.把由曲线y=|x|和y=2围成的图形绕x轴旋转360°,所得旋转体的体积为.【解析】由题意可知所得旋转体为一个圆柱挖去两个相同的共顶点的圆锥.∵V圆柱=π×22×4=16π,2V圆锥=2×π×22×2=,∴所求几何体的体积为16π-=.【答案】8.一试管的上部为圆柱形,底部为与圆柱底面半径相同的半球形.圆柱形部分的高为h cm,半径为r cm.试管的容量为108π cm3,半球部分容量为全试管容量的.(1)求r和h.(2)若将试管竖直放置,并注水至水面离管口4 cm处,求水的体积.【解析】(1)依据题意:V圆柱+V半球=108π,V半球=×108π=18π,×r3=18π得r=3(cm), 又V圆柱=90π=πr2h,解得h=10(cm).(2) V水=108π-π×32×4=72π(cm3).9.如图所示,三棱柱ABC-A'B'C'中,若E、F分别为AC、AB的中点,平面EC'B'F将三棱柱分成体积为V1(棱台AEF-A'C'B'的体积),V2的两部分,那么V1∶V2= .【解析】设三棱柱的高为h,底面面积为S,体积为V,则V=V1+V2=Sh.因为E、F分别为AC、AB的中点,所以S△AEF=S,所以V1=h(S+S+)=Sh,V2=V-V1=Sh.所以V1∶V2=7∶5.【答案】7∶510.甲、乙是边长为4a的两块正方形钢板,现要将甲裁剪焊接成一个四棱柱(底面为正方形),将乙裁剪焊接成一个四棱锥(底面为正方形,顶点在底面的射影在底面中心),使它们的表面积都等于这个正方形的面积(不计焊接缝的面积).(1)将你的裁剪方法用虚线标示在图中,并作简要说明.(2)试比较你所制作的四棱柱与四棱锥体积的大小,并证明你的结论.【解析】(1)将正方形甲按图中虚线剪开,以两个正方形为底面,四个长方形为侧面,焊接成一个底面边长为2a,高为a的四棱柱.将正方形乙按图中虚线剪开,以两个长方形焊接成边长为2a的正方形为底面,三个等腰三角形为侧面,两个直角三角形合拼成为一个侧面,焊接成一个底面边长为2a,斜高为3a的四棱锥.(2)因为四棱柱的底面边长为2a,高为a,所以其体积V柱=(2a)2·a=4a3,又因为四棱锥的底面边长为2a,高为h==2a,所以其体积V锥=(2a)2·2a=a3,因为42-()2=16-=>0,即4>,所以4a3>a3,所以V柱>V锥,故所制作的四棱柱的体积比四棱锥的体积大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档空间几何体第一章综合型训练一、选择题,0451的等腰梯形,那么原平面图形腰和上底均为.如果一个水平放置的图形的斜二测直观图是一个底面为1)的面积是(
21?2?2 B A..22?21?2D.C.2R 的半圆卷成一个圆锥,则它的体积为(半径为)2.
55333333????RRRR B.D.C.A.8824242cm,则球的表面积是(点都在球面上,它的棱长为)3.一个正方体的顶22??cmcm812B.A.
22??cmcm2016D.C.
33,倍,母线长为圆台的一个底面周长是另一个底面周长的4.
?84,则圆台较小底面的半径为()圆台的侧面积为
5367D.C.A.B.
1:9,则棱台的中截面分棱台成.棱台上、下底面面积之比为5两部分的体积之比是( ) 1:72:77:195:16B.D.C.A.ABCDEFABCD3的正方
形,中,已知平面是边长为.6 如图,在多面体EF3
?EF EF2ABCD//ABEF,,的距离为)与平面,且则该多面体的体积为(
2CD95.A B.2BA156C.D.2二、填空题06021, ,母线长为,一条母线和底面的一条半径有交点且成圆台的较小底面半径为1.
____________则圆台的侧面积为.
精品文档.
精品文档
AB?3,BC?4,AC?5?RtABCAB,.____________2.中,将三角形绕直角边旋转一周所成的几何体的体积为SS ___, 等体积的球和正方体它们的表面积的大小关系是3.正方体球3,4,5,从长方体的一条对角线的一个端点出发,若长方体的一个顶点上的三条棱的长分别为沿表面运动到另4.一个端点,其最短路程是______________.
5.图(1)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;
图(2)中的三视图表示的实物为_____________.
1)图()图(2
a平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的.6 若圆锥的表面积为直径为_______________.三、解答题cm40L60cm190,求它的深度为,假如它的两底面边长分别等于有一个正四棱台形状的油槽,可以装油和.1
cm多少?
2,5, 且侧面面积等于两底面面积之和,已.2 知圆台的上下底面半径分别是求该圆台的母线长.
精品文档.
精品文档
参考答案
一、选择题
1(1?2?1)?2?S?2?2 1. A 恢复后的原图形为一直角梯形2
R3R1323????Rr?h,2hr??R,r?,V?2. A 2232423?2R,正方体的
顶点都在球面上,则球为正方体的外接球,则. B 32??12R?4?R?3,S ??,r??847r?3r)lS?(4. A 侧面积V1?2?471??4个单位,5. C 中截面的面积为V4?6?9192E,F作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,过点. D 6131315V?2???3?2??3?2??34222
二、填空题
???6?)l(r??1,r?2,l?2,Srr?6画出圆台,则1.2211圆台侧面?BC16AB为高的圆锥,为半径,以2.旋转一周所成的几何体是以
1122???163rh???4?V?3343V33?3V,RaR??V?a?,?,设3.3 ?43
3333222222??V36V?,S?4VR?216216VS?6a?6?正球
74从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,4.有两种方案
22224?(3?5)?80,或5?(3?4)?74
4(2)圆锥)5.(1?a32??rl??22rll r,设圆锥的底面的半径为,圆锥
的母线为6.得,则由?3??a3aa3222?????,?3rar ar2??Srr??,即直径为,即而圆锥表???333精品文档.
精品文档
三、解答题
13V'')h,?ShV??S(?SS解:1.3''S?SS?S
3?190000?75?h
3600?2400?1600.22922???5??l5)?(2(2),l.解:37
精品文档.。

相关文档
最新文档