SVPWM控制算法详解

合集下载

SVPWM的原理和法则推导和控制算法详细讲解

SVPWM的原理和法则推导和控制算法详细讲解

SVPWM的原理和法则推导和控制算法详细讲解SVPWM(Space Vector Pulse Width Modulation)是一种三相不对称多电平PWM调制技术。

其原理是将三相电压转换为空间矢量信号,通过调制的方式控制逆变器输出电压,以实现对三相电机的控制。

下面将详细介绍SVPWM的原理、法则推导以及控制算法。

一、原理:SVPWM的原理在于将三相电压分解为两相,即垂直于矢量且相互垂直的两个分量,直流坐标分量和交流坐标分量。

其中,直流坐标分量用于产生直流电压,交流坐标分量用于产生交流电压。

通过对直流和交流坐标的调制,可以生成所需的输出电压。

二、法则推导:1.将三相电压写成直流坐标系下的矢量形式:V_dc = V_d - 0.5 * V_a - 0.5 * V_bV_ac = sqrt(3) * (0.5 * V_a - 0.5 * V_b)2. 空间矢量信号通过电源电压和载波进行调制来生成输出电压。

其中,电源电压表示为空间矢量V。

根据配比原则,V_dc和V_ac分别表示空间矢量V沿直流和交流坐标的分量。

V = V_dc + V_ac3.根据法则推导,导出SVPWM的输出电压:V_u = 1/3 * (2 * V_dc + V_ac)V_v = 1/3 * (-V_dc + V_ac)V_w = 1/3 * (-V_dc - V_ac)三、控制算法:1. 设定目标矢量Vs,将其转换为直流坐标系分量V_dc和交流坐标系分量V_ac。

2.计算空间矢量的模长:V_m = sqrt(V_dc^2 + V_ac^2)3.计算空间矢量与各相电压矢量之间的夹角θ:θ = arctan(V_ac / V_dc)4.计算换向周期T和换相周期T1:T=(2*π*N)/ω_eT1=T/6其中,N为极对数,ω_e为电机的角速度。

5.根据目标矢量和夹角θ,确定目标矢量对应的扇区。

6.根据目标矢量和目标矢量对应的扇区,计算SVPWM的换相角度β和占空比:β=(2*π*N*θ)/3D_u = (V_m * cos(β) / V_dc) + 0.5D_v = (V_m * cos(β - (2 * π / 3)) / V_dc) + 0.5D_w=1-D_u-D_v以上步骤即为SVPWM的控制算法。

SVPWM的原理与法则推导和控制算法详解

SVPWM的原理与法则推导和控制算法详解

SVPWM的原理与法则推导和控制算法详解SVPWM(Space Vector Pulse Width Modulation)是一种常用于电力电子系统中的调制技术,用于控制交流电机的转速和输出电压。

它通过在电机相电流中施加适当的电压向量来控制电机的输出。

SVPWM的原理基于矢量变换理论和电压空间矢量的概念。

在SVPWM中,通过合理地选择电机相电流的方向和幅值,可以实现各种输出电压波形。

具体来说,SVPWM通过将输入直流电压转化为三相交流电压,然后按照一定的时序开关三相电压源,最终实现对电机的控制。

对于输入直流电压Vin和电机的相电流ia,ib和ic,SVPWM的推导可以分为以下几个步骤:1.将三相电流转换为两相电流:α = ia - ib / √3β = (2*ic - ia - ib) / √6其中,α和β分别表示两个正交轴向的电流分量。

2.计算电机相电流的矢量和以及矢量角度:i=√(α^2+β^2)θ = arctan(β/α)其中,i表示电流的矢量和,θ表示电流矢量的角度。

3.通过计算矢量角度来确定电压空间矢量的方向:根据电流矢量角度的范围,将电流矢量所在的区域划分为6个扇区(S1-S6),每个扇区对应一个电压空间矢量的方向。

4.计算电压空间矢量的幅值:根据电流矢量的大小,计算得出在相应扇区内的电压空间矢量的幅值。

5.根据电压空间矢量的方向和幅值,计算各相电压的占空比:根据电压空间矢量的方向和幅值,可以得出控制电机的各相电压的占空比。

1.读取电机的输入参数,包括电流、速度和位置信号。

2.根据输入参数计算出电机相电流的矢量和和矢量角度。

3.根据矢量角度确定电压空间矢量的方向。

4.根据矢量角度和矢量幅值计算电压空间矢量的幅值。

5.根据电压空间矢量的方向和幅值,计算出各相电压的占空比。

6.将占空比参考信号与电机的PWM生成模块相结合,通过逆变器将控制信号转化为交流电压,并驱动电机运行。

7.循环执行以上步骤,并实时调整占空比,以实现对电机速度和输出电压的精确控制。

SVPWM控制技术解析

SVPWM控制技术解析
2 us 3 (uA0 uB0 uC0 )
与定子电压空间矢量相仿,可以定义定子电流和 磁链的空间矢量 Is 和Ψs 。
6-28
电压空间矢量的合成思想
Im
Us4 (011)
Us3 (010)
Us7 (000) Us8 (111)
Us2 (110)
V2
V ref
θ
V1
Vref为期望的输出 电压空间矢量
011 001
000
100
111
Re
000,111,两个零电压 矢量,不输出电压。
101
6-23
6.4 .2 三相对称交流量空间矢量定义
➢ 交流电动机绕组的 电压、电流、磁链 等物理量都是随时 间变化的,分析时 常用时间相量来表 示,但如果考虑到 它们所在绕组的空 间位置,也可以如 图所示,定义为空 间矢量uA0, uB0 , uC0 。
6-30
近似关系
当电动机转速不是很低时,定子电阻压降所占 的成分(比例)很小,可忽略不计,则定子合 成电压与合成磁链空间矢量的近似关系为
us
dψs dt

ψs usdt
6-31
磁链轨迹
当电动机由三相平衡正弦电压供电时,电动机定 子磁链幅值恒定,其空间矢量以恒速旋转,磁链 矢量顶端的运动轨迹呈圆形(一般简称为磁链 圆)。这样的定子磁链旋转矢量可用下式表示。
三相电压型 全桥逆变器 桥臂输出电 压波形
负载中性点 电压波形
三相电压型 全桥逆变器 负载相电压 波形(六拍 阶梯波)


uUN′ 100 110 010 011 001 101 100 110 010 011 001 101
o Ud/2
Ud/2

svpwm的原理及法则推导和控制算法详解

svpwm的原理及法则推导和控制算法详解

svpwm的原理及法则推导和控制算法详解SVPWM是一种空间矢量脉宽调制技术,常应用于交流电机的无传感器矢量控制方案中。

SVPWM的原理及法则推导涉及到三相交流电机理论、空间矢量分析以及脉宽调制等内容。

下面将对SVPWM的原理、法则推导和控制算法进行详解。

1.SVPWM原理SVPWM的原理是基于交流电机的三相正弦波电流与空间矢量之间的转换关系。

交流电机的电流空间矢量可以表示为一个复数形式,即电流空间矢量(ia, ib, ic) = ia + jib。

空间矢量在空间中对应一个电机角度θ。

SVPWM的目标是控制交流电机的三相正弦波电流,使其与预期空间矢量一致,从而控制电机输出力矩和转速。

SVPWM首先对预期空间矢量进行空间矢量分解,将其分解为两个基本矢量Va和Vb。

然后根据电机角度θ和两个基本矢量的大小比例,计算出三相正弦波电流的幅值和相位。

2.SVPWM法则推导SVPWM的法则推导是为了实现精确控制电机的输出力矩和转速。

在法则推导中,首先需要建立电流与电压之间的关系,然后计算出三相正弦波电流的幅值和相位。

最后根据幅值和相位生成PWM波形,控制交流电机的动作。

具体推导过程如下:-步骤1:计算Va和Vb的大小比例,根据预期空间矢量和电机角度θ,可以通过三角函数计算出Va和Vb的幅值。

-步骤2:计算Vc,由于交流电机为三相对称系统,Vc的幅值等于Va和Vb的和,相位等于Va相位加120度。

-步骤3:计算三相正弦波电流的幅值和相位,幅值可以通过输入电压和阻抗模型计算得到。

-步骤4:根据幅值和相位生成PWM波形。

3.SVPWM控制算法SVPWM控制算法实现了对交流电机输出力矩和转速的精确控制。

- 步骤1:通过位置传感器或者传感器less技术获取电机角度θ。

-步骤2:根据预期输出力矩和转速,计算出预期空间矢量。

-步骤3:根据电机角度θ和预期空间矢量,计算出Va和Vb的幅值。

-步骤4:根据Va和Vb的大小比例和Vc的相位,生成PWM波形。

SVPWM的原理及法则推导和控制算法详解

SVPWM的原理及法则推导和控制算法详解

SVPWM的原理及法则推导和控制算法详解Space Vector Pulse Width Modulation(SVPWM)是一种用于交流电机驱动的调制技术。

它的原理是将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。

SVPWM利用矢量图法将三相交流电源的空间矢量变换为两相旋转矢量,从而实现对交流电机驱动电压的控制。

1.假设存在一个以0为中心的静止坐标系,其中电源相电压为Va,Vb,Vc。

我们可以将这三个电压写成以时间为函数的形式,即Va(t),Vb(t),Vc(t)。

2.将Va,Vb,Vc投影到α-β坐标系,得到α轴上的电压Vaα(t),Vbα(t),Vcα(t)和β轴上的电压Vaβ(t),Vbβ(t),Vcβ(t)。

3. 将α-β坐标系反转回静止坐标系,得到参考电压Va_ref(t), Vb_ref(t), Vc_ref(t)。

4.将参考电压投影到空间矢量图上,从而得到交流电机的输入矢量。

5.根据参考电压和输入矢量之间的关系,推导出控制算法。

1.基于所需输出电压的矢量长度和角度,计算矢量图中的两个矢量的占空比,分别为d1和d22.根据矢量长度和角度,计算三个相电压的占空比,分别为d_a,d_b,d_c。

3.根据SVPWM的特性,当d1,d2为0时,输出电压为0;当d1,d2相等时,输出电压处于峰值;当d1和d2不相等时,输出电压的大小和方向都有所改变。

因此,通过改变d1和d2的数值,可以改变输出电压的大小和方向。

4.根据d_a,d_b,d_c和d1,d2的数值,计算出PWM控制信号。

5.将PWM控制信号施加到交流电机驱动电路中,从而实现对输出电压的控制。

总结起来,SVPWM通过将固定电压向量分解为两个可控向量,通过改变这两个向量的占空比来控制交流电机的输出。

通过合理推导和计算,可以得到控制算法,从而实现对输出电压的精确控制。

SVPWM是一种高效且精确的交流电机驱动技术,被广泛应用于工业控制中。

SVPWM控制算法

SVPWM控制算法

精心整理电力电子课程作业量PWMSVPWMSVPWM第二章 SVPWM 分析2.1 SVPWM 算法指令是矢量控制系统给出的矢量信号ref U ,它以某一角频率θτω=在空间逆时针旋转,当它旋转到矢量图的某个060扇区中时,系统选中该区间的所需的基本电压空间矢量,并以此矢量所对应的状态去驱动功率开关元件动作。

当控制矢量在空间旋转0360后,逆变器就能输出一个周期的正弦波电压。

在高性能的交流调速及三相逆变系统中,通常采用三相轴系到βα-坐标系的变换。

闭环控制系统中,参考电压矢量的βα-分量αU 和βU 通过闭环控制器的输出很容易获得;开环控制系统中,将期望输出的电压映射到βα-坐2.2 3/2变换然而,旋转磁动势并不一定非要三相不可,除单相以外,二相、三相、四相……等任意对称的多相绕组,通入平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。

图2-4中绘出了两相静止绕组α和β,它们在空间互差900,通入时间上互差900的两相平衡交流电流,也能产生旋转磁动势F。

当图2-4a和b的两个旋转磁动势大小和转速都相等时,即认为图2-4b 的两相绕组与图2-4a的三相绕组等效。

再看图2-4c中的两个匝数相等且互相垂直的绕组d和q,其中分别通过现在先考虑上述的第一种坐标变换——在三相静止绕组A、B、C和两相静止绕组α、β之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称3s/2s变换。

图2-5中绘出了A、B、C和α、β两个坐标系,为方便起见,取A轴和α轴重合。

设三相绕组每项有效匝数为N3,两相绕组每相有效匝数位N2,各相磁动势为有效匝数与电流的乘积,其空间矢量均位于有关相的坐标轴上。

量分别为u和i,在行新的坐标系下,电压和电流向量变成u'和i',其中[][][]121212T n T n T n u u u u i i i i u u u u ⎧=⎪⎪=⎪⎨''''=⎪……… (2-4)其中E 为单位矩阵。

SVPWM的原理及法则推导和控制算法详解

SVPWM的原理及法则推导和控制算法详解SVPWM全称为Space Vector Pulse Width Modulation,是一种用于交流电驱动的脉宽调制技术。

它通过对电压波形进行合适的调制,实现对交流电驱动变频器输出电压的精确控制。

以下是SVPWM的原理及法则推导和控制算法的详解。

1.原始正弦信号:首先,将三相交流电压信号转化为矢量信号表示。

当输入的三相正弦信号为:$$v_a=v_m\sin(\Omega t)$$$$v_b=v_m\sin(\Omega t - \frac{2\pi}{3})$$$$v_c=v_m\sin(\Omega t + \frac{2\pi}{3})$$其中,$v_m$为幅值,$\Omega$为频率,t为时间。

2.空间矢量表示:将交流信号的三相信号进行矩阵变换,转化为空间矢量表示,例如:$$V_s=\frac{2}{3}\begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2}\\ 0 & \sqrt{3}/2 & -\sqrt{3}/2\end{pmatrix}\begin{pmatrix} v_a\\ v_b\\ v_c \end{pmatrix}$$其中,$V_s$表示空间矢量表示。

3.空间矢量模量:空间矢量模量的大小表示输出电压的幅值,可以通过以下公式计算:$$V=\sqrt{V_s^2}=\sqrt{V_a^2 + V_b^2 + V_c^2}$$4.空间矢量相位:空间矢量相位表示输出电压的相位位置,可以通过以下公式计算:$$\theta=\tan^{-1}(\frac{V_b}{V_a})$$5.确定电压矢量分量:根据设定的输出电压幅值和相位,可以计算出两个主要输出电压分量$V_d$和$V_q$,分别代表感应电机电流的直流成分和交流成分。

6.电压矢量分解:通过将输出电压分解为两个主要分量$V_d$和$V_q$,可以表示为:$$V_d=V_s\cos(\theta - \gamma)$$$$V_q=V_s\sin(\theta - \gamma)$$其中,$V_s$为空间矢量模量,$\theta$为空间矢量相位,$\gamma$为极坐标相角,用来调整电压波形的对称性。

svpwm空间矢量控制原理及详细计算


Tc
• • • • •
Tc U (te) 采用对称规则采样法时的脉宽间为: t = 2 1+ Uc Tc u (te) 当载波幅值UC 为1 时t = 1 可得: u ( te ) = 2t 2 Uc Tc -1


将tA、tB 、tC 代入上式(注: 2TI = Tc )得平均电压 矢量位于第一扇区时隐含调制函数为: uyA = Kcos (θ- 30°) uyB = 3Ksin (θ- 30°) uyC = - Kcos (θ- 30°)
• K=
3
Uav Ud
2 算法分析
SPWM生成原理采用对称规则采样Ⅱ法, 如2所示。
T2= (1 +M sinω1 te ) (1) 2 式中, te 为采样时间, 间隙时间为: 1 t1 = t3 = (Tc-T ) (2) 2 2 上式中, Tc 为一个载波周期时间, M =UM /UC , 是调制深度系数, UM 为调制波 幅值, UC 为载波幅值。可推广到任一调制函数u ( t) 。
• • • • • • • •
t0 + t7 = TI - ( t1 + t2 ) = TI - tm 式中, tm 为有效调制时间。若uav位于其他扇区,计算公式相仿, 只要 把公式中u1、u2 换成该扇区边界上的电压矢量就可以了。扇区时, 可 得三相脉宽时间为: tA = 2 ( t1 + t2 + t7 ) tB = 2 ( t2 + t7 ) tC = 2 t7 将式7、式8 和式9 代入上式, 并考虑到t0 = t7 , 可得: tA = KTI『 sin (60°-θ) + sinθ』 + TI tB = KTI 『- sin (60°-θ) + sinθ』 + TI tc = KTI『 - sin (60°-θ) - sinθ 』+ TI

SVPWM算法原理及详解

SVPWM算法原理及详解SVPWM(Space Vector Pulse Width Modulation)是一种用于交流电机驱动的高级PWM调制技术。

该技术可以有效地提高三相交流电机的转速控制精度,并降低谐波含量,从而实现高效能的电机驱动控制。

SVPWM基于矢量控制的思想,在空间矢量和时域之间建立起一个映射关系,从而决定三相电压的高低电平。

在SVPWM中,将输入电压看做一个旋转矢量,通过改变矢量的方向和幅值,来实现对电机的控制。

具体来说,SVPWM将电压空间矢量分解为两个分量:直流分量和交流分量,并通过控制这两个分量的比例和相位差来实现对电机的控制。

SVPWM的核心思想是将输入电压矢量按照一个特定的频率进行旋转,并根据电机当前的电角度来确定矢量的方向和幅值。

在SVPWM中,输入电压矢量可以分解为六个基本矢量,分别为0度、60度、120度、180度、240度和300度。

这六个基本矢量可以通过变换和组合得到任意方向和幅值的矢量,从而实现对电机的控制。

在SVPWM中,通过改变两个交流分量的比例和相位差来实现对电机的控制。

具体来说,将输入电压矢量分解为一个垂直于交流分量的直流分量和一个平行于交流分量的交流分量。

交流分量决定了电机的转速,而直流分量则决定了电机的转矩。

通过控制这两个分量的比例和相位差,可以实现对电机驱动的精确控制。

SVPWM的优点是具有较好的动态响应性能和高调制精度。

通过调整矢量的方向和幅值,SVPWM可以实现对电机的精确控制,并且可以在不同速度下保持较低的谐波含量。

此外,SVPWM还可以提高电机的功率因数,降低电机的损耗和噪音。

然而,SVPWM也存在一些限制。

首先,SVPWM需要较为复杂的运算,因此对控制器的计算能力要求较高。

其次,SVPWM对电机的参数误差和非线性影响较为敏感,需要进行较多的校正和补偿。

总结来说,SVPWM是一种基于矢量控制思想的高级PWM调制技术,通过改变矢量的方向和幅值来实现对电机的控制。

SVPWM地原理及法则推导和控制算法详解

SVPWM地原理及法则推导和控制算法详解空间矢量调制(Space Vector Pulse Width Modulation,SVPWM)是一种高性能的PWM调制技术,广泛应用于三相逆变器等电力电子设备中。

SVPWM通过精确控制逆变器开关器件的导通和截止时刻,实现对输出电压波形的优化调制,从而提高系统的输出品质和效率。

SVPWM的基本原理是将三相电压向量合成成一个等效的矢量,通过调节这个等效矢量的长度和角度来控制逆变器输出电压的大小和相位。

SVPWM利用三个交错的相电压矢量的和矢量作为输出矢量,通过适当的控制合成相电压矢量的导通时间,实现对输出电压的控制。

1.根据输入的参考电压和当前电网电压,计算出需要合成的输出电压的长度和角度。

2.根据输出电压的长度,将其分解成负序和零序分量。

3.决定3个相电压矢量的开关状态和切换时刻,以使得输出电压尽量接近目标值。

4.计算出每个相电压矢量的开关时间,确定导通和截止时刻。

5.控制逆变器开关器件的导通和截止时刻,实现对输出电压的调制。

1.输入参考电压和当前电网电压。

2.根据参考电压和电网电压的差异,计算出需要合成的输出电压的长度和角度。

3.根据输出电压的长度,将其分解成负序和零序分量。

4. 计算出每个相电压矢量的Duty Cycle(占空比),确定导通和截止时刻。

5.控制逆变器开关器件的导通和截止时刻,实现对输出电压的调制。

在SVPWM的控制中,有两个主要的参数需要确定,即调制指数和调制比率。

调制指数决定了输出电压的波形形状,调制比率决定了输出电压的幅值。

1.输出电压的平均值更接近于参考电压,电压调制度更高。

2.逆变器输出电压的谐波含量更低,输出电压波形更接近理想的正弦波。

3.控制精度更高,能够实现更精确的输出电压调节。

总之,SVPWM是一种高性能的PWM调制技术,通过精确控制逆变器开关器件的导通和截止时刻,实现对输出电压波形的优化调制。

SVPWM的原理和控制算法在电力电子设备中具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SVPWM控制算法详解
SVPWM(Space Vector Pulse Width Modulation)是一种基于空间矢量的脉宽调制技术,适用于三相交流电机的控制。

通过调节电机的电压矢量,SVPWM可以实现精确的电机控制。

下面将详细介绍SVPWM控制算法的原理与实现。

SVPWM算法的原理是通过合理的控制电机的电压矢量,使得电机的转矩和速度可以按照设定值精确控制。

SVPWM根据当前电机的运行状态,选择合适的电压矢量进行控制,并且在控制周期内根据设定值不断调整电压矢量的大小和方向。

在空间矢量分解中,SVPWM将三相交流电源的电流分解为两个矢量:直流分量和交流分量。

直流分量表示电流的平均值,而交流分量表示电流的波动部分。

通过对直流分量和交流分量进行分解,SVPWM可以确定电流矢量的大小和方向。

在电压矢量计算中,SVPWM根据电机的状态和设定值,选择合适的电压矢量。

电压矢量有6种组合方式,分别表示正向和反向的60度和120度的电压矢量。

通过选择合适的电压矢量,SVPWM可以确定电机的电压大小和方向。

在脉宽调制中,SVPWM根据电压矢量的大小和方向,通过调节脉冲宽度比例控制电机的输出电压。

脉冲宽度比例是控制电机输出电压关键的参数,通过合理的调整脉冲宽度比例,SVPWM可以实现精确的电机控制。

以三相交流电机为例,SVPWM控制算法可以实现精确的电机转矩和速度控制。

通过选择合适的电压矢量,SVPWM可以实现电机的正反转和转速调节。

同时,SVPWM算法还可以提高电机的效率和性能。

总结起来,SVPWM控制算法是一种基于空间矢量的脉宽调制技术,通过控制电机的电压矢量,实现精确的电机控制。

SVPWM算法通过空间矢量分解、电压矢量计算和脉宽调制等步骤,确定电机的电压大小和方向。

通过合理的控制策略和数学运算,SVPWM可以实现精确的电机转矩和速度控制。

相关文档
最新文档