变频器恒压频比控制方式
恒压供水变频器设置方法介绍

恒压供⽔变频器设置⽅法介绍在很多的⼯业场所,为了能够做到有效的⽔供应,这时候就需要⽤到恒压供⽔变频器。
这种供⽔器是专门⽤于恒压供⽔⽔泵变频控制器,可以做到供⽔系统运⾏平稳可靠,能够实现⽆⼈供⽔的机器。
那么接下来⼩编就恒压供⽔变频器设置⽅法做⼀个简单的介绍,供⼤家在实际⽣活的时候参考使⽤。
⼀、恒压供⽔变频器的设置前准备:⾸先⼩编为⼤家介绍⼀下恒压供⽔变频器设置前的准备⼯作,⼀般来说可以根据说明书所⽰的电路图,然后连接空⽓开关,电源,漏电开关,等⼀系列开关,然后看到数码管上显⽰的字母是0.0。
这时候⼤家再关掉电源将电源灯熄灭,然后再连接电器,看看我们的恒压变频控制器的接地端⼦是否可靠?这不⼤家必须要仔细的检查,然后⼤家再看看压⼒表上的远程压⼒表,是否安装在⽔泵的出⽔管上。
这时候可以直观地输出我们现在的恒压压⼒值,也可以输出相应的电信号。
如果所有的技术参数与说明书上是⼀致的,那么说明调试准备⼯作已经完毕。
⼆、恒压供⽔变频器的设置:接下来⼩编为⼤家介绍⼀下恒压供⽔变频器的设置调试。
如果所有的恒压变频器的接线是没有错误的,这时候⼤家就可以合上开关和漏电开关。
检查⼀下⽔泵的转向,和反向,是否改变电机的相序,然后⼤家再按运⾏键,到时候时针⽅向旋转键盘的战友的时候,这时候可以输出频率的最上升值,同时⽤万⽤表的直流电压档测试变频器端⼦的电压值。
等到他的压⼒增加到⼀定程度,这时候就可以设定和点压⼒对液的反馈电压值,按下停⽌键。
三、恒压供⽔变频器的参数设置:最后⼩编为⼤家介绍⼀下恒压供⽔变频器的参数设置,合上开关之后,就会看到恒压供⽔变频器的运⾏指⽰灯会⾮常的亮,这时候⼤家就可以输出0.0Hz-30Hz,然后在根据⽤⽔的情况⾃动进⾏调节,但是要保证出⽔⼝的压⼒恒定为5千克。
变频恒压供⽔原理说明变频恒压供⽔设备利⽤专门为风机、泵类、空⽓压缩机等流量和压⼒控制特点⽽研制的专⽤变频调速器。
利⽤变频器的⼀拖三功能,⽽不采⽤昂贵的PLC就可以⾃动控制泵组的运⾏与退出台数,⽽且内置PID功能与我司开发的专门处理恒压供⽔的控制板,可以⽅便地与远传压⼒表连⽤,同⽽完成供⽔压⼒的闭环控制,在管⽹流量变化时达到稳定供⽔压⼒和节约电能的⽬的。
变频调速理论基础-复习及习题解答

三、交流异步电动机变频调速的理论基础问题3-1:在电动机调速时,为什么要保持每极磁通量为额定值不变?对直流电机和交流异步电机,分别采用什么方法使电机每极的磁通恒定?异步电机的气隙磁链在每相定子中的感应电动势E g =4.44f 1N 1k N1Φm 如果使Eg/f 1=K 气隙磁链保持不变,要保持直流电机的磁通恒定,因为其励磁系统是独立的,只要对电枢反应的补偿合适,容易做到保持磁通恒定。
要保持交流异步电机的磁通恒定,必须采用恒压频比控制。
问题3-2:交流异步电动机的恒压频比控制有哪三种方式?试就其实现难易程度、机械特性等方面 进行比较。
Eg/f 1=K ,气隙磁链在每相定子中的感应电动势/输入频率为恒值,机械特性非线性,难实现,加定子电压补偿的目标,改善低速性能。
T max ,n m 与频率无关,机械特性平行,硬度相同,类似于直流电动机的降压调速,属于恒转矩调速。
U 1/f 1=K ,定子相电压/输入频率为恒值,U 1定子相电压,机械特性非线性,易实现。
f 1接近额定频率时,T max 变化不大,f 1的降低,T max 变化较大,在低速时甚至拖不动负载。
实际上U 1/f 1=常数,由于频率很低时定子电阻损耗相对较大, 不可忽略,故必须进行定子电压补偿。
E 2/f 1=K ,转子磁链在每相定子中的感应电动势/输入频率为恒值,E 2转子磁链在每相定子中的感应电动势(忽略转子电阻损耗)转子磁链恒值,机械特性线性, 稳态性能和动态性能好,最难实现。
这是矢量控制追求的目标。
问题3-3:交流异步电动机变频调速系统在基速以上和基速以下分别采用什么控制方法,磁通、转矩、功率呈现怎样的变化规率?并请用图形表示。
恒磁通调速(基频以下)U 1/f 1=常数,并补偿定子电阻损耗。
恒功率调速(基频以上)升高电源电压时不允许的,f 1Φm =KE g 0f T f带定子电压补偿的U 1/f 1=KφφmU1fnUnnT在频率上调时,只能保持电压不变。
什么是变频器的恒压频比控制

在额定频率以下,如果电压一定而只降低频率,那么气隙磁通就要过大,造成磁路饱与,严重时烧毁电动机。
因此为了保持气隙磁通不变,就要求在降低供电频率的同时降低输出电压,保持u/f=常数,即保持电压与频率之比为常数进行控制。
这种控制方式为恒压频比控制方式,又称恒磁通控制方式。
在额定频率以下,磁通恒定时转矩也恒定,因此,属于恒转矩调速。
U/f控制方式有三点不足之处:一、这种控制方式很难根据负载转矩的变化恰当的调整电动机转矩。
特别就是低速时,由于定子阻抗压降随负载转矩变化,当负载较重时可能补偿不足,当负载过轻时又可能造成过补偿,造成磁路饱与。
这都可能引起变频器过电流跳闸。
二、U/f控制方式无法准确控制交流电机的实际转速。
因为变频器的频率设定值均为定子频率,即电动机的同步频率,但就是电动机的转差率随着负载的变化波动,所以电动机的实际转速也随之变化,故这种方式的速度静态稳定性不高,不适于对速度要求较高的拖动系统。
三、U/f控制方式在转速很低时,转矩不足。
基频向下调速,希望保持磁通不变。
从公式U=E=4、44*f*N*Φ瞧出,磁通正比与E/f(近似正比与U/f),所以保持E/f(U/f)的比值不变,就可以保证磁通不变。
基频向上调速时候,因为电压不能再升了,所以可以瞧成弱磁调速。
先来瞧一下异步电动机的电磁转矩公式:T em = CT1Φm I2 cosφ2式中CT1 ——转矩系数;Φm ——主磁通,T;I2 ——转子电流,A;cosφ2 ——转子侧功率因数。
可以瞧出,电动机的电磁转矩正比于磁通Φm与转子侧电流的有功分量I2cosφ2 。
但对于异步电动机来说,转子电流就是非外部控制量,所以只能通过改变磁通Φm来改变异步电动机的电磁转矩。
对于拖动系统,最合理的利用电动机的出力就是首先要考虑的,由异步电动机的额定电压与额定频率必然可以推导出一个电动机的额定磁通Φ。
根据公式:U ≈E = 4、44 f N Φ;式中N ——线圈匝数;f ——电源频率;E ——电源电势;Φ——线圈磁通。
自动控制系统第六章 习题解答

第六、七、八章 习题解答(参考)6-1 简述恒压频比控制方式.解答:根据变压器公式Sg 1s N m 444==s V E .f N k Φ,在忽略定子阻抗压降的前提下,电机的相电压与定子频率和磁通的乘积成正比.控制电压与定子频率之比例恒定不变,就可保证磁通不变.基速以下,保持磁通为额定值不变,可以充分地利用电机的最大转矩.而磁通过大,会使电机磁路饱和,励磁电流过大,铁损增大,铁心过热甚至烧毁电机.恒压频比控制包括三段:低频段:(0-5Hz)电压补偿.中频段(5-50Hz)恒压频比;基频以上(50-75)恒定电压控制.由于恒压频比控制方式依据的是电路的稳态方程,所以动态性能不理想.即给定信号如转速即定子频率必须由给定积分器施加.也就是转差频率不能太大,否则,电机会出现停转的现象.由于系统本身没有自动限制起制动电流的作用,因此,频定设定信号必须通过给定积分算法产生平缓升速或降速信号,升速和降速的积分时间可以根据负载需要由操作人员分别选择。
6-2 简述异步电动机下面四种不同的电压-频率协调控制时的机械特性并进行比较: 1 恒压恒频正弦波供电时异步电动机的机械特性;2 基频以下电压-频率协调控制时异步电动机的机械特性3 基频以上恒压变频时异步电动机的机械特性解 实际应用中,不仅要求调节转速,还要求调速系统具有优良的机械特性. 1 正弦波供电恒压恒频2'lr ls 2122'r s 'r 121s p e )()(3L L s R sR R s U n T +++⎪⎪⎭⎫ ⎝⎛=ωωω异步电动机的机械特性分为两段, 即在最大转差率时对应最大的转矩.S 很小时, s R s U n T ∝⎪⎪⎭⎫ ⎝⎛≈'r 121s p e 3ωω.大于最大转差率时,电机存在负阻性,易于产生不稳定.S 接近1时, s L L R s R U n T 1])([32'lrls 212s 'r 121s p e ∝++⎪⎪⎭⎫ ⎝⎛≈ωωωeT emax n n n n 0n 0n 0n而在小于最大转差率时,电机存在正阻性,机械特性如同直流电动机,易于稳定运行. 而最大转矩与电压成正比2 恒压频比基频以下时,机械特性同正弦波恒压恒频供电时的机械特性相似.机械特性曲线基本平行.但最大转矩随转差角频率的降低而减小,即低速时最大转矩减小.因此低频即低速时,电机带载能力减弱.初始起动转矩很小,须适当抬高电压,增大转矩.3 基频以上恒压变频时,将迫使磁通随频率上升而减弱.相当于直流电动机弱磁升速.能保持电磁功率基本不变,为恒功率控制.最大转矩与频率成反比,即随着转速的上升,最大转矩减小. 6-3 如何区别交-直-交变压变频器是电压源变频器还是电流源变频器?它们在性能上有什么差异?解答:电压源型变频器和电流源型变频器的区别在于缓冲单元.如果直流电源串入电抗器进入逆变器,则因电抗器具有维持动态电流不变的性质,称为电流源型.如果直流电源并联电容器进入逆变器,则电容器具有维持动态电压不变的性质,称电压源型.电源源型变频器只有在交流电压峰值才能电容充电,而在低于电容电压时,电流为零,会在电网上产生谐波,为抑制谐波,常在电网和变频器之间加一个进线电抗器.由于电容量很大,合闸时会产生很大的充电电流,因此,为限制充电电流,常采用限流电阻和延时开关组成的预充电电路对电容进行充电.二极管整流不能再生制动.制动时,整流桥和逆变器都处于整流状态,电机机进入发电状态,都向电容充电,会引起泵升电压,此时,可检测电压值,当其上升到一定值时,控制开通功率管接通制动电阻,就可旅行能耗制动.电流源型过去曾用得较多.但现已很少应用.大多采用电压源型.而电压源型PWM 控制逆变器时,由于电压变化率大,会影响电机绕组的绝缘甚至导致轴损坏.6-5 采用二极管不控整流器和功率开关器件脉宽调制(PWM)逆变器组成的交直交变频器有什么优点?电压源型变频器的优点:1)只有逆变单元可控,通过它同时调节电压和频率,结构简单。
变频调速的控制方式

4)直接转矩控制(DTC控制) 直接转矩控制是 把电动机和逆变器看成一个整体,采用空间电压矢 量分析方法在定子坐标系进行磁通、转矩计算,通 过跟踪型 PWM 逆变器的开关状态直接控制转矩。因 此,无需对定子电流进行解耦,免去矢量变换的复
杂计算,控制结构简单。该技术在很大程度上弥补 了矢量控制的不足,并以新颖的控制思想,简洁明 了的系统结构,优良的动静态性能得到了迅速发展。 目前,该技术已成功地应用在电力机车牵引的大功 率交流传动上。
直接转矩控制它以测量电动机电流和直流电压 作为自适应电动机模型的输入。该模型每隔25 μs 产生一组精确的转矩和磁通实际值,转矩比较器和 磁通比较器将转矩和磁通的实际值与转矩和磁通的 给定值进行比较获得最佳开关位置。由此可以看出 它是通过对转矩和磁通的测量,即刻调整逆变电路 的开关状态,进而调整电动机的转矩和磁通,以达 到精确控制的目的。
7)其他非智能控制方式 在实际应用中,还有 一些非智能控制方式在变频电源的控制中得以实现, 例如自适应控制、滑模变结构控制、差频控制、环 流控制、频率控制等。
2.智能控制方式 1)神经网络控制 神经网络控制方式应用在变 频电源的控制中,一般是用于比较复杂的系统控制, 这时对于系统的模型了解甚少,因此神经网络既要 完成系统辨识的功能,又要进行控制。而且神经网 络控制方式可以同时控制多个变频电源,因此神经 网络在多个变频电源级联时进行控制比较适合。但 是神经网络的层数太多或者算法过于复杂都会在具 体应用中带来不少实际困难。
第五讲变频调速基本控制方式

2
sR
s
sf1Rr'
2
' 2 Rr
s Xs
' 2 Xr
(1-36)
2019/1/16
16
Us 2.保持 常值 的近似恒磁通控制(恒压频比的控制) f1
当电动机稳态运行时转差率s很小,可以忽略分母中含s 项,则
Er I ' Rr / s
' r
2019/1/16
25
3. 恒 Er/1 控制
代入电磁转矩基本关系式,得
Er s1 R Te 3np 2 R' 1 Rr' s r 1 s 3np E
2 r ' r
2
现在,不必再作任何近似就可知道,这时的机械特性完 全是一条直线。
2019/1/16
11
1. 保持
Es const f1
的严格恒磁通控制
由图1-14可知:
I r' Es Rr' s 2 12 L' lr
2
将上式代入电磁转矩基本公式,可得
Te 3np Rr' / s
1
3np Es sf1Rr' '2 Ir f ( R ' ) 2 s 2 2 L'2 2 2 R ' 1 r 1 lr 2 2 ' r 1 Llr 2f1 s
2019/1/16
6
一、调频与调压协调控制的必要性
•对于直流电机,励磁系统是独立的,只要对电枢 反应有恰当的补偿, m保持不变是很容易做到的。 •在交流异步电机中,磁通 m 由定子和转子磁势合 成产生,要保持磁通恒定就需要费一些周折了。
变频器的原理与操作
三、基本功能参数一览表
参数 编号
名称
单位
初始值
0
转矩提升
0.1%
1
上限频率
0.01HZ
2
下限频率
0.01HZ
3
基底频率
0.01HZ
4 3速设定(高速)RH 0.01HZ
5 3速设定(中速)RM 0.01HZ
6 3速设定(低速)RL 0.01HZ
·将启动指令设定为ON后电机便开始运转,
·同时根据频率指令(设定频率)的大小决
定电机的转速,
·将启动指令设定为OFF后电机便停止运转。
启停指令的来源有三种:
1.控制面板(PU)
·变频器控制面板上有FWD、REV和STOP
按键,可以设定它们为启停指令。
·这种启停变频器的方法是最基本的控制方
法,常用于单台变频器的控制或者变频器 的测试。
启停指令的来源有三种:
2.接线端子(EXT)
变频器外部接线端子条上有STF、STR、 STOP等端子,可以设定它们与公共端子 SD之间的通断(通过外部开关、扳钮、按 钮或者PLC上的开关量输出)为启停指令。
这种启停变频器的方法用得最普遍,常用 于多台变频器的联合控制或者安装在柜内 的变频器控制。
启停指令的来源有三种:
变频是交流电机调速的主要方法
异步电动机的速度表达式:
n 60 f1 (1 s) 转/分 np
如果
频率f1=50Hz, 极对数np=2,
则转速=1440转/分
转差率s=0.04,
交流电动机的转速与频率成正比
如果
频率f1=10Hz, 极对数np=2, 则转速=240转/分 转差率s=0.04,
变频器控制方式浅谈
浅谈变频器的几种控制方式摘要本文先简单介绍了变频器的组成原理,目前市场上主要用的都是交-直-交电压源型变频器,其主体部分就是整流、平波、逆变三大电路,其中又以逆变电路为主要的控制对象,PWM控制技术在此得到广泛应用。
后面则对目前变频器的几种比较成熟的控制方式作了简单的原理说明,主要介绍了V/F控制、转速闭环转差频率控制、直接矢量控制三种方式,每种控制方式的介绍均舍去大量的公式推导过程,只对其控制思想作整体上的理解。
对矢量控制中的直接转矩控制方式,稍有提及,不敢多妄加猜测。
关键词:变频器、整流、逆变、V/F控制、转差频率控制、矢量控制、磁链、坐标变换。
一变频器的介绍:变频器实际上就是将电网的恒压恒频的电能转换成变压变频电能的一种电力电子装置。
现代通用变频器大都是采用二极管整流和由快速全控开关器件IGBT 或智能功率模块IPM (Inelegant Power Module)组成的PWM逆变器,构成交-直-交电压源型变压变频器,已经占领了全世界0.5~500kV·A 中、小容量变频调速装置的绝大部分市场。
IPM是将多个IGBT及其驱动、过流、过热保护等电路都封装起来,便于使用,但坏掉一个管子,整个模块都要换掉。
变频器主要有核心主电路和控制电路组成。
核心主电路:由二极管整流器、PWM逆变器和中间直流电路三部分组成,一般都是电压源型的,采用大电容滤波,同时兼有无功功率交换的作用。
仅有核心主电路,变频器尚无法正常工作或工作性能比较差,所以除核心主电路外,还有一些很重要的辅助主电路。
如:软起电路、泵升限制电路、进线电抗器、直流电抗器、输出滤波电感等。
软起电路:由一开关和限流电阻构成。
为了避免大电容C在通电瞬间产生过大的充电电流,在整流器和滤波电容间的直流回路上串入限流电阻,通上电源时,先限制充电电流,再延时用开关K将其短路,以免长期接入时影响变频器的正常1工作,并产生附加损耗。
泵升限制电路:二极管整流器能量只能单向流动,不能为异步电机的回馈制动提供能量的通路,通用变频器一般都用电阻吸收制动能量。
多电机拖动皮带输送机恒压频比控制变频器
多电机拖动皮带输送机恒压频比控制变频器摘要:在变频器驱动多机拖动皮带机系统中,一个重要的问题是如何解决系统中各个电动机的功率输出平衡。
介绍了一种基于恒压频比控制型的多机拖动皮带机变频器。
变频器采用主从控制模式,通过对各自有功电流做闭环控制来实现对其输出频率的调整。
变频器的输出电压按照恒压频比控制方式,保证了电机气隙磁通的恒定,最终能够达到各个电动机输出功率一致的目的。
通过现场的成功应用,证明了恒压频比控制型多机拖动皮带机变频器的有效性和实用性。
关键词:多机拖动皮带机恒压频比功率平衡变频器Abstract:In the application of the Inverter driving Multi-Motor Belt Conveyor system, an important problem is how to ensure the output of the motors balance. A Multi-Motor Driving Belt Conveyor Inverter based on VVVF control was proposed. Master-slave control mode is used in the system. The active current is controled by closed-loop mothod to realize the adjustment of their respective output frequency. The output voltage of the Inverter is according to VF control, it ensures the motor’s air gap flux constant, and it ensures that the output of the motors are basically consistent. The feasibility and practicability of this Inverter is verified by being successful applied in the Multi-Motor Driving Belt Conveyor system.Key words:Multi-Motor Driving Belt Conveyor;Variable V oltage and Variable Frequency(VVVF); Power Balance; Inverter1引言现阶段,在采用变频器驱动多电机拖动的皮带输送机系统中,多用一台功率较大的变频器来同时驱动多台电机。
变频器的频率和电压的关系
精心整理页脚内容变频器中的电压与频率的关系注:以下内容属摘抄和自己总结,无意冒犯原作,仅供互相学习总结:在中国基频为50HZ在基频以下调速时,为恒扭矩调速:频率越低,电压越小,扭矩不变,功率越小。
电压和频率成正比?在基频以上调速时,为恒功率调速:频率越高,电压不变,扭矩减小,功率不变。
?1、?频率与电压要成比例地改变原因异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电23、,方法4、,基准频率5、定子?;Φm-U1/f1基频以下调时速时,为恒压频比(恒磁通)控制方式,属于恒转?矩调速。
基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压在基频以下调速时,电压会随频率而变化,但两?者的比值不变,功率增大?。
在基频以上调速时,频率从基频向上可以调至上限频率值,但是由于电机定子不能超过?电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒?功率调速区。
基准频率为恒功率调速区的最低频率,是恒转矩调速区与恒功率调速区的转折点,而基准电压值在整个恒功率调速区内不再随频率变化而改变。
??6、负载分类负载基本上可分为恒转矩负载、恒功率负载以及平方转矩负载等三类。
精心整理页脚内容恒转矩负载其所需转矩基本不受速度变化的影响(T=定值),对于该类负载,变频器的整个工作区最好运行在基频以下,这时变频器的输出特性正好能满足负载的要求。
恒功率负载在转速越高时,所需转矩越小(T ×N=定值),对于恒功率负载来说,电机的工作频率若运行在基频以上,其所要求的机械特性将与变频器的输出特性相吻合。
平方转矩负载,它所要求的转矩与转速的平方成正比(T/N2=定值),电机应运行在基频以下较为合理。
需要注意的是:平方转矩负载的工作频率绝不能超过工频(除非变频器容量大一个等级)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器恒压频比控制方式
恒压频比(U/f=C,C为常数)掌握方式
先来看一下异步电动机的电磁转矩公式:
Tem = CT1 Φm I2 cosφ2
式中CT1——转矩系数;Φm——主磁通,T;I2——转子电流,A;cosφ2 ——转子侧功率因数。
可以看出,电动机的电磁转矩正比于磁通Φm和转子侧电流的有功重量I2cosφ2 。
但对于异步电动机来说,转子电流是非外部掌握量,所以只能通过转变磁通Φm来转变异步电动机的电磁转矩。
对于拖动系统,最合理的利用电动机的出力是首先要考虑的,由异步电动机的额定电压和额定频率必定可以推导出一个电动机的额定磁通Φ。
依据公式:
U ≈ E = 4.44 f N Φ ;
式中N ——线圈匝数;f ——电源频率;E ——电源电势;Φ ——线圈磁通。
可推导出
Φ ≈ K U / f ;K=1/4.44N
可见,假如要保证电动机的额定磁通不变,即保证电动机的电磁转矩恒定,则必需保证U/f的值为常数。
恒压频比的主要目的就是保证电动机的出力,早期有工频降压调速的应用,但电动机的出力会被大打折扣.
上述公式旨在说明掌握原理,忽视了运算的其它干扰条件。
依据上面我列的公式,我想足够大家了解变频器U/f掌握方式的原理了。
实际运行中,U/f方式可以实现转矩调整,即在输出频率的同时调整输出电压,可增大或减小异步电动机的电磁转矩,但要考虑电动机的磁通饱和临界点和自身的各项耐受值。
U/f掌握方式有一个缺点,就是在调整时动态响应差,不适合工作于波动较大的负载场合。
并且,在启动过程中,变频器电压提升的有限性直接影响到电动机的起动转矩的大小。