中国石油大学华东博弈论期末考试题

合集下载

中国石油大学(华东)第二学期期末试题《技术经济学》

中国石油大学(华东)第二学期期末试题《技术经济学》

中国石油大学(华东)第二学期期末试题《技术经济学》《技术经济学》综合复习资料及答案一、填空题1、某项目第五年的利润总额是-100万元,第六年的利润总额是200万元,如果所得税率是30%,那么第六年应缴纳的所得税是30万元。

2、某项目可能获得的净现值分别是-20万元、100万元、200万元、250万元,对应的概率分别是0.1、0.2、0.4、0.3,则该项目净现值的期望值是173万元。

3、某项目在第五年的销售收入是1000万元,经营成本是300万元,销售税金及附加是50万元,所得税是150万元,利息支出是30万元,则当年的净现金流量是500万元。

4、如果某项目的净现值期望值是100万元,其方差是100万元,那么该项目净现值的离差系数是0.1。

5、如果银行五年定期存款利率是10%,那么一笔100万元的五年定期存款在到期后的本利和是161.05万元。

6、如果某项目的年固定成本是100万元,产品单位售价是100元,单位产品变动成本是45元,单位产品销售税金及附加是5元,则该项目的盈亏平衡点产量是20000单位。

7、如果某一年的活期存款年名义利率是10%,通货膨胀率是12%,那么应用精确计算方法,当年活期存款的实际利率是-1.79%。

8、如果某项目的设计生产能力是4万单位年固定成本是100万元,产品单位售价是100元,单位产品变动成本是45元,单位产品销售税金及附加是5元,则该项目的盈亏平衡点生产能力利用率是50%。

二、单选题A1、下列哪项不属于技术经济学的特点。

()A实效性B应用性C比较性D定量性B2、下列哪项属于递延资产。

()A应由投资者负担的费用支出B筹建期间的差旅费C计入固定资产的构建成本的汇兑损益D计入无形资产的构建成本的利息支出A3、下列哪项不属于资本公积金。

()A借入资产B法定资产重估增值C接受捐赠的资产D资本溢价A4、下列哪项关于折旧的表述是正确的。

()A平均年限法的各年折旧额都相等B工作量法的各年折旧额都相等C双倍余额递减法的各年折旧额都不相同D加速折旧法的年折旧额逐年递增D5、下列哪项关于单利计息方法的表述是错误的。

博弈论考试题及答案

博弈论考试题及答案

博弈论考试题及答案一、单项选择题(每题2分,共10题,共20分)1. 博弈论中,参与者在决策时不知道其他参与者的选择,这种博弈类型被称为:A. 完全信息博弈B. 不完全信息博弈C. 零和博弈D. 非零和博弈答案:B2. 在博弈论中,以下哪个概念描述的是参与者在博弈中所追求的目标?A. 纳什均衡B. 帕累托最优C. 占优策略D. 博弈收益答案:D3. 囚徒困境中,两个参与者如果都选择合作,他们将获得的收益是:A. 最大的B. 最小的C. 中等的D. 不确定的答案:A4. 以下哪个选项不是博弈论中的均衡概念?A. 纳什均衡B. 子博弈完美均衡C. 贝叶斯均衡答案:D5. 在博弈论中,如果一个策略在任何情况下都是最优的,那么这个策略被称为:A. 占优策略B. 纳什均衡C. 帕累托最优D. 混合策略答案:A6. 博弈论中的“混合策略”是指:A. 参与者随机选择纯策略B. 参与者总是选择相同的策略C. 参与者只选择一种策略D. 参与者不进行策略选择答案:A7. 在博弈论中,如果一个参与者的策略选择不依赖于其他参与者的策略选择,这种策略被称为:A. 占优策略B. 独立策略C. 混合策略D. 纳什均衡答案:A8. 博弈论中,以下哪个概念描述的是所有参与者都不可能通过单方面改变策略来提高自己的收益?A. 帕累托最优B. 纳什均衡C. 占优策略答案:B9. 在博弈论中,如果一个参与者的策略在其他所有参与者的策略给定时是最优的,这种策略被称为:A. 占优策略B. 纳什均衡C. 最优反应D. 混合策略答案:C10. 博弈论中的“动态博弈”是指:A. 参与者同时做出决策的博弈B. 参与者按顺序做出决策的博弈C. 参与者只进行一次决策的博弈D. 参与者不进行决策的博弈答案:B二、多项选择题(每题3分,共5题,共15分)1. 以下哪些是博弈论中的基本类型?A. 合作博弈B. 非合作博弈C. 完全信息博弈D. 不完全信息博弈答案:A, B, C, D2. 在博弈论中,以下哪些是描述均衡的概念?A. 纳什均衡B. 帕累托最优C. 占优策略均衡D. 混合策略均衡答案:A, C, D3. 以下哪些是博弈论中可能的结果?A. 帕累托最优B. 纳什均衡C. 占优策略均衡D. 混合策略均衡答案:A, B, C, D4. 在博弈论中,以下哪些是描述策略的概念?A. 纯策略B. 混合策略C. 占优策略D. 最优反应答案:A, B, C, D5. 以下哪些是博弈论中可能的决策顺序?A. 同时决策B. 顺序决策C. 重复决策D. 单次决策答案:A, B, C, D三、简答题(每题5分,共2题,共10分)1. 请简述博弈论中的“纳什均衡”是什么?答案:纳什均衡是指在一个博弈中,每个参与者都选择了自己的最优策略,并且这些策略在其他参与者的策略给定时是最优的,没有任何一个参与者可以通过单方面改变策略来提高自己的收益。

博弈论期末考试试题及答案

博弈论期末考试试题及答案

博弈论期末考试试题及答案# 博弈论期末考试试题及答案一、选择题(每题2分,共20分)1. 博弈论中,参与者在没有沟通的情况下进行决策,这种博弈被称为:A. 完全信息博弈B. 不完全信息博弈C. 零和博弈D. 非零和博弈答案:B2. 纳什均衡是博弈论中的一个概念,它描述了一种什么样的状态?A. 所有参与者都获得最大收益的状态B. 至少有一个参与者能获得更大收益的状态C. 没有参与者能通过单方面改变策略来获得更大收益的状态D. 所有参与者都获得相同收益的状态答案:C3. 以下哪个不是博弈论中的策略类型?A. 纯策略B. 混合策略C. 随机策略D. 确定性策略答案:D4. 博弈论中的囚徒困境指的是:A. 参与者合作可以获得最优结果B. 参与者背叛可以获得最优结果C. 参与者合作可以获得次优结果,但背叛可以获得最优结果D. 参与者背叛可以获得次优结果,但合作可以获得最优结果答案:C5. 以下哪个不是博弈论中的基本概念?A. 参与者B. 策略C. 收益D. 概率答案:D...二、简答题(每题10分,共30分)1. 解释什么是博弈论,并给出一个实际生活中的例子。

答案:博弈论是研究具有冲突和合作特征的决策者之间互动的数学理论。

在实际生活中,博弈论的一个例子是拍卖。

在拍卖中,买家(参与者)需要决定出价(策略)以赢得商品(收益),同时考虑其他买家的出价策略。

2. 描述纳什均衡的概念,并解释为什么它在博弈论中如此重要。

答案:纳什均衡是指在非合作博弈中,每个参与者选择自己的最优策略,并且考虑到其他参与者的策略选择时,没有参与者能通过单方面改变策略来获得更大的收益。

纳什均衡在博弈论中非常重要,因为它提供了一种预测参与者行为的方法,即在均衡状态下,参与者没有动机去改变他们的策略。

3. 什么是完全信息博弈和不完全信息博弈?它们之间有什么区别?答案:完全信息博弈是指所有参与者都完全知道博弈的结构和其他参与者的收益函数。

而不完全信息博弈是指至少有一个参与者对博弈的结构或其它参与者的收益函数不完全了解。

中国石油大学华东期末(2—2)高数题1

中国石油大学华东期末(2—2)高数题1

一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面与平面的夹角为 .2. 函数在点处沿从点到点的方向的方向导数为 .3. 设是有界闭区域上的连续函数,则当时,.4. 区域由圆锥面及平面围成,则将三重积分在柱面坐标系下化为三次积分为 .5. 设为由曲线上相应于从到的有向曲线弧,是定义在上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:______________________________________.6.将函数展开成余弦级数为__________________________________.二、单项选择题:7~12小题,每小题3分,共18分。

下列每题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在题后的括号内. 7. 若有连续的二阶偏导数,且(常数),则( )(A) ; (B) ; (C); (D).8. 设是连续的奇函数,是连续的偶函数,区域,则下列结论正确的是( )(A); (B) ;(C); (D).0:1=-∏z y 0:2=+∏y x 22y x z +=)2,1()2,1()32,2(+(,)f x y 222:a y x D ≤+0→a =⎰⎰→Da dxdy y x f a ),(1lim20πΩ222x y z +=1=z f dVΩ⎰⎰⎰Γ32,,t z t y t x ===t 01R Q P ,,ΓPdx Qdy Rdz Γ++=⎰)0(1)(π≤≤+=x x x f ),(y x f z =K y x f xy=''),((,)y f x y '=22K Ky )(x Ky ϕ+)(y Kx ϕ+)(x f )(x g {}xy x x y x D ≤≤-≤≤=,10),(0)()(=⎰⎰Ddxdy x g y f 0)()(=⎰⎰Ddxdy y g x f 0)]()([=+⎰⎰Ddxdy y g x f 0)]()([=+⎰⎰Ddxdy x g y f9. 已知空间三角形三顶点,则的面积为( )(A) ; (B) ; (C) ; (D) .10. 曲面积分在数值上等于( )(A) 流速场穿过曲面Σ指定侧的流量;(B) 密度为的曲面片Σ的质量; (C) 向量场穿过曲面Σ指定侧的通量;(D) 向量场沿Σ边界所做的功.11.( )(A)发散; (B)条件收敛; (C)绝对收敛; (D)收敛性不能确定.12.级数的敛散性为 ( )(A) 当时,绝对收敛; (B )当时,条件收敛;(C) 当时,绝对收敛; (D )当时,发散. 三、解答题:13~20小题,共58分.请将解答过程写在题目下方空白处.解答应写出文字说明、证明过程或演算步骤.13.(本题满分6分)设确定,求全微分. 题满分8分)求曲线在点(1,1,1)处的切线与法平面方程.15.(本题满分8分)求幂级数的和函数.(本题满分6分)计算,其中为曲面被柱面所截下的有限部分.17.(本题满分8分)计算积分,其中为曲线)5,0,0(),1,1,1(),3,2,1(C B A -ABC ∆29379273⎰⎰∑dxdyz2i z v 2=2z =ρk z F 2=k z F 2=处则此级数在处是收敛的在若级数1,4)2(1=-=+∑∞=x x x c n n n ∑∞=--121)1(n pn n p >12p >12210≤<p 012<≤p ()x y z x y z e -++++=(,)z z x y =dz 2223023540x y z x x y z ++-=⎧⎨⎩-+-=nn x n ∑∞=+0)12(⎰⎰∑++=dSz y x I )(∑5=+z y 2522=+y x 222(24)(2)LI x xy dx x y dy=++-⎰L上从点到沿逆时针方向的一段有向弧.18.(本题满分8分)计算,其中是由曲面与平面围成的有界闭区域的表面外侧.19.(本题满分8分)在第Ⅰ卦限内作椭球面的切平面,使切平面与三个坐标面所围成的四面体体积最小,求切点坐标. 20. (本题满分6分)设均在上连续,试证明柯西-施瓦茨不等式:.答 案一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上.1. 平面与平面的夹角为.2. 函数在点处沿从点到点的方向的方向导数为.3. 设是有界闭区域上的连续函数,则当时,.4. 区域由圆锥面及平面围成,则将三重积分在柱面坐标系下化为三次积分为.5. 设为由曲线上相应于从到的有向曲线弧,是定义在上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:.22355()()222x y -+-=(1,1)(2,4)⎰⎰∑+++=xydxdydzdx z x y yzdydz I )(22∑224y x z -=+0=y Ω1222222=++c z b y a x )(),(x g x f []b a ,])(][)([])()([222⎰⎰⎰≤b abab adx x g dx x f dx x g x f 0:1=-∏z y 0:2=+∏y x 3π22y x z +=)2,1()2,1()32,2(+321+(,)f x y 222:a y x D ≤+0→a =⎰⎰→Da dxdy y x f a ),(1lim20π)0,0(f Ω222x y z +=1=z f dVΩ⎰⎰⎰211()rd dr f r rdzπθ⎰⎰⎰Γ32,,t z t y t x ===t 01R Q P ,,ΓPdx Qdy Rdz Γ++=⎰6. 将函数展开成余弦级数为.二、单项选择题:7~12小题,每小题3分,共18分。

中国石油大学(华东)高等数学___期末考试真题___版

中国石油大学(华东)高等数学___期末考试真题___版

4.设 f(x)在区 [0,1间 ]上连续,则下 不列 正等 确_式 的 _._中 是
1
1
(A) f(x)dx f(t)dt;
(B)
1
f(x)dx
1f(x2)dx2;
0
0
0
0
(C)
1
f(x)dx
1f(x2)dx2;(D)
1
f(x)dx
1
f(sinx)dsin x.
旋转体的体 __积 __为 ___. ___
5.曲 线 zzx2 2 2 y2 y2在 xO 面 y 上的投 _影 ___ 曲 ._
一、
2;
2 (1 x)3 ;
( x 2)ln( x 2)
x C;
x2 ;

3y2 z0
2
二、单项选择(每小题 4 分, 共 20 分) 1.设lxim ( 0 1xx) 12,则有 ___. (A) 1,1; (B) 2,1;
1
1
0 2xf ( x)dx 0 f ( x)dx.

1 1 y2
在x轴的总的分力为
kdy .
(1 y 2 )3
1
y dy y
o
1 y2

1
x
1
Fx

0
kdy

y tan t k 4 cos tdt
2 k.
(1 y 2 )3
0
2
1
七. (8分)设函数 f ( x) xe x2,填下表并作图.
四、求导数与积分(每小题 7 分, 共 21 分)
| 1.设y
f(x)由参数方 xy程aacsion33stt所确,定 求dd2xy2

博弈论考试题及答案

博弈论考试题及答案

博弈论考试题及答案一、选择题(每题2分,共20分)1. 博弈论中的“囚徒困境”是指什么?A. 两个囚犯相互合作B. 两个囚犯相互背叛C. 两个囚犯中一个合作一个背叛D. 两个囚犯相互猜疑答案:B2. 以下哪个不是博弈论中的基本概念?A. 策略B. 收益C. 公平D. 纳什均衡答案:C3. 在零和博弈中,一个玩家的损失等于另一个玩家的收益,这意味着:A. 总收益为零B. 总收益为正C. 总收益为负D. 总收益不确定答案:A4. 博弈论中的“混合策略”是指:A. 玩家随机选择策略B. 玩家固定选择一种策略C. 玩家根据对手的策略选择策略D. 玩家不使用策略答案:A5. 以下哪个是博弈论中的“完全信息”博弈?A. 拍卖博弈B. 石头剪刀布C. 桥牌D. 信息不对称博弈答案:C6. 博弈论中的“重复博弈”指的是:A. 博弈只进行一次B. 博弈进行多次C. 博弈进行无限次D. 博弈进行有限次但次数未知答案:B7. 以下哪个是博弈论中的“动态博弈”?A. 零和博弈B. 非零和博弈C. 同时博弈D. 顺序博弈答案:D8. 在博弈论中,如果一个策略组合是纳什均衡,那么:A. 每个玩家都有动机单方面改变策略B. 每个玩家都满足于当前策略C. 至少有一个玩家不满意当前策略D. 所有玩家都不满意当前策略答案:B9. 博弈论中的“合作博弈”是指:A. 玩家之间可以形成联盟B. 玩家之间不能形成联盟C. 玩家之间只能通过竞争来获得收益D. 玩家之间只能通过合作来获得收益答案:A10. 以下哪个是博弈论中的“公共知识”?A. 每个玩家的收益函数B. 每个玩家的策略选择C. 每个玩家的偏好D. 每个玩家的个人信息答案:A二、简答题(每题10分,共30分)1. 简述博弈论中的“纳什均衡”概念。

答案:纳什均衡是指在一个博弈中,每个玩家都选择了自己的最优策略,并且没有玩家能够通过单方面改变策略来提高自己的收益。

在纳什均衡状态下,每个玩家的策略是对其他玩家策略的最优反应。

博弈论复习题及答案DOC

可口可乐与百事可乐(参与者)的价格决策:双方都可以保持价格不变或者提高价格(策略);博弈的目标和得失情况体现为利润的多少(收益);利润的大小取决于双方的策略组合(收益函数);博弈有四种策略组合,其结局是:(1)双方都不涨价,各得利润10单位;(2)可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30;(3)可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30;(4)双方都涨价,可口可乐利润140,百事可乐利润35;画出两企业的损益矩阵求纳什均衡。

9、北方航空公司和新华航空公司分享了从北京到南方冬天度假胜地的市场。

如果它们合作,各获得500000元的垄断利润,但不受限制的竞争会使每一方的利润降至60000元。

如果一方在价格决策方面选择合作而另一方却选择降低价格,则合作的厂商获利将为零,竞争厂商将获利900000元。

(1)将这一市场用囚徒困境的博弈加以表示。

(2)解释为什么均衡结果可能是两家公司都选择竞争性策略。

答:(1)用囚徒困境的博弈表示如下表:(2)如果新华航空公司选择竞争,则北方航空公司也会选择竞争(60000>0);若新华航空公司选择合作,北方航空公司仍会选择竞争(900000>500000)。

若北方航空公司选择竞争,新华航空公司也将选择竞争(60000>0);若北方航空公司选择合作,新华航空公司仍会选择竞争(900000>0)。

由于双方总偏好竞争,故均衡结果为两家公司都选择竞争性策略,每一家公司所获利润均为600000元。

12、设啤酒市场上有两家厂商,各自选择是生产高价啤酒还是低价啤酒,相应的利润(单位:万元)由下图的得益矩阵给出:(1)有哪些结果是纳什均衡?(2)两厂商合作的结果是什么?答(1)(低价,高价),(高价,低价)(2)(低价,高价)13、A、B两企业利用广告进行竞争。

若A、B两企业都做广告,在未来销售中,A企业可以获得20万元利润,B企业可获得8万元利润;若A企业做广告,B企业不做广告,A企业可获得25万元利润,B企业可获得2万元利润;若A企业不做广告,B企业做广告,A企业可获得10万元利润,B企业可获得12万元利润;若A、B两企业都不做广告,A企业可获得30万元利润,B企业可获得6万元利润。

中国石油大学(华东)高等数学习题集(期末题库)

习题一一、填空题1.设,3)1ln()(x x x f -++=则此函数的定义域是___________.2. 极限.23151lim2=+--+→xx xx x ________________. 3. 设f(x)=arcsinx,φ(x)=lnx,则)]([x f φ的定义域是_______________.4. 设(),,10111cos1)(⎪⎩⎪⎨⎧=≠--=x x x x x f a在1=x 处连续,则a 的值为_______________.5 当x x →0时,f(x)是比g(x)高阶的无穷小,则当x x →0时, 无穷小 f(x)+g(x) 与无穷小g(x)的关系是_______________.6. ().1,0._______________41lim20≠>=-→a a xa x x 7. f(x)=arcsin(2x-1)的定义域是_____________.8. ()x xx f πsin ln =的一个可去间断点=x ______________. 9. xx x arcsin lim 0→的值等于_______________.10. ()3arctan )(2-=x x f 的定义域是______________.11. 若当()()x x x x γα,,0时→是等价无穷小,()x β是比()x α高阶的 无穷小,则当0x x →时,函数()()()()x x x x βγβα--的极限是___________.12. 设)(x f 的定义域是],2,1[则⎪⎭⎫⎝⎛+11x f 的定义域是_____________. 13. ()1ln 2--=x x x f 的一个无穷间断点=_____________.14. ()24ln )(x x f -=在区间_____________是连续的。

15. ()23+-=x xx f 的定义域是_____________.16. 极限=+∞→xxx x x x lim ___________________17. ()3)(-=x x x f _的定义域是_____________.18. 极限=--+→2223lim 32x x x ____________________.19. ()xx x 613ln lim0+→的值等于_________________. 20. ()3arccos -=x x f 的定义域是__________________21. 设()()f x x x x ==arcsin ,ln ϕ,则()[]ϕf x 的定义域是_____________. 22. 要使函数()f x x xx=+--11在x=0处连续,则须定义f(0)的值为_____________ 23. 极限lim sinn n n x →∞-=221____________________.24. ()()f x x x =+-ln 22的定义域是_________________________. 25.函数y x =lnarcsin 的连续区间为_______________________. 26. xxx 52arctan lim 0→的值等于____________________.27 . lim n nn n →∞++⎛⎝ ⎫⎭⎪213的值等于________________.28. 若()321lim e ax xx =-→,则a=_____________29. =+-→xx x 210)1(lim _________________.选择题1. ⎪⎩⎪⎨⎧≥<--=1,21,11)(2x x x x x x f 则1=x 是)(x f 的(A)连续点; (B)可去间断点; (C) 跳跃间断点; (D)无穷间断点. 答: ()2. 当0x x →时A x f -)(为无穷小是 A x f x x =→)(lim 0的(A )充分但非必要条件 (B )必要但非充分条件(C )充分必要条件 (D )既非充分条件,也非必要条件 答: ()3. 设f x x x ()sin ,,=-∞<<+∞,则此函数是 (A)奇函数, (B)既不是奇函数也不是偶函数,(C)周期为2π的周期函数 (D) 周期为π的周期函数. 答: () 4. 极限.cos 22limxxx -→的结果是(A)1 (B)2 (C)2 (D)极限不存在. 答: ( ) 5. 设()f x x x x ()sin ,=++-∞<<+∞112,则此函数是(A)有界函数 (B)奇函数 (C)偶函数 (D)周期函数 答:( )6. 函数xx f -=11arctan )(当x →1时的极限值是 (A)π2(B)-π2 (C)0 (D)不存在.答:( )7. 的是时当x x x x sin ,0.2-→(A)高阶无穷小 (B)同价无穷小,但不是等价无穷小(C)低价无穷小 (D)等价无穷 答: ( )8. xx x x 11lim 20-++→等于 (A )1 (B )21(C )2 (D )0 答: ( )极限[]x x x cos 1cos lim -++∞→的结果是 (A )无穷大 (B )0 (C )21- (D )不存在,也不是无穷大 答: ( ) 10.设()xx eex f 11321++=,则0=x 是)(x f 的:(A )可去间断点 (B )跳跃间断点 (C )无穷间断点 (D )振荡 间断点 答: ( )11.函数f(x)在点0x 连续是)(lim 0x f x x →存在的(A )充分条件 (B )必要条件(C )充要条件 (D )即非充分又非必要条件 答: ( )12. ()x ee xf xx sin )(-+=在其定义域 ()+∞∞-,上是(A )有界函数 (B )周期函数 (C )偶函数 (D )奇函数 答: ( )13. 设()11cot2-+=x arc x x f ,则1=x 是)(x f 的: (A )可去间断点 (B )跳跃间断点 (C )无穷间断点 (D )振荡 间断点 答: ( ) 14. 极限()x x x x -+∞→2lim的结果是(A) 0; (B) 1/2;(C) 无穷大, (D )不存在. 答: ( )15. ()()23sin x x f =在定义域()-∞+∞,上为(A )周期是3π的函数; (B )周期是π/3的函数; (C )周期是2π/3的函数; (D )不是周期函数. 答: ( )16. 若当0x x →时()()x x βα,都是无穷小,则当0x x →时, 下列表示式哪一个不一定是无穷小: (A )()()x x βα+; (B )()()x x 22βα+;(C )()()[]x x βα+1ln ; (D )()()x x 22βα. 答: ( )17.“数列极限存在”是“数列有界”的(A )充分必要条件; (B )充分但非必要条件; (C )必要但非充分条件;(D )既非充分条件,也非必要条件。

中国石油大学(华东)高数历届试题

2006—2007学年第二学期 《本科高等数学(下)》期中试卷一、填空题(每小题5分, 共40分) 1.设向量,2,23k j i b k j i a +-=-+=则)()(b a b a322-⋅⨯= _______________.2.已知向量}2,3,4{-=a ,向量u 与三个坐标轴正向构成相等的锐角,则 a 在u轴上的投影等于__________________.3.已知空间三角形三顶点),2,0,0(),0,1,2(),1,1,1(C B A -则ABC Δ的面积等于______________;过三点的平面方程是:__________________________.4.直线⎩⎨⎧=+--=-+072,0532:z y x z y L .在平面083:=++-z y x π内的投影直线方程是: ____________________________________.5. 由曲线 ⎪⎩⎪⎨⎧==+0122322z y x 绕y 轴旋转一周所得旋转曲面在点)2,3,0(处指向外侧的单位法向量是____________________________.6.设z y x z y x 32)32sin(2-+=-+,则y zx z ∂∂+∂∂=__________________________.7. 设函数)(u f 可微,且21)0(='f , 则)4(22y x f z -=在点(1,2)处的全微分 )2,1(d z =_________________________________________.8. 曲面 22yx z += 平行于平面 042=-+z y x 的切平面方程.是:___________________.二、(7分) 设平面区域D 由1,==xy x y 和2=x 所围成,若二重积分 1d d 22=⎰⎰D y x yAx ,则常数=A ____________________________. 解题过程是:三、(8分) 设),(y x f 是连续函数,在直角坐标系下将二次积分⎰⎰-223210d ),(d y y xy x f y 交换积分次序,应是______________________________________.解题过程是:四、(7分) 设函数181261),,(222z y x z y x u +++=,若单位向量}1,1,1{31=n ,则方向导数)3,2,1(nu ∂∂等于_____________________;该函数在点(1,2,3)的梯度是____________________;该函数在点(1,2,3)处方向导数的最大值等于________________.解题过程是:五、(8分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y ∂∂+=∂∂.(I )验证()()0f u f u u '''+=;(II )若(1)0,(1)1f f '==,求函数()f u 的表达式.解题过程是:六、(7分) 设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1D xyx y x y +++⎰⎰解题过程是:七、(8分) 设空间区域Ω,是由曲线⎪⎩⎪⎨⎧==0,2x z y 绕oz 轴旋转一周而成的曲面与平面4,1==z z 所围成的区域,计算三重积分⎰⎰⎰+Ωz y x y x d d d )(22.解题过程是:八、(8分) 做一个长方体的箱子,其容积为 29m 3, 箱子的盖及侧面的造价为8元/m 2, 箱子的底造价为1元/m 2, 试求造价最低的箱子的长宽高(取米为长度单位). 解题过程是:九、(7分) 设函数),(y x f 在点(0,0)的某个邻域内连续,且1)(),(lim22220=+-→→y x xy y x f y x ,试问点(0,0)是不是),(y x f 的极值点?证明你的结论. 解题过程是:A 卷2006—2007学年第二学期《本科高等数学(下)》期末考试试卷一、选择题(本题共6小题,每小题4分,满分24分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内).1.设三向量c b a ,,满足关系式c a b a ⋅=⋅,则( ).(A )必有c b ,0 ==或者a ; (B )必有0===c b a ;(C )当0≠a 时,必有c b =; (D )必有)(c b a -⊥.2. 已知2,2==b a,且2=⋅b a ,则=⨯b a ( ).(A )2 ; (B )22; (C )22; (D )1 .3. 设曲面)0,0(:2222>≥=++a z S a z y x ,S 1是S 在第一卦限中的部分,则有( ). (A )⎰⎰⎰⎰=S S S x S x 1d 4d ; (B )⎰⎰⎰⎰=S SSx S y 1d 4d ;(C )⎰⎰⎰⎰=S SS x S z 1d 4d ; (D )⎰⎰⎰⎰=S S Sxyz S xyz 1d 4d . 4. 曲面632222=++z y x 在点)1,1,1(--处的切平面方程是:( ).(A )632=+-z y x ; (B )632=-+z y x ; (C )632=++z y x ; (D )632=--z y x . 5. 判别级数∑⋅∞=1!3n nn n n 的敛散性,正确结果是:( ). (A )条件收敛; (B )发散;(C )绝对收敛; (D )可能收敛,也可能发散.6. 平面0633=--y x 的位置是( ).(A )平行于XOY 平面; (B )平行于Z 轴,但不通过Z 轴; (C )垂直于Z 轴 ; (D )通过Z 轴 . 二、填空题(本题共4小题,每小题5分,满分20分). 1. 已知e x yz =,则____________________d =z.2. 函数zx yz xy u ++=在点)3,2,1(=P 处沿向量OP 的方向导数是____________,函数u 在点P 处的方向导数取最大值的方向是_____________,该点处方向导数的最大值是____________.3. 已知曲线1:22=+y x L ,则⎰+=Ls y x ________________d )(2.4. 设函数展开傅立叶级数为:∑∞=≤≤-=02)(,cos n n x nx a xππ,则___________2=a .三、解答下列各题(本题共7小题,每小题7分,满分49分).1. 求幂级数∑∞=+01n n n x 收敛域及其和函数.解题过程是:2. 计算二重积分⎰⎰≤++42222d d y x yx yx e.解题过程是:3. 已知函数),(y x f z =的全微分y y x x z d 2d 2d -=,并且2)1,1(=f . 求),(y x f z =在椭圆域}14|),{(22≤+=yx y x D 上的最大值和最小值.解题过程是:4. 设Ω是由y x z 22+=,4=z 所围成的有界闭区域,计算三重积分⎰⎰⎰++Ωzy x z y x d d d )(22.解题过程是:5. 设L AB 为从点)0,1(-A 沿曲线x y 21-=到点)0,1(B 一段曲线,计算⎰++L AByx yy x x 22d d .解题过程是:6. 设∑是上半球面y x z 221--=的下侧,计算曲面积分⎰⎰++-+∑yx z y xy x z z y x z y z x d d )2(d d )(d d 2322.解题过程是:7. 将函数 61)(2--=x x x f 展开成关于1-x 的幂级数 .解题过程是:四、证明题(7分). 证明不等式: ⎰⎰≤+≤Dx y 2d )sin (cos 122σ,其中D 是正方形区域:10,10≤≤≤≤y x .2007—2008学年第二学期 《本科高等数学(下)》期中试卷一 填空题(本题共5小题,每小题4分,满分20分)1 向量32a i j k →→→→=++在向量245b i j k →→→→=++上的投影Pr bj a = .2 函数u =在点)2,2,1(-M 处的梯度=M gradu __________.3 曲面1222=+-zx yz xy 上点(1,1,1)M 处的切平面方程为 .4 函数sinu yxy x =在点(,)11的全微分(1,1)du =.5 函数2(,)z xf x y =有连续的二阶偏导数,则y x z ∂∂∂2= . 二、选择题(本题共4小题,每小题4分,满分16分).1.直线34273x y z++==--与平面4223x y z --=的位置关系是( ) (A )平行,但直线不在平面上; (B ) 直线在平面上;(C ) 垂直相交; (D ) 相交但不垂直. 2.函数00(,)(,)f x y x y 在点处偏导数存在是(,)f x y 在该点可微的( ) (A) 充分非必要条件; (B) 必要非充分条件 ; (C) 充要条件; (D) 非充分非必要条件.3.设有两平面区域2221:D x y R +≤,2222:,0,0;D x y R x y +≤≥≥ 则以下结论正确的是( )(A )124D D xdxdy xdxdy=⎰⎰⎰⎰; (B )12224D D x dxdy x dxdy=⎰⎰⎰⎰;(C )124D D ydxdy ydxdy=⎰⎰⎰⎰; (D )124D D xydxdy xydxdy=⎰⎰⎰⎰.4. 若函数00(,)(,)f x y x y 在点处不可微,则函数00(,)(,)f x y x y 在点处是( )(A) 沿任何方向的方向导数不存在; (B)两个偏导数都不存在; (C) 不能取得极值; (D) 有可能取得极值. 三、画图题(本题共2小题,每小题3分,满分6分)1.写出函数(,)f x y =的定义域,并画出定义域的图形.2.画出由平面1,0,2y z z y ===及曲面2y x =所围空间立体的图形.四、解答题(本题共7小题,每小题7分,满分49分)1.设(),z z x y =是由方程()2223x z f y z -=-所确定的隐函数,其中f 可微,求23z zyx x y ∂∂+∂∂ .解:2 .考察函数221sin (,)(0,0)(,)0(,)(0,0)xy x y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点 (0,0)的连续性和可微性. 解:3.在曲面z xy =上求一点,使在该点处的法线与平面3290x y z +++=垂直,并写出该法线方程. 解:4.抛物面22z x y =+被平面4x y z ++=截成一个椭圆,求原点到这椭圆的最长与最短距离.解:5.计算1130dy x dx⎰.解:6.计算二重积分21D y x dxdy+-⎰⎰,其中D 是由直线1,1,0,1x x y y =-===围成的平面区域. 解:7.计算由球面2221x y z ++=,柱面220x y x +-=所围立体的体积. 解:五、证明题(9分)试证明:11201()(1)()2x ydx dy f z dz z f z dz=-⎰⎰⎰⎰A卷2007—2008学年第二学期《本科高等数学(下)》试卷(理工类)一、填空题:1~6小题,每小题4分,共24分. 请将答案写在指定位置上. 1. 平面0:1=-∏z y 与平面0:2=+∏y x 的夹角为 .2. 函数22y x z +=在点)2,1(处沿从点)2,1(到点)32,2(+的方向的方向导数为 .3. 设(,)f x y 是有界闭区域222:a y x D ≤+上的连续函数,则当0→a 时,=⎰⎰→Da dxdy y x f a ),(1lim20π .4. 区域Ω由圆锥面222x y z +=及平面1=z 围成,则将三重积分f dVΩ⎰⎰⎰在柱面坐标系下化为三次积分为 .5. 设Γ为由曲线32,,t z t y t x ===上相应于t 从0到1的有向曲线弧,R Q P ,,是定义在Γ上的连续三元函数,则对坐标的曲线积分化为对弧长的曲线积分有:Pdx Qdy Rdz Γ++=⎰______________________________________.6.将函数)0(1)(π≤≤+=x x x f 展开成余弦级数为__________________________________.二、单项选择题:7~12小题,每小题3分,共18分。

博弈论复习题及答案

博弈论复习题及答案1. 博弈论中,非合作博弈与合作博弈的主要区别是什么?答案:非合作博弈是指参与者之间没有约束性协议的博弈,每个参与者都独立地选择自己的策略以最大化自己的利益。

而合作博弈则允许参与者之间形成具有约束力的协议,共同合作以达到共同的目标。

2. 什么是纳什均衡?答案:纳什均衡是指在一个博弈中,每个参与者都选择了最优策略,并且考虑到其他参与者的策略后,没有参与者有动机单方面改变自己的策略。

3. 零和博弈与非零和博弈有何不同?答案:零和博弈是指博弈中所有参与者的收益总和为零,即一个参与者的收益必然导致另一个参与者的损失。

非零和博弈则是指参与者的收益总和不为零,参与者之间可能存在合作共赢的情况。

4. 如何判断一个博弈是否存在纯策略纳什均衡?答案:可以通过构建博弈的收益矩阵,然后寻找每个参与者在其他参与者策略给定的情况下的最佳响应策略。

如果存在一组策略,使得每个参与者在其他参与者策略不变的情况下,都没有动机改变自己的策略,那么这个策略组合就是一个纯策略纳什均衡。

5. 混合策略纳什均衡与纯策略纳什均衡有何不同?答案:纯策略纳什均衡是指参与者在均衡状态下选择的策略是确定的,而混合策略纳什均衡则是指参与者在均衡状态下选择的策略是随机的,每个策略都有一定的概率被选择。

6. 什么是支配策略?答案:支配策略是指在博弈中,无论其他参与者选择什么策略,某个参与者选择该策略都能获得比其他策略更好的结果。

7. 博弈论中的“囚徒困境”说明了什么?答案:“囚徒困境”说明了即使合作对所有参与者都有利,但由于缺乏信任和沟通,参与者可能会选择对自身最有利的策略,导致集体结果不是最优的。

8. 什么是博弈论中的“倒后归纳法”?答案:“倒后归纳法”是一种解决动态博弈的方法,通过从博弈的最后阶段开始,逆向分析每个阶段的最优策略,直到博弈的初始阶段。

9. 博弈论在经济学中的应用有哪些?答案:博弈论在经济学中的应用非常广泛,包括但不限于市场结构分析、拍卖理论、合同理论、产业组织、宏观经济政策分析等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国石油大学华东博弈论期末考试题
一、选择题
1.博弈中的一方如果尽全力挽回败局而不顾及长远利益的行为,属于(A)___。

A.恶性竞争
B.合作行为
C.收益最大化行为
D.竞争与合作兼备的行为
2.一个带有惯性的“传统主义者”(固有预期策略)在新环境下的行为,在多次经验后,慢慢能够适应新环境,逐渐接受新的预期策略,这体现了(A)___的思想。

A.心理学的保守性理论
B.经济学的最小失望理论
C.行为学的异化理论
D.心理学中的适应性学习理论
3.协调博弈的“Nash均衡”解的特点是
(A)___。

A.不存在个体可以单方面改变策略
B.不存在过度和不足的均衡条件
C.不存在自我满足预测或有向后不合理的预测
D.不存在外生变量的影响
二、简答题
1.请简述博弈论的定义、研究领域和研究方法。

博弈论是研究多方利益关系并且会互动的人在相互决策时如何选择最优策略的学科,主要研究博弈人员的行为和其它博弈有关的问题,如利益分割、决策计算等。

博弈论的研究领域包括多人博弈、非完全信息博弈、机制设计和博弈论应用等。

博弈论的主要研究方法包括数学分析、逻辑分析、实验和计算机模拟等。

2.请简述混合策略均衡的概念和求解方法。

混合策略均衡指在混合策略下达到的纳什均
衡。

混合策略是指博弈者每个策略都有一定
概率被选择,并不是每个策略都被选择的现象。

混合策略均衡的求解方法是利用混合策
略的纳什均衡概念,并使用概率统计方法,
来求解混合策略下的纳什均衡。

三、论述题
1.请论述如何运用博弈论方法解决企业决策
中的博弈问题。

企业中存在各种形式的博弈,如市场博弈、
参与竞争、和谈判等过程。

企业在进行决策时,可利用博弈论方法解决博弈问题。

首先,企业要明确所面临的博弈模型,了解博弈参
与者的行为方式和策略,并对可能出现的结
果进行预测。

其次,企业可以设定目标函数
或利润函数等来代表企业所追求的收益,从
而根据不同策略下的目标函数值来指导决策。

同时,企业可通过策略占优或支付博弈的方
法来判断最佳策略。

最后,企业要及时调整
决策,以应对博弈过程中出现的不确定性因素。

相关文档
最新文档