必修2-空间几何体测试题及答案
高中必修二《空间几何体》数学测试试卷附加答案

高中数学学科测试试卷学校:___________姓名:___________班级:___________考号:___________一.单选题(共__小题)1.六棱锥的六条侧棱长相等,则该六棱锥的底面六边形()A.必有内切圆B.必有外接圆C.既有内切圆又有外接圆D.不能确定2.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A.2B.2C.2D.43.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.24.棱长为a的正四面体中,高为h,斜高为m,相对棱间的距离为d,则a、m、h、d的大小关系正确的是()A.a>m>h>d B.a>d>m>h C.a>h>d>m D.a>d>h>m正方体表面沿着几条棱裁开放平得到如图的展开图,则在原正方体中有()A.AB∥CD B.AB∥EF C.CD∥GH D.AB∥GH6.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.7.(2015秋•九江校级月考)ABCD-A1B1C1D1为正方体,下列结论错误的是()A.BD∥平面CB1D1B.AC1⊥BD C.AC1⊥平面CB1D1D.AC1⊥BD1水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0B.7C.快D.乐二.填空题(共__小题)9.称四个面均为直角三角形的三棱锥为“四直角三棱锥”,若在四直角三棱锥SABC中,∠SAB=∠SAC=∠SBC=90°,则第四个面中的直角为______.10.已知一个正三棱锥的侧面都是等边三角形,侧棱长为3,则三棱锥的高是______.11.三棱台ABC-A1B1C1,△ABC的面积是4,△A1B1C1的面积是1,棱台的高是2,求截得棱台的棱锥的高是______.12.从正方体ABCD-A1B1C1D1的顶点和各棱的中点中任取两点边成直线,要求所得直线与AC1垂直,则这样的直线共有______条.13.正三棱锥的底面边长是2,侧棱长是3,则它的高h=______.14.若几何体的三视图如图所示,则此几何体的体积为______.一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).17.在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD ∥平面PBC;②OD⊥PA;③OD⊥BC;④PA=2OD.其中正确结论的序号是______.18.四棱锥的四个侧面三角形中,最多有______个直角三角形.19.空间四边形ABCD中,各边长均为1,若BD=1,则AC的取值范围是______.20.在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,则点C到平面A1MD的距离为______.21.一个长方体全面积是20cm2,所有棱长的和是24cm,则长方体的对角线长为______.22.等腰Rt△ABC斜边BC上的高AD=1,以AD为折痕将△ABD与△ACD折成互相垂直的两个平面后,某学生得出以下结论:①BD⊥AC②∠BAC=60°③异面直线AB与CD之间的距离为④点D到平面ABC的距离为⑤直线AC与平面ABD所成的角为其中正确结论的序号是______.23.已知命题p:底面是棱形的直棱柱是正四棱柱;命题q:底面是正三角形的棱锥是正三棱锥.有下列四个结论:①p真q假;②“p∧q”为假;③“p∨q”为真;④p假q假其中正确结论的序号是______.(请把正确结论的序号都填上)三.简答题(共__小题)24.已知三棱台ABC-A1B1C1的上底面面积为a2,下底面面积为b2(a>0,b>0),作截面AB1C1,设三棱锥B-AB1C1的高等于三棱台的高,求△AB1C1的面积.四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的一点,若△PAD为等边三角形,求证:PB⊥AD.在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.如图,在长方体ABCD-A1B1C1D1中,AD1、AC、A1C1、BC1分别是四个面上的对角线.求证:∠D1AC=∠A1C1B.已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.30.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.高中数学学科测试试卷学校:___________姓名:___________班级:___________考号:___________一.单选题(共__小题)1.六棱锥的六条侧棱长相等,则该六棱锥的底面六边形()A.必有内切圆B.必有外接圆C.既有内切圆又有外接圆D.不能确定答案:B解析:解:如图所示,∵六棱锥的六条侧棱长相等,∴侧棱在底面上的射影也相等,即OA=OB=OC=OD=OE=OF,从而底面六边形的六个顶点在同一个圆上,则该六棱锥的底面六边形必有外接圆.故选B.2.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是()A.2B.2C.2D.4答案:C解析:解:由三视图可知原几何体为三棱锥,其中底面△ABC为俯视图中的钝角三角形,∠BCA为钝角,其中BC=2,BC边上的高为2,PC⊥底面ABC,且PC=2,由以上条件可知,∠PCA为直角,最长的棱为PA或AB,在直角三角形PAC中,由勾股定理得,PA===2,又在钝角三角形ABC中,AB==.故选C.3.一正四棱锥的高为2,侧棱与底面所成的角为45°,则这一正四棱锥的斜高等于()A.2B.C.2D.2答案:C解析:解:如图PO⊥底面ABCD,连接OA,取AD的中点E,连接OE,PE,则PE为斜高.∠PAO为侧棱与底面所成的角,且为45°,在直角△PAO中,PO=2,AO=2,PA=4,在直角△AEO中,AE=2,故在直角△PEA中,PE==2.故选C.4.棱长为a的正四面体中,高为h,斜高为m,相对棱间的距离为d,则a、m、h、d的大小关系正确的是()A.a>m>h>d B.a>d>m>h C.a>h>d>m D.a>d>h>m答案:A解析:解:先判断棱长与斜高的关系,根据直角三角形斜边大于直角边得到a>m,斜高与高之间的关系同理可得m>h,在过相对棱之间的距离的面且垂直与一条棱的面上,两条边上的高比较大小,可以利用勾股定理来做,出大小,h>d综上可知a>m>h>d故选A正方体表面沿着几条棱裁开放平得到如图的展开图,则在原正方体中有()A.AB∥CD B.AB∥EF C.CD∥GH D.AB∥GH答案:C解析:解:由已知中正方体的展开图为:可得正方体的直观图为:由图可得CD∥GH故选C6.下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个面互相平行,其余各面都是梯形的多面体是棱台D.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥.答案:B解析:解:如图所示:A.如图(1)符合条件但却不是棱柱;B.图中PA⊥底面ABC,AB是圆O的直径,点C是圆上的一点,则四个面都是直角三角形,符合题意;C.其侧棱不相较于一点,故不是棱台;D.以直角三角形的斜边AB为轴旋转得到的是两个对底的圆锥.综上可知:只有B正确.故选B.7.(2015秋•九江校级月考)ABCD-A1B1C1D1为正方体,下列结论错误的是()A.BD∥平面CB1D1B.AC1⊥BD C.AC1⊥平面CB1D1D.AC1⊥BD1答案:D解析:解:如图,由ABCD-A1B1C1D1为正方体,可得BD∥B1D1,由线面平行的判定知,A正确;由线面垂直的判断可知BD⊥面ACC1,由此可得AC1⊥BD,B正确;由线面垂直的判定可得AC1⊥B1D1,AC1⊥B1C,则由线面垂直的判定定理可得AC1⊥平面CB1D1,说明C正确;由ABCD-A1B1C1D1为正方体,可得四边形ABC1D1为长方形,若AC1⊥BD1,可得AB=BC1,矛盾,∴D错误.故选:D.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的上面,则这个正方体的下面是()A.0B.7C.快D.乐答案:B解析:解:将展开图还原成正方体.下面是7;故选B.二.填空题(共__小题)9.称四个面均为直角三角形的三棱锥为“四直角三棱锥”,若在四直角三棱锥SABC中,∠SAB=∠SAC=∠SBC=90°,则第四个面中的直角为______.答案:∠ABC解析:证明:如图,四直角三棱锥S-ABC中,因为,∠SAB=∠SAC=90°,所以SA⊥AB,SA⊥AC,又AB∩AC=A,所以SA⊥平面ABC,而BC⊂平面ABC,所以SA⊥BC.又∠SBC=90°,所以SB⊥BC,又SA∩SB=S,所以BC⊥平面SAB.而AB⊂平面SAB,所以AB⊥BC,所以∠ABC为直角.故答案为∠ABC.10.已知一个正三棱锥的侧面都是等边三角形,侧棱长为3,则三棱锥的高是______.答案:解析:解:如图,设正三棱锥的顶点P在底面上的射影为D,则在直角三角形PAD中,PA=3,AD=,∴三棱锥的高PD==,故答案为:.11.三棱台ABC-A1B1C1,△ABC的面积是4,△A1B1C1的面积是1,棱台的高是2,求截得棱台的棱锥的高是______.答案:2解析:解:∵△ABC的面积是4,△A1B1C1的面积是1,∴两个三角形的边长的比是1:2设截去的部分棱锥高是h,∴,∴h=2故答案为:212.从正方体ABCD-A1B1C1D1的顶点和各棱的中点中任取两点边成直线,要求所得直线与AC1垂直,则这样的直线共有______条.答案:27解析:解:∵AA1⊥平面ABCD,BD⊆平面ABCD,∴AA1⊥BD又∵正方形ABCD中,AC⊥BD,且AA1、AC是平面AA1C1C内的相交直线∴BD⊥平面AA1C1C,∵AC1⊆平面AA1C1C,∴BD⊥AC1,同理可得BA1⊥AC1,结合线面垂直的判定定理,得AC1⊥平面A1BD因此,平面A1BD内的直线都与AC1垂直,并且平行于平面A1BD的平面都与AC1垂直,该平面内的直线都与AC1垂直,这样,在△A1BD中有三条直线与AC1垂直,在△B1D1C中有三条直线与AC1垂直,在△IJK中有三条直线与AC1垂直,在△RST中有三条直线与AC1垂直,共有3×4=12条直线与AC1垂直而在六边形LMNOPQ中,任意两点的连线都AC1垂直,共=15条直线与AC1垂直综上所述,正方体顶点和各棱的中点中任取两点连成直线,与AC1垂直的直线共12+15=27条故答案为:2713.正三棱锥的底面边长是2,侧棱长是3,则它的高h=______.答案:解析:解:如图,在正三棱锥P-ABC中,底面边长AB=2,侧棱长PA=3,设顶点P在底面的射影为O,连接CO并延长,交AB与点D;连接PD,则CD⊥AB,PD⊥AB;在正△ABC中,∵AB=2,∴CD=,OD=•CD=,PD==,∴PO===.故答案为:.14.若几何体的三视图如图所示,则此几何体的体积为______.答案:32解析:解:由三视图知几何体是一个切割后的几何体,用两个几何体对在一起,可以得到一个棱长是4的正方体,棱长是4的正方体的体积是43=64,∴这个几何体的体积是=32,故答案为:32一个正方体的六个面上分别标有字母A、B、C、D、E、F,如图是此正方体的两种不同放置,则与D面相对的面上的字母是______.答案:B解析:解:由此正方体的两种不同放置可知:与C相对的是F,因此D与B相对.故答案为:B.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关.其中正确结论的序号为______(写出所有正确结论的序号).答案:②③解析:解:若A1C⊥平面B1EF,则A1C⊥B1F,由三垂线逆定理知:B1F⊥A1B,又当F与A不重合时,B1F与A1B不垂直,∴①错误;∵E在侧面BCC1B1上的投影在CC1上,F在侧面BCC1B1上的投影是B,∴△B1EF在侧面BCC1B1上的正投影是三角形,三角形的面积S=×棱长×棱长为定值.∴②正确;设平面A1B1C1D1∩平面B1EF=l,∵平面A1B1C1D1内总存在与l平行的直线,由线面平行的判定定理得与l平行的直线,与平面B1EF平行,∴③正确;设E与D重合,F位置变化,平面B1EF与平面ABCD所成的二面角(锐角)的大小也在变化,∴④错误.故答案为:②③.17.在正三棱锥P-ABC中,D为PA的中点,O为△ABC的中心,给出下列四个结论:①OD ∥平面PBC;②OD⊥PA;③OD⊥BC;④PA=2OD.其中正确结论的序号是______.答案:③④解析:解:取BC中点M,连接AM,PM,则O∈AM.∵AO=2OM,∴OD与PM不平行,∴OD∥平面PBC不成立,即①错误;∵OA≠OP,D为PA中点,∴OD⊥PA不成立,即②错误;∵P-ABC为正三棱锥,∴BC⊥PM,BC⊥AM,∴BC⊥面APM,∴OD⊥BC,即③成立;∵PO垂直于平面ABC,OA属于平面ABC∴PO垂直于OA∴三角形AOP为直角三角形∵D为AP中点∴PA=2OD,即④成立.故答案为:③④.18.四棱锥的四个侧面三角形中,最多有______个直角三角形.答案:4解析:解:如图在正方体ABCD-A1B1C1D1中若取A、B、C、D、C1五点组成以C1为顶点的四棱锥则其四个侧面三角形均为直角三角形故答案为:419.空间四边形ABCD中,各边长均为1,若BD=1,则AC的取值范围是______.答案:(0,)解析:解析:如图①所示,△ABD与△BCD均为边长为1的正三角形,当△ABD与△CBD重合时,AC=0,将△ABD以BD为轴转动,到A,B,C,D四点再共面时,AC=,如图②,故AC的取值范围是0<AC<.故答案为:(0,).20.在棱长为1的正方体ABCD-A1B1C1D1中,M为AB的中点,则点C到平面A1MD的距离为______.答案:解析:解:连接A1C、MC可得S△CMD=S ABCD=,△A1DM中,A1D=,A1M=MD=∴S△A1MD=A1M•MDsinA1MD=三棱锥的体积:V A1-MCD=V C-A1DM所以S△MCD×AA1=S△AD1M×d(设d是点C到平面A1DM的距离)∴d==故答案为:.21.一个长方体全面积是20cm2,所有棱长的和是24cm,则长方体的对角线长为______.答案:4解析:解:设长方体的长为a,宽为b,高为c,由题意可得2(ab+bc+ac)=20…①4(a+b+c)=24…②②化为a+b+c=6…③解得a2+b2+c2=16则长方体的对角线长为:4故答案为:422.等腰Rt△ABC斜边BC上的高AD=1,以AD为折痕将△ABD与△ACD折成互相垂直的两个平面后,某学生得出以下结论:①BD⊥AC②∠BAC=60°③异面直线AB与CD之间的距离为④点D到平面ABC的距离为⑤直线AC与平面ABD所成的角为其中正确结论的序号是______.答案:①②③④⑤解析:解:∵AD⊥BD,AD⊥CD,平面ABD⊥平面ACD,∴∠BDC=90°,∴BD⊥平面ACD,∴BD⊥AC,∴①正确;又知AD=BD=CD=1,∴△ABC为正三角形,∠BAC=60°,∴②正确;以D为原点,DB、DC、DA分别为x轴、y轴、z轴建立空间直角坐标系,易知A(0,0,1),B(1,0,0),C(0,1,0),∴=(1,0,-1),=(0,1,-1),=(0,1,0),设向量n=(x,y,z),=0,=0得x-z=0,y=0,令z=1得n=(1,0,1),∴异面直线AB与DC之间的距离d==,故③正确;∵△ABC边长为,.∴S△ABC=,由V A-BDC=V D-ABC得×(×1×1)×1=××h,∴h=,故④正确;∵CD⊥平面ABD,∴∠CAD为直线AC与平面ABD所成的角,易知∠CAD=45°,故⑤正确;故答案为:①②③④⑤.23.已知命题p:底面是棱形的直棱柱是正四棱柱;命题q:底面是正三角形的棱锥是正三棱锥.有下列四个结论:①p真q假;②“p∧q”为假;③“p∨q”为真;④p假q假其中正确结论的序号是______.(请把正确结论的序号都填上)答案:②、④解析:解:∵底面是棱形的直棱柱不一定是正四棱柱,易得命题p为假命题,又∵底面是正三角形的棱锥不一定是正三棱锥为假命题,故p是假命题,q是假命题;所以①p真q假;错;②p∧q是假命题,正确;③p∨q是假命题,错;④p假q假,是真命题,正确;故答案为:②④.三.简答题(共__小题)24.已知三棱台ABC-A1B1C1的上底面面积为a2,下底面面积为b2(a>0,b>0),作截面AB1C1,设三棱锥B-AB1C1的高等于三棱台的高,求△AB1C1的面积.答案:解:连接BC1,如下图所示:设三棱台的高为h,则=(+)h=++=S△ABC h+h+h,∴,又∵上底面ABC的面积为a2,下底面面积为b2∴=ab所以△AB1C1的面积为ab.解析:解:连接BC1,如下图所示:设三棱台的高为h,则=(+)h=++=S△ABC h+h+h,∴,又∵上底面ABC的面积为a2,下底面面积为b2∴=ab所以△AB1C1的面积为ab.四棱锥P-ABCD中,底面ABCD为菱形,且∠DAB=60°,点P为平面ABCD所在平面外的一点,若△PAD为等边三角形,求证:PB⊥AD.答案:证明:如图,连结BD,取AD的中点E,连结PE,BE;从而易知△ABD也是等边三角形,又∵△PAD为等边三角形,∴AD⊥PE,AD⊥BE,又∵PE∩BE=E;故AD⊥平面PBE;故AD⊥PB.解析:证明:如图,连结BD,取AD的中点E,连结PE,BE;从而易知△ABD也是等边三角形,又∵△PAD为等边三角形,∴AD⊥PE,AD⊥BE,又∵PE∩BE=E;故AD⊥平面PBE;故AD⊥PB.在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=,在线段SA上取一点E(不含端点)使EC=AC,截面CDE与SB交于点F.(1)求证:四边形EFCD为直角梯形;(2)设SB的中点为M,当的值是多少时,能使△DMC为直角三角形?请给出证明.答案:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.解析:解:(1)∵CD∥AB,AB⊂平面SAB,∴CD∥平面SAB面EFCD∩面SAB=EF,∴CD∥EF.∵∠D=90°,∴CD⊥AD,又SD⊥面ABCD,∴SD⊥CD,∴CD⊥平面SAD,∴CD⊥ED又EF<AB<CD,∴EFCD为直角梯形.(2)当=2时,能使DM⊥MC.∵AB=a,∴,∴,∴SD⊥平面ABCD,∴SD⊥BC,∴BC⊥平面SBD.在△SBD中,SD=DB,M为SB中点,∴MD⊥SB.∴MD⊥平面SBC,MC⊂平面SBC,∴MD⊥MC,∴△DMC为直角三角形.已知如图,斜三棱柱ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,∠ABC=90°,BC=2,AC=2,且AA1⊥A1C,AA1=A1C.(1)求侧棱A1A与底面ABC所成角的大小;(2)求侧面A1ABB1与底面ABC所成二面角的大小;(3)求顶点C到侧面A1ABB1的距离.答案:(1)解:如图作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC,所以∠A1AD为A1A与面ABC所成的角.因为AA1⊥A1C,AA1=A1C,所以∠A1AD=45°为所求.(2)解:作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=2,所以DE=1,AD=A1D=,tan∠A1ED==.故∠A1ED=60°为所求.(3)解法一:由点C作平面A1ABB1的垂线,垂足为H,则CH的长是C到平面A1ABB1的距离.连接HB,由于AB⊥BC,得AB⊥HB.又A1E⊥AB,知HB∥A1E,且BC∥ED,所以∠HBC=∠A1ED=60°所以CH=BCsin60°=为所求.解法二:连接A1B.根据定义,点C到面A1ABB1的距离,即为三棱锥C-A1AB的高h.由得,即所以为所求.解析:(1)解:如图作A1D⊥AC,垂足为D,由面A1ACC1⊥面ABC,得A1D⊥面ABC,所以∠A1AD为A1A与面ABC所成的角.因为AA1⊥A1C,AA1=A1C,所以∠A1AD=45°为所求.(2)解:作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角.由已知,AB⊥BC,得ED∥BC.又D是AC的中点,BC=2,AC=2,所以DE=1,AD=A1D=,tan∠A1ED==.故∠A1ED=60°为所求.(3)解法一:由点C作平面A1ABB1的垂线,垂足为H,则CH的长是C到平面A1ABB1的距离.连接HB,由于AB⊥BC,得AB⊥HB.又A1E⊥AB,知HB∥A1E,且BC∥ED,所以∠HBC=∠A1ED=60°所以CH=BCsin60°=为所求.解法二:连接A1B.根据定义,点C到面A1ABB1的距离,即为三棱锥C-A1AB的高h.由得,即所以为所求.如图,在长方体ABCD-A1B1C1D1中,AD1、AC、A1C1、BC1分别是四个面上的对角线.求证:∠D1AC=∠A1C1B.答案:证明:∵多面体ABCD-A1B1C1D1为长方体,∴AB∥C1D1且AB=C1D1,∴四边形ABC1D1为平行四边形,∴AD1=C1B.同理AA1∥CC1且AA1=CC1,∴四边形ACC1A1为平行四边形,∴AC=A1C1.连结A1B,CD1,同理可证A1B=CD1.∴△D1AC≌△A1C1B.∴∠D1AC=∠A1C1B.解析:证明:∵多面体ABCD-A1B1C1D1为长方体,∴AB∥C1D1且AB=C1D1,∴四边形ABC1D1为平行四边形,∴AD1=C1B.同理AA1∥CC1且AA1=CC1,∴四边形ACC1A1为平行四边形,∴AC=A1C1.连结A1B,CD1,同理可证A1B=CD1.∴△D1AC≌△A1C1B.∴∠D1AC=∠A1C1B.已知三棱椎D-ABC,AB=AC=1,AD=2,∠BAD=∠CAD=∠BAC=90°,点E,F分别是BC,DE的中点,如图所示,(1)求证AF⊥BC(2)求线段AF的长.答案:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.解析:解:(1)分别以AB、AC和AD为x、y、z轴,建立空间直角坐标系O-xyz,如图所示:记A(0,0,0),B(1,0,0),C(0,1,0),D(0,0,2),∴E(,,0),F(,,1);∴(,,1),=(-1,1,0),∴•=×(-1)+×1+1×0=0,∴⊥,即AF⊥BC;(2)∵=(,,1),∴||===,即线段AB=.30.已知正三棱锥的高为1,底面边长为2,其内有一个球和该三棱锥的四个面都相切,求:(1)棱锥的全面积;(2)球的半径R.答案:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9(2)过O作OG⊥PE于点G,则△POG∽△PEH,且OG=OH=R,∴,∴R=解析:解:(1)设正三棱锥的底面中心为H,由题意知PH=1,边长BC=2,取BC中点E,连接HE、PE,则HE=S全=3×=9(2)过O作OG⊥PE于点G,则△POG∽△PEH,且OG=OH=R,∴,∴R=。
高中数学必修2第1章《空间几何体》高考真题及答案

高中数学必修2第1章《空间几何体》高考真题及答案一、选择题1.【05广东】 已知高为3的直棱柱ABC —A ′B ′C ′的底面是边长为1的正三角形(如图1所示),则三棱锥B ′—ABC 的体积为 A .41B .21C .63D .43图22.【05福建·理】如图2,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E 、F 、G分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是A .515arccosB .4π C .510arccos D .2π3.【05湖北·理】如图3,在三棱柱C B A ABC '''-中,点E 、F 、H 、K 分别为C A '、B C '、B A '、C B '' 的中点,G 为ΔABC 的重心从K 、H 、G 、B '中取一点作为P ,使得该棱柱恰有2条棱与平面PEF 平行,则P 为A .KB .HC .GD .B '图3 图44.【05湖南·理】如图4,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,如图1 A C 1A C则O 到平面AB C 1D 1的距离为 A .21B .42C .22 D .235.【05湖北·文】木星的体积约是地球体积的30240倍,则它的表面积约是地球表面积的A .60倍B .6030倍C .120倍D .12030倍6.【05江苏】正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A 1的距离为A .43 B .23 C .433 D .3 7.【05江西·理】矩形ABCD 中,AB=4,BC=3,沿AC 将矩形ABCD 折成一个直二面角B-AC -D ,则四面体ABCD 的外接球的体积为A .π12125 B .π9125 C .π6125 D .π3125 9.【05全国Ⅰ·理】一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为A .π28B .π8C .π24D .π410.【05全国Ⅰ·理】如图5,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 A .32 B .33C .34D .23 图511.【05全国Ⅱ·理】将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 AB .C .D12.【05全国Ⅱ·文】ABC ∆的顶点在平面α内,A 、C 在α的同一侧,AB 、BC 与α所成的角分别是30o 和45o .若AB =3,BC=AC =5,则AC 与α所成的角为 A .60o B .45o C .30o D .15o13.【05全国Ⅲ·理】设三棱柱ABC-A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA=QC 1,则四棱锥B-APQC 的体积为A .16V B .14V C .13V D .12V14.【05山东·理】设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075 东经0120,则甲、乙两地球面距离为 AB .6R π C .56R πD .23R π 15.【05重庆·理】如图6,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD 上分别取点E 、F 、G , 使AE : EB=AF : FC=AG : GD=2 : 1,记O 为三平面BCG 、CDE 、DBF 的交点,则三棱锥O —BCD 的体积等于 A .91 B .81 C . 71 D .41图6 图716.【05重庆·文】有一塔形几何体由若干个正方体构成,构成方式如图7所示,上层正方体下底面的四个顶点是下层正方体上底面各连接中点,已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是 A .4 B .5 C .6 D .7二、填空题1.【05辽宁】如图8,正方体的棱长为1,C 、D 分别是两条棱的中点,A 、B 、M 是顶点,那么点M 到截面ABCD 的距离是 .图8 图9M1A2.【05江西·理】如图9,在直三棱柱ABC —A 1B 1C 1中,AB=BC=2,BB 1=2,ο90=∠ABC ,E 、F 分别为AA 1、C 1B 1的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 .3.【05北京春考·理】如图10,正方体1111D C B A ABCD -的棱长为a ,将该正方体沿对角面D D BB 11切成两块,再将这两块拼接成一个不是正方体的四棱柱,那么所得四棱柱的全面积为_________.4.【05江西·理】如图11,在三棱锥P —ABC 中,PA=PB=PC=BC ,且2π=∠BAC ,则PA与底面ABC 所成角为 .5. 【05上海·理】 如图12,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a (0)a >。
精品解析:人教版高一数学必修2第一章《空间几何体》专题检测(含答案)(解析版).docx

人教版高一数学必修2第一章《空间几何体》专题检测一.选择题1. 在三棱锥P-ABC 屮,PA = PB = AC = BC = 2,AB = 2A //3,PC= 1,则三棱锥P-ABC 的外接球的表而积为( )4兀 52兀 A. — B. 4兀 C. 12n D. ---------------------- 3 3【答案】D【解析】取AB 中点D,连接PD,CD,则AD = \$, PD = ^AP 2-AD 2 = h 所以ABZAPD = 60°, ^APB= 120°,设△ APB 外接圆圆心为0】,半径为「则2T = ------------ = 4 sinl20°所以r = 2.同理可得:CD = L ZACB = 120°, A ABC 的外接圆半径也为2,因为PC = PD = CD= 1,所以APCD 是等边三角形,ZPDC = 60%即二面角P-AB-C 为60。
,球心O 在平面PCD 上, 过平面PCD 的截血如图所示,则O 】D = L PD=1,所以001=^01D = —,所以OF 2 = OO J + O J F 2 = - 3 3 3D.【点睛】本小题主要考查儿何体外接球的表面积的求法,考查三角形外心的求解方法•在解决有关儿何体外 接球有关的问题时,主要的解题策略是找到球心,然后通过解三角形求得半径•找球心的方法是先找到一个 血的外心,再找另一个血的外心,球心就在两个外心垂线的交点位置.2.直三棱柱ABC ・AiB 】C ]的各顶点都在同一球面上,若AB=AC=AA 1=2,则此球的表面积等于()52兀52兀 A. ---- B. 20兀 C- 10n D. 9 ・ 13 _ + 4 =—— ; 3 即R 2 = -,所以外接球的表而积S = 4TT R 2 = —.故选【答案】B【解析】设三角形BAC 外接圆半径为「,则= 盂=薯・•・「= 2・・・球的半径等于、夕+ 1 = “5,表面积等于4HR 2 = 20n.选B ・3. 某几何体的三视图如图所示,则此几何体的体积为(—2—H —2T【答案】C【解析】该儿何体为三棱锥,其直观图如图所示,体枳V = 1x (lx2 ><2卜2=±.故选C.4. 已知正四棱锥P-ABCD 的顶点均在球0上,且该正四棱锥的各个棱长均为2,则球0的表面积为A. 4兀B. 6兀C. 8兀D. 16n 【答案】c【解析】设点P 在底面ABCD 的投影点为O ;贝|JAO‘=-AC = Q, PA = 2, PCT 丄平面ABCD,故 2PO = 7P A 2-AO 2 = 而底iklABCD 所在截面圆的半径AO‘ = ©,故该截血圆即为过球心的圆,则球的半径 R = &‘故球O 的表面积$ = 4?rR 2 = 87T»故选C.点睛:本题考查球的内接体的判断与应用,球的表面积的求法,考查计算能力;研究球与多面体的接、切 问题主要考虑以下几个方面的问题:(1)球心与多面体中心的位置关系;(2)球的半径与多面体的棱长的A.B. 1C.-D.俯视图关系;(3)球自身的对称性与多面体的对称性;(4)能否做岀轴截面.5. 己知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是6. 如图,网格纸上正方形小格的边长为1,粗线画出的是某几何体的三视图,则该几何体的最长棱的长度为【答案】D【解析】由三视图可知,该儿何体为三棱锥,如图所示:C. 6 cm 3D. 7 cm 3【答案】A 【解析】 几何体如图四棱锥’体积为+ 2) x 2 = 4,选A.俯觀图A. 4cm 3B. 5 cm 3()A. 6yj2B. 6&C. 8D. 9AAB = 6, BC = 3忑,BD = CD = 3屈 AD = 9,故选:D点睛:思考三视图还原空间儿何体首先应深刻理解三视图Z间的关系,遵循“长对正,高平齐,宽相等” 的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.7.我国古代数学名箸《孙子算经》中有如下问题:“今有筑城,上广二丈,下广五丈四尺,高三丈八尺,长五千五百五十尺,秋程人功三百尺•问:须工儿何?”意思是:“现要筑造底面为等腰梯形的直棱柱的城墙,其中底面等腰梯形的上底为2丈、下底为5.4丈、高为38丈,直棱柱的侧棱长为5550尺.如果一个秋天工期的单个人可以筑出300立方尺,问:一个秋天工期需要多少个人才能筑起这个城墙?”(注:一丈等于十尺)A. 24642B. 26011C. 52022D. 78033【答案】B20 + 54【解析】根据棱柱的体积公式,可得城墙所需土方为------ x 38 x 5500 = 7803300 (立方尺),一个秋夭工期2所需人数为------- = 26011,故选B.3008.已知某儿何体是两个正四棱锥的组合体,其三视图如下图所示,则该儿何体外接球的表面积为()A. 2兀B. 2#5兀C. 4兀D. 8兀【答案】D【解析】由已知三视图得:该几何体的直观图如下可知该儿何体外接球的半径为Q则该儿何体外接球的表而积为4兀•(厨=8TI故选D9. 在空间直角坐标系O-xyz 中,四面体ABCD 的顶点坐标分别是A(0Q2), B(220), C(1.2,l), D(222).则该四而体的体积V=()二、填空题10. 在平行六面体 ABCD —A]B]C]D]中,AB = 4 , AD = 3 , A 】A=5,厶 BAD = 90。
(完整版)高一数学必修2第一章空间几何体测试题(答案)

第一章章节测试题YC一、选择题:1.不共面的四点能够确立平面的个数为()A . 2 个B. 3 个C. 4 个 D .没法确立2.利用斜二测画法获得的①三角形的直观图必定是三角形;②正方形的直观图必定是菱形;③等腰梯形的直观图能够是平行四边形;④菱形的直观图必定是菱形 .以上结论正确的选项是()A .①②B.①C.③④ D .①②③④3.棱台上下底面面积分别为16 和 81,有一平行于底面的截面面积为36,则截面戴的两棱台高的比为()A .1∶ 1B. 1∶ 1C. 2∶ 3 D . 3∶44.若一个平行六面体的四个侧面都是正方形,则这个平行六面体是()A .正方体B.正四棱锥C.长方体 D .直平行六面体5.已知直线 a、 b 与平面α、β、γ,以下条件中能推出α∥β的是()A .a⊥α且 a⊥βB.α⊥γ且β⊥γC.a α, b β, a∥ b D. a α, bα, a∥β, b∥β6.如下图,用符号语言可表达为()A .α∩β= m, nα, m∩ n=AB .α∩β= m,n∈α, m∩ n= AC.α∩β= m,nα, A m, A nD .α∩β= m, n∈α, A ∈ m, A ∈ n7.以下四个说法① a//α, b α ,则 a// b②a∩α= P, bα,则 a 与 b 不平行③ a α,则 a//α④a// α, b //α,则 a// b此中错误的说法的个数是()A .1 个B. 2 个C. 3 个 D . 4 个8.正六棱台的两底边长分别为1cm,2cm, 高是 1cm,它的侧面积为()97B.9 7 cm223 cm2 D . 3 2 cm2A .cm2C.239.将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶ 4.再将它们卷成两个圆锥侧面,则两圆锥体积之比为()A .3∶ 4B. 9∶ 16C. 27∶64 D .都不对10.将边长为 a 的正方形ABCD 沿对角线AC 折起,使BD =a,则三棱锥D— ABC 的体积为()a3a33a32a3A .B.C. D .6121212二、填空题:11.螺母是由 _________和两个简单几何体组成的.12.一个长方体的长、宽、高之比为2:1: 3,全面积为 88cm2,则它的体积为 ___________ .13.如图,将边长为 a 的正方形剪去暗影部分后,围成一个正三棱锥,则正三棱锥的体积是.14.空间四边形、 、 G 、H 分别是ABCD 中, E F、 BC 、CD 、DA 的中点 .①若 AC=BD ,AB则四边形 EFGH 是;②若 ACBD , 则四边形 EFGH 是.三、解答题: 解答应写出文字说明、证明过程或演算步骤 (共 76 分 ).15.( 12 分)将以下几何体按构造分类填空①集装箱;②油罐;③排球;④羽毛球;⑤橄榄球;⑥氢原子;⑦魔方;⑧金字塔;⑨三棱镜;⑩滤纸卷成的漏斗;○11量筒;○ 量杯;○ 十字架.1213( 1)拥有棱柱构造特点的有 ;( 2)拥有棱锥构造特点的有 ;( 3)拥有圆柱构造特点的有 ;( 4)拥有圆锥构造特点的有 ;( 5)拥有棱台构造特点的有 ;( 6)拥有圆台构造特点的有 ;( 7)拥有球构造特点的有;( 8)是简单会合体的有;( 9)其余的有.16.( 12 分)已知: a,b ,a b A, P b, PQ // a.求证: PQ ..17.( 12 分)正四棱台的侧棱长为 3cm ,两底面边长分别为 1cm 和 5cm ,求体积.18.( 12 分)直平行六面体的底面是菱形,两个对角面面积分别为 Q 1, Q 2 ,求直平行六面体的侧面积.19.(14 分)已知四棱台上,下底面对应边分别是a,b,试求此中截面把此棱台侧面分红的两部分面积之比.20.( 14 分)如图,直三棱柱 ABC— A1B1C1中, AC = BC =1,∠ ACB = 90°, AA1= 2 ,D是 A1B1中点.(1)求证 C1 D ⊥平面 A1B ;( 2)当点 F 在 BB1上什么地点时,会使得 AB1⊥平面C1DF ?并证明你的结论.参照答案(五)一、 CBCDA ACADD .二、 11.正六棱柱,圆柱; 12.48cm 31313) 13a2; 14.菱形,矩形 .;.(212三、 15.⑴①⑦⑨;⑵⑧;⑶⑾;⑷⑩;⑸⒁;⑹⑿⒃;⑺③⑥⒂;⑻②④⒀;⑼⑤. 16.此题主要考察用平面公义和推论证明共面问题的方法.证明∵ PQ∥ a,∴PQ 与 a 确立一个平面,直线 a,点P.p b,b,p又 a与重合PQ17.解:正四棱台ABCD A1 B1C1 D1O1 , O是两底面的中心A1 C1 2 ,AC 5 2A1O12AO 5 2 222O1O 3 252212211 1 [125212 52]1[1 25 5]31( cm 3 )Vh[ S SSS ]333318.解:设底面边长为 a , 侧棱长为 l , 两对角线分别为c , d.c lQ 1 (1)则d l Q 2 (2)1 21 2c22da (3)2消去 c , d 由( 1)得 cQ 1,由( 2)得 dQ 2, 代入( 3)得ll221 Q 1 1 Q 2a 2Q 1 2 Q 2 2 4l 2a 22laQ 12Q 2 22 l 2 lS 侧 4al2 Q 1 2 Q 2219.解:设 A 1B 1C 1D 1 是棱台 ABCD -A 2B 2C 2D 2 的中截面,延伸各侧棱交于P 点.2 21 1a b∵ BC ∥B 11 S ∵ BC=a ,B C =b ∴ B C =C ∴2S(a b)2∴ S PB 1 C 14a2S PBCPBCa 2 PB 1C 1a b 2 ()2同理SPB 2 C 2b 2SPBCSB 1C 1CBSPB 1C 1SPBCa2∴S B C C BSPB C2SPB C2 2 1 121 1(a b) 24a2122ab2(b3a)(b a) b 3ab3ab 2 (ab) 23b 2 2ab a 2(3b a)(b a)3b aa 24a 2同理:SABB 1 A 1S DCC 1 D 1SADD 1 A 1b 3a SA 1B 1 B 2 A 1SD 1 C 1C 2 D 2SA 1D 1D 2 A 13b a由等比定理,得S 上棱台侧= 3a bS 下棱台侧a 3b20.( 1)证明:如图 ,∵ABC — A 1B 1C 1 是直三棱柱,∴ A 1C 1 = B 1C 1 = 1,且∠ A 1C 1B 1 =90°.又D 是B 的中点 ,∴CD ⊥ A B 1.A 1 111∵ AA 1 ⊥ 平面 A 1B 1C 1 , C 1D 平面 A 1B 1C 1 ,∴ AA 1 ⊥ C 1D ,∴ C 1D ⊥ 平面 AA 1B 1B .(2)解:作DE ⊥ AB 1 交 AB 1 于 E , 延伸 DE 交 BB 1 于 F , 连接 C 1F , 则 AB 1 ⊥ 平面 C 1DF , 点 F 即为所求.事实上,∵C1D ⊥平面 AA1BB , AB1平面 AA1B1B ,∴C1D ⊥AB1.又 AB1⊥DF , DF C1D = D ,∴AB 1⊥ 平面C1DF .。
人教版高中数学必修2第一章-空间几何体练习题及答案(全)

人教版高中数学必修2第一章-空间几何体练习题及答案(全)第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。
图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”“你”“前”分别表示正方体的—————祝你前程似锦一、选择题1、两条相交直线的平行投影是()A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是()①长方体②圆锥③三棱锥④圆柱A ②①③B ①②③C ③②④D ④③②。
数学《必修2》第一章“空间几何体”测试题与答案

数学《必修2》第一章“空间几何体”测试题一、选择题:(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的)1.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是正方形;③等腰梯形的直观图一定是等腰梯形;④平行四边形的直观图一定是平行四边形。
以上结论正确的是()A.①②B.①④C.③④D. ①②③④2.下列说法正确的是()A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展开成平面图形D.棱柱的各条棱都相等3.圆台的母线长为6,两底面半径分别为2、7,则圆台的侧面积为()A.54πB.8πC.4πD.164.给出下列结论:①圆柱的母线是其上底面圆周上任意一点与下底面圆周上任意一点的连线;②圆锥的母线是圆锥顶点与底面圆周上任意一点的连线;③圆台的母线是圆台上、下底面圆周上任意两点的连线。
其中正确的是()A.①②B.②③C.①③D.②。
5.已知底面为正方形的长方体的各顶点都在一个球面上,长方体的高为4,体积为16,则这个球的表面积是()A.16πB.20πC.24πD.32π6.下列说法错误的是()A.棱柱最少有5个面B.棱锥最少有4个面C.棱台的底面有2个D.棱锥的底面边数和侧棱数不一定相同7.下列四个图形不是下图1中几何体的三视图之一的是()图1 A B C D8.下面几何体中,过轴的截面一定是圆面的是( )A.圆柱B.圆锥C.球D.圆台 9.正方体的表面积是96,则正方体的体积是( )A. B.64 C.16 D. 96 10.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )二、填空题:(本大题共5个小题,每小题5分,共25分)11.半径为2的球的体积等于 ,表面积等于12.圆锥的侧面展开图为圆心角为120、半径为1的扇形,则圆锥的侧面积为 13.如下图所示,等腰梯形ABCD ,上底1CD =,腰AD CB ==3AB =,以下底所在直线为x 轴,则由斜二测画法画的直观图''''A B C D 的面积为 14.某几何体的三视图如下图所示, 则其体积为_______.15.某几何体的三视图如下图所示,则该几何体的体积是____________.第13题图14题图第15题图三、解答题:(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.求下列几何体的体积与表面积。
高中数学必修2空间几何体测试试卷 含答案

②若PA,PB,PC两两互相垂直,则H是△ABC的垂心;
③若∠ABC=90°,H是AC的中点,则PA=PB=PC;
④若PA=PB=PC,则H是△ABC的外心,其中正确命题的命题是______.
19.已知三棱锥O-ABC,OA=5,OB=4,OC=3,∠AOB=∠BOC=60°,∠COA=90°,M、N分别是棱OA、BC的中点,则MN=______.
①f(1)= π
②f( )= π
③f( )= π
④函数f(r)在(0,1)上是增函数,f(r)在( , )上是减函数
其中为真命题的是______(写出所有真命题的序号)
如图是边长分别为a、b的矩形,按图中实线切割后,将它们作为一个正四棱锥的底面(由阴影部分拼接而成)和侧面,则 的取值范围是______.
A.外心
B.内心
C.垂心
D.重心
3.下列命题:
(1)三棱锥的四个面不可以都是钝角三角形;
(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥;
(3)有两个平面互相平行,其余各面都是梯形的几何体是棱台.
其中正确命题的个数是 ( )
A.0
B.1
C.2
D.3
4.棱锥侧面是有公共顶点的三角形,若围成一个棱锥侧面的三角形都是正三角形,则这样侧面的个数最多有几个( )
其中正确命题的个数为( )
A.3个
B.2个
C.1个
D.0个
答案:C
解析:
解:根据正方体的表面展开图,可画出正方体直观图,如右图所示.
易知AF与NC异面,故①错;
由四边形BENC为平行四边形可知,BE∥NC,故②错;
∵DE∥FC,∴AF与DE所成角即为AF与FC所成角,
高中数学必修二第一章《空间几何体》单元练习题(含答案)

高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成3.一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.24.圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是 ( )A.B.C.1D.6.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是 ( )二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.8.在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?高中数学必修二第一章《空间几何体》单元练习题(30分钟50分)一、选择题(每小题3分,共18分)1.斜四棱柱的侧面是矩形的面最多有( )A.0个B.1个C.2个D.3个【解析】选C.根据棱柱的结构特征不可能有奇数个,因此最多2个.2.所给三视图表示的简单组合体的结构特征是( )A.由圆柱和圆锥组成B.由圆柱和棱锥组成C.由棱柱和圆锥组成D.由圆台和圆锥组成【解析】选A.由三视图可知此组合体的上方是圆柱,下方是圆锥,故选A.3.(2015·安徽高考)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+B.2+C.1+2D.2【解析】选B.由该四面体的三视图可知,该四面体的直观图如图所示:其中侧面PAC⊥底面ABC,且△PAC≌△BAC,由三视图中所给数据可知PA=PC=AB=BC=,取AC的中点O,连接PO,BO,则在Rt△POB中,PO=BO=1,可得PB=,所以S=2××2+×2×2=2+.4.(2015·西安高一检测)圆柱的轴截面是正方形,面积是S,则它的侧面积是( )A.SB.πSC.2πSD.4πS【解析】选B.设圆柱底面半径为r,则S=4r2,S侧=2πr·2r=4πr2=πS.5.若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A. B. C.1 D.【解析】选D.设上、下底半径分别为r1,r2,过高中点的圆面半径为r0,由题意得r2=4r1,r0=r1,所以==.6.(2015·威海高一检测)如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为,则该几何体的俯视图可以是( )【解析】选C.当俯视图为A中正方形时,几何体为棱长为1的正方体,体积为1;当俯视图为B中圆时,几何体为底面半径为,高为1的圆柱,体积为;当俯视图为C 中三角形时,几何体为三棱柱,且底面为直角边长为1的等腰直角三角形,高为1,体积为;当俯视图为D 中扇形时,几何体为圆柱的,且体积为. 二、填空题(每小题4分,共12分)7.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 cm.【解析】设球的半径为rcm,则πr 2×8+πr 3×3=πr 2×6r.解得r=4. 答案:48.(2015·四川高考)在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P-A 1MN 的体积是 .【解析】V=××=.答案:9.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,接头忽略不计,则轴截面面积是 cm 2.【解析】以4为高卷起,则2πr=8,所以2r=,所以轴截面面积为cm 2;若以8为高卷起,则2πR=4,所以2R=,所以轴截面面积为cm 2.答案:三、解答题(每小题10分,共20分)10.已知四棱锥P-ABCD,其三视图和直观图如图,求该四棱锥的体积.【解析】由三视图知底面ABCD为矩形,AB=2,BC=4.顶点P在面ABCD内的射影为BC中点E,即棱锥的高为2,则体积V P-ABCD=S ABCD×PE=×2×4×2=.11.如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积是多少?【解析】设球半径为Rcm,根据已知条件知正方体的上底面与球相交所得截面圆的半径为4cm,球心到截面的距离为(R-2)cm,所以由42+(R-2)2=R2,得R=5,所以球的体积V=πR3=π×53=(cm3).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体测试题一、选择题(本大题共12题,每小题5分,共60分)1.小明在上海世博会参观时,看到一个几何体,它的轴截面一定是圆面,则这个几何体是 ( )A .圆柱B .圆锥C .球D .圆台2.一个正三棱锥和一个正四棱锥,它们的棱长都相等,把这个正三棱锥的一个侧面重合在正四棱锥的一个侧面上,这个组合体可能是 ( )A .正五棱锥B .斜三棱柱C .正三棱柱D .直三棱柱3.四棱锥的四个侧面中,直角三角形最多可能有( )A .1个B .2个C .3个D .4个4.下列5个命题中:①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形, ④如果一个三角形的平行投影仍是三角形,那么它的中位线的平行投影一定是这个三角形的平行投影的对应的中位线;⑤棱台各侧棱的延长线交于一点,正确的说法有( )A. 1个B. 2个C. 3个D. 4个5.长方体的三个面的面积分别是2,3,6,则长方体的对角线长是( ) A .6 B .3 C .23 D .326.若正四棱锥S-ABCD 的三视图中,正视图、侧视图都是腰为3,底边为2的等腰三角形,俯视图是边长为2的正方形,则正四棱锥S-ABCD 的侧面积为( )A.23B. 43C. 1D.27.半径为R 的半圆卷成一个圆锥,则它的体积为( )A. 33R πB. 33R π C . 35R π D.35R π 8 .如图1,一个空间几何体的主视图(正视图)、侧视图是周长为16的一个内角为60°的菱形,俯视图是圆及其圆心,那么这个几何体的表面积为( ) A.8π B.12πC.16πD.20π9.一个圆锥放在一个底面积相等、高也相等的圆柱内,若圆锥与圆柱的体积分别为1V 和2V ,则圆柱除圆锥外的体积与圆锥的体积之比为( )A. 2:3B. 2:1C. 1:3D. 3:110.小蚂蚁的家住在长方体ABCD —A 1B 1C 1D 1的A 处,小蚂蚁的奶奶家住在C 1处,三条棱长分别是AA 1=1,AB=2,AD=4,小蚂蚁从A 点出发,沿长方体的表面到小蚂蚁奶奶家C 1的最短矩离是 ( )A .5B .7C .29D .3711.图3为图2所示几何体的展开图,则拼成一个棱长为6cm 的正方体如图4,需要这样的几何体( )A. 2个B. 3个C. 4个D. 5个侧视图图1图2 图3 图412.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,3h ,则321::h h h 等于( ) A.3:1:1 B.3:2:2 C.3:2:2 D.3:2:3二、填空题(本大题共4小题,每小题5分,共20分)13.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米,则此球的半径为 .14. 若三棱锥V ABC -侧棱相等,底面是正三角形,三棱锥V ABC -的正视图、俯视图如图5所示,其中32AC ,4VA ==,则该三棱锥的侧视图的面积为 .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.如图6,一个广告气球被一束入射角为45°的平行光线照射,其投影是一个最长的弦长为5米的椭圆,则这个广告气球直径是 米.三、解答题(本大题共6小题,共70分)17.(10分)用斜二测画法作出边长为3cm 、高4cm 的矩形的直观图.18.(12分)正方体ABCD-A 1B 1C 1D 1的边长为a.(1) 求三棱锥A-A 1BD 的表面积和体积.(2) 求三棱锥B-A 1C 1D 的体积.19.(12分)将圆心角为1200,面积为3π的扇形作为圆锥的侧面,求圆锥的表面积和体积.20.(12分)已知正三棱锥S-ABC 的高SO =h ,斜高SM =n ,求经过SO 的中点且平行于底面的 截面△A 1B 1C 1的面积.21.(12分)棱长均为a 的三棱锥容器内装水,若顶点向下倒立时,水面高在容器高的中点处.(1) 求水的体积和棱锥的体积比.(2) 若棱锥顶点向上正立时,水面高是容器高的几分之几?22. (12分)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高4 m ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来增加4 m (高不变);二是高度增加4 m (底面直径不变)(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?空间几何体章末测试题一、 选择题1~6 CBDDAB 7~12 AC B ABB提示:2.重合时不会构成正五棱锥,只能是三棱柱3.在正方体ABCD —A 1B 1C 1D 1中的四棱锥D —A 1B 1C 1D 1的四个面都是直角三角形,故选D.4.其中正确的命题为①②④⑤,故选D.5.设长方体的边长分别为a 、b 、c ,则有ab =2,ac =3,bc =6,a =1,b =2,c =3,对角线l 2=a 2+b 2+c 2=6,故对角线的长为6.6.正四棱锥的侧面是底边为2,高为3的等腰三角形,故侧面积是4×12×2×3=43,故选B.7.设圆锥底面半径为r ,则有2r R ππ=得12r R =,故圆锥的高为3R ,所以圆锥的体积为:231133()32224V R R R π==g ,故选A. 8.由题意知,该几何体是两个连体的圆锥,底面半径是2,母线长是4,故表面积是两个圆锥的侧面积之和为22416ππ⨯⨯=,故选C.9.设底面面积为S ,高为h ,则12:V V =1:3,故圆锥外圆柱的体积与圆锥的体积之比为2:1,选B.10.根据题意知:蚂蚁所走的路线有三种情况(如图①②③),有勾股定理可得:图①中AC 1=22345+=,图②中 AC 1=226137+=,图③中AC 1=225229+=,故选A.11.需3个.它们是D 1-ABCD, D 1-BB 1C 1C , D 1-A 1ABB 1 ,故选B.12.由题意知三棱锥为正四面体,设三棱锥棱长为a ,则a h 362=,同理可求出四棱锥的体高为a h 221=,又由a a V V V 3643312⨯⨯+==四棱锥三棱锥柱32422231a a a =⨯+,则有3234342h a a ⨯=,解得a h 363=,所以321::h h h =3:2:2,故选B. 二、填空题13.12cm 14.6 15.242+ 16.225 提示:13.由题意知,球的体积等于排出水的体积,即2341693R ππ⨯⨯=,解得12R =厘米. 14.由正视图知道侧棱长是4,俯视图知底面边长是23,侧视图看到的是以三棱锥底边BC 为底边,三棱锥的高为高的三角形,由题意知三棱锥的高是23,所以侧视图的面积是6.15.如图,正四棱柱1111D C B A ABCD -的对角线1BD 为外接球的直径,可求得棱柱的高12DD =,故.242)(211+=⋅+⋅+⋅=AA AD AA AB BC AB S三、解答题17.解:(1)在已知ABCD 中取AB 、AD 所在边为X 轴与Y 轴,相交于O 点(O 与A 重合),画对应X ′轴,Y ′轴使∠X ′O ′Y ′=45°(2)在X ′轴上取 A ′,B ′使A ′B ′=AB ,在Y ′轴上取D ′,使A ′D ′=21AD ,过D ′作D ′C ′平行X ′的直线,且等于A ′B ′的长.(3)连 C ′B ′所得四边形A ′B ′C ′D ′ 就是矩形ABCD 的直观图.18.解:(1)表面积为()222113333222a a a +⋅⋅+⋅⋅=,体积为23111326a a a ⋅⋅=. (2)体积为3331463a a a -⋅=. 19.解:由圆心角为1200,面积为3π的扇形,得2123,23l ππ⨯⨯=即l =3. 又扇形弧长等于圆锥底面周长,即2323R ππ⨯=,故R=1, 所以S=πR 2+3π =4π,高223122h =-=, D'C'B'A'O'Y'X'D CB A YX故体积为V=213R h π=. 20.解:设底面正三角形的边长为a ,在RT △SOM 中,SO=h ,SM=n ,所以OM=22l n -,又MO=63a ,即a =2236l n -, 所以)(3343222l n a s ABC -==∆,截面面积为)(34322l n -. 21.解:(1) 设底面面积是S ,高为h ,则水面面积是14S ,高为12h ,故体积之比为1111342183S h Sh ⨯⨯=,故水的体积和棱锥的体积比为 1:8. (2)设空气的体积为V ',底面为S ',高为h ',椎体的体积为V ,底面为S ,高为h ,由78V V '=',即22311()733()11833S h S h h h h h Sh Sh '''''===,得h h '=,故H H =水全 22.解:(1)方案1:直径变为16m ,高为4m ,此时体积为2112568433V ππ=⨯⨯=m 3, 方案2:直径为12m ,高为8m ,此时体积变为2212886833V ππ=⨯⨯=m 3, (1)方案1:直径变为16m ,高为4m,母线长为l ==此时表面积为2188(64S πππ=⨯+⨯⨯=+m 2,方案2:直径为12m ,高为8m ,母线长为10,l ==此时表面积为21661096S πππ=⨯+⨯⨯=m 2,(3)方案2更好,因为体积增大的多,表面积增加的少.。