某电厂低加疏水端差过高缺陷诊断方法与治理措施

某电厂低加疏水端差过高缺陷诊断方法与治理措施
某电厂低加疏水端差过高缺陷诊断方法与治理措施

龙源期刊网 https://www.360docs.net/doc/642418755.html,

某电厂低加疏水端差过高缺陷诊断方法与治理措施

作者:朱振兴张铁赵国栋

来源:《科教导刊》2014年第15期

摘要本文以诊断某电厂回热低压加热器系统运行中存在的疏水端差大的问题为例,深入剖析了导致回热加热器疏水端差增大的原因,并通过实施相应的技术改造,确保了低压加热器基本恢复到额定端差工况下运行。本文还对提效改造后的节能效果进行经济性分析。

关键词疏水端差低温加热器改造

中图分类号:TM311 文献标识码:A

Diagnosis and Management Measures of Low Plus

Hydrophobic End too High in a Power Plant

ZHU Zhenxing[1], ZHANG Tie[2], ZHAO Guodong[2]

([1] Datang Changchun Third Power Plant, Changchun, Jilin 130103;

[2] Qinshan Nuclear Power Plant, Jiaxing, Zhejiang 314300)

Abstract In this paper, the diagnosis of a thermal power plant back to the low pressure heater system running a large difference in the presence of hydrophobic side issues, for example, in-depth analysis of the causes of Heater hydrophobic side difference increases, and by implementing appropriate technological innovation, to ensure that the low pressure heaters recovered to end poor conditions rated running. This paper also provides energy savings after the transformation of economic efficiency analysis.

Key words hydrophobic; end poor; low-temperature heater; reform

低温加热器是火电厂回热循环系统的重要设备之一,其投入率和健康状况对提高汽轮机的绝对内效率和热力系统的热经济性有着极其重要的作用。衡量加热器性能的主要指标有端差、给水温升、压降、端差等。某电厂汽轮发电机组系哈尔滨汽轮机有限公司生产的350MW汽轮机组,本汽轮机为亚临界、一次中间再热式、单轴两缸两排汽、单抽供热式机组。自投产以来,低压加热器疏水端差长期大于设计值,降低了加热器的效率,使机组热耗率和发电煤耗率上升。某电厂通过对不同工况下低温加热器历史运行数据和额定参数进行对比、分析,并结合低压加热器的解体检查,对低加疏水端差过高缺陷进行诊断,并采疏水冷却器结构改造等措

超疏水性材料

揭秘超疏水性表面 哈工大报讯(潘钦敏)[编者的话] 宋代周敦颐在《爱莲说》中写道“予独爱莲之出淤泥而不染”。一千年后的今天,人们已经可以从科学的角度解释莲这种“出淤泥而不染”的特性。与之相关的“仿生超疏水性表面”的研究已成为化学模拟生物体系研究中的一个新领域。本期,化工学院副教授潘钦敏为我们揭开“超疏水性表面”的神秘面纱。 浸润性是固体表面的重要特征之一,它由表面的化学组成和微观形貌共同决定。超亲水和超疏水特性是表面浸润性研究的主要内容。所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。人们对超疏水表面的认识,主要来自植物叶——荷叶表面的“自清洁”现象。比如,水珠可以在荷叶的表面滚来滚去,即使在上面浇一些污水,也不会在叶子上留下污痕。荷叶这种出污泥而不染的特性被称作“自清洁”效应。 荷叶效应——超疏水性原理 尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。 为什么这样的“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”,而一般疏水表面的接触角仅大于90度。 自然界里具有“自清洁”能力的植物除了荷叶之外,还有水稻、芋头之类的植物以及鸟类的羽毛。这种“自清洁”效应除了保持表面的清洁外,对于防止病原体的入侵还有特别的意义。因为即使有病原体到了叶面上,一沾水也就被冲走了。所以象荷花这样的植物即使生长在很“脏”的环境中也不容易生病,很重要的原因就是这种自清洁能力。 超疏水表面制备方法 人们知道荷叶自清洁效应已经很多年了,但是很长的时间内却无法做出荷叶那样的表面来。通过对自然界中典型的超疏水性表面——荷叶的研究发现,在低表面能的固体表面构建具有特殊几何形状的粗糙结构对超疏水性起重要的作用。基于这些原理,科学家们就开始模仿这种表面。现在,关于超疏水粗糙表面的研制已有相当多的报道。一般来说, 超疏水性表面可以通过两种方法来制备:一种是在疏水材料表面上构建粗糙结构;另一种是在粗糙表面上修饰低表面能的物质。比如材料学家们可以通过表面处理仿生制备了碳纳米管阵列、碳纳米纤维、聚合物纳米纤维等多种超疏水性表面。关于超疏水表面的研制方法总结起来主要有:熔融物的固化、刻蚀、化学气相沉积法、阳极氧化法、乳液聚合、相分离法以及模板法等。但是这些方法涉及复杂的化学物质和晶体生长,实验条件比较苛刻,成本高,还不能进行工

发电厂管理信息系统解析

发电厂管理信息系统技术白皮书

目录 1.系统目标分析 (5) 2.系统设计 (8) 2.1.系统总体模型 (8) 2.2.平台总体框架 (8) 2.3.业务系统总体结构图 (9) 2.4.系统设计原则 (9) 2.5.系统特点 (11) 3.系统功能 (12) 3.1.系统平台部分 (12) 3.1.1.功能模型 (12) 3.1.2.功能字典 (12) 3.2.运行管理子系统 (13) 3.2.1.功能模型 (13) 3.2.2.功能字典 (13) 3.3.设备管理子系统 (18) 3.3.1.功能模型 (18) 3.3.2.功能字典 (18) 3.4.技术监督管理子系统 (20) 3.4.1.功能模型 (21) 3.4.2.功能字典 (21) 3.5.物资管理子系统 (23) 3.5.1.功能模型 (24) 3.5.2.功能字典 (24) 3.6.工程项目管理子系统 (26) 3.6.1.功能模型 (26) 3.6.2.功能字典 (27) 3.7.燃料管理子系统 (30) 3.7.1.功能模型 (30) 3.7.2.功能字典 (30) 3.8.安监管理子系统 (31) 3.8.1.功能模型 (32) 3.8.2.功能字典 (32) 3.9.生产实时子系统 (35) 3.9.1.功能模型 (35) 3.9.2.功能字典 (36) 3.10.计划统计子系统 (36) 3.10.1.功能模型 (36) 3.10.2.功能字典 (36) 3.11.人力资源管理子系统 (37) 3.11.1.功能模型 (38)

3.11.2.功能字典 (38) 3.12.综合查询、辅助决策管理子系统 (39) 3.12.1.功能模型 (39) 3.12.2.功能字典 (40) 3.13.行政、后勤管理子系统 (40) 3.13.1.功能模型 (40) 3.13.2.功能字典 (40) 3.14.企业内、外网站 (41) 3.14.1.功能模型 (41) 3.14.2.功能字典 (41)

超疏水表面的制备方法及应用的研究进展

超疏水表面的制备方法及应用的研究进展 摘要:在材料科学发展日新月异的今天,超疏水表面一直是材料研究的重点, 并在军事、工业、民用方面具有极高的应用前景。而润湿性是决定材料疏水性的 关键所在,如何降低润湿性是提高材料疏水性的主要手段。本文简单介绍了表面 润湿性的基本理论,综述了超疏水表面的制备方法,及其相关应用的研究进展。 关键词:超疏水表面;润湿性;微/纳米结构 1.引言 在自然界中,许多生物都有着特殊的表面结构,而其中植物叶片的表面结构 因其特殊的性质引起了人们极高的兴趣。而在植物叶片中,荷叶叶片上表面的特 殊性质又极为明显,荷叶的表面不均匀且大量地分布着平均直径在5~9微米的乳突,而乳突又是由许多的平均直径在121.1~127.5纳米的纳米分支结构组成。除 此之外,我们还可以发现在荷叶的下一层表面中还存在着纳米级的蜡晶。通过蜡 晶结构与乳突组成的微纳结构,成功地减少了叶面与液体的接触面积。与此同时,通过微纳结构,荷叶也减少了与脏污的接触,便于脏污被带走,这就是荷叶叶片 所表现出的自清洁性。而溯其根本,自清洁性又是超疏水性的一个表现。自然界 中还有很多动植物的表面有超疏水的性质,例如在水面自由移动的水蛭。为了这 些动植物的研究,是人们对于超疏水表面的认识更加深入,这对于制备功能材料 具有很好的意义。 润湿性是影响超疏水性质的关键,是指某种液体在一个平面上的延展,覆盖 的能力。假设有一液面铺展在一平面上,气、液、固三种物质接触于同一点处。 气-液界面的切线与固-液接触面的夹角为θ,称θ为接触角。为了方便判定,通 常以水与固体表面的接触角θ的大小来判断润湿性,并区分亲疏水表面。当θ大 于150?时,该表面被称为超疏水表面;当θ大于90°时,被称为疏水表面;当θ 小于90°时,被称为亲水表面;当θ小于10°时,被称为超亲水表面。其中,90° 作为亲水与疏水的分界。 假设有一理想的平滑均匀平面,没有任何粗糙介质,则表面接触角θ满足杨 氏方程: 图1两种粗糙表面的润湿模型:Wenzel模型和Cassie模型 近年来,由于超疏水表面在日常生活中及工业生产等方面有极高的价值,超 疏水表面的制备及相关应用研究日益增多,本文主要综述超疏水表面的制备方法 与其相关应用。 2超疏水表面的制备方法 固体表面的润湿性主要由两个因素决定:表面的粗糙程度和表面能。目前常 见的制备方法有刻蚀法、模版法、气相沉积法、电纺法、溶胶-凝胶法、机械拉伸、相分离法等等。但以这种方法分类并不能准确而直观的表明其制备方法的本质依据。根据润湿性的影响因素,制备方法可大致分三类:赋予低表面能物质表面适 当的粗糙结构,对粗糙表面进行表面改性以降低表面能和降低表面能同时增加粗 糙程度。 2.1赋予低表面能物质粗糙结构 赋予低表面能物质粗糙结构大致而言,就是在低表面能物质表面构造微观结构,这种方法制备的超疏水表面具有可控性强、稳定性好的性质。

超疏水表面涂层的制备

超疏水表面涂层的制备 摘要:近年来,由于超疏水膜表面在自清洁、微流体系统和特殊分离等方面的潜在应用,超疏水性膜的研究引起了极大的关注。本文着重介绍了超疏水表面涂层的几种制备方法,并对超疏水表面涂层的发展前景进行了展望。 关键字:超疏水、自清洁、制备方法 超疏水表面已在自然界生物的长期进化中产生,许多动植物(如荷叶、水稻叶、蝉翼和水黾腿)表面具有超疏水和自清洁效果,最典型的代表是所谓的荷叶效应超疏水表面是指与水的接触角大于150°而滚动角小于10°的表面[1]。Barthlott和Neinhuis[2]通过观察植物叶表面的微观结构,认为自清洁特征是由粗糙表面上微米结构的乳突以及表面的存在蜡状物共同引起的。江雷[3]认为荷叶表面微米结构的乳突上还存在着纳米结构,而这种纳/微米阶层结构是引起表面超疏水的根本原因。固体表面超疏水性是由固体表面的化学成分和微观几何结构共同决定的。由于超疏水涂层独特的表面特性和潜在的应用价值而成为功能材料领域的研究 热点,,并获得越来越广泛的应用。 超疏水涂层的制备方法 通常,制备超疏水表面有两种途径一种是在具有低表面能的疏水性材料表面进行表面粗糙化处理;另一种是在具有一定粗糙度的表面上修饰低表面能物质。查找和整理前人对于超疏水薄膜的研究,整理下来超疏水薄膜的制备方法可分为6种方法[4],分别为:气相沉淀法、相分离法、模板法及微模板印刷法、刻蚀法、粒子填充法和其他方法。 气相沉积法 气相沉积法包括物理气相沉积法(PVD)、化学气相沉积法(CVD)等。它是将各种疏水性物质通过物理或化学的方法沉积在基底表面形成膜的过程。 Julianna A等[5]通过气相沉积法,在聚丙烯膜表面沉积多孔晶状聚丙烯涂层,使聚丙烯膜呈现超疏水性,接触角达到169°,其接触角提高了42°。他们同时对聚四氟乙烯膜进行沉积处理,接触角提高30°左右。他们用原子力显微镜表征其表面形貌,两种膜表面都呈高低不同的各种突起,他们认为正是这种高低不同的突起使膜的疏水性增强。 相分离法 相分离法是在成膜过程中通过控制成形条件,使成膜体系产生两相或多相,形成均一或非均一膜的成膜方式。该方法制备过程简便,实验条件较为容易控制,可以制备均匀、大面积的超疏水薄膜,具有较大的实际应用价值。 Takahiro Ishizaki和Naobumi Saito[6]把镁合金浸渍在硝酸铈水溶液中20分钟,二氧化铈结晶膜就可以在镁合金表面纵向生长了。晶体的密度随着浸渍时间的增加而增加。然后,把结晶膜浸泡在含有FAS和四(三甲基硅氧基)钛(TTST)甲苯溶液中,FAS分子就可以覆盖在结晶膜上,形成超疏水的涂层。这里TTST作为催化剂,促进FAS分子的水解和/或者聚合。 模板法及微模板印刷法 模板及软模板印刷法是以具有微米或纳米空穴结构的硬的或软的基底为模

超疏水表面的制备方法_石璞

功 能 高 分 子 学 报Journal of Fu nctional Polym ers Vol.21No.22008年6月 收稿日期:2008-03-10 基金项目:国家自然科学基金(10672197) 作者简介:石 璞(1976-),男,安徽安庆人,讲师,在读博士,研究方向:生物医学材料。E -m ail:s hipu1976@https://www.360docs.net/doc/642418755.html, 通讯联系人:陈 洪,E -mail:ch enh ong cs@https://www.360docs.net/doc/642418755.html, 综 述 超疏水表面的制备方法 石 璞1,3, 陈 洪2, 龚惠青3, 袁志庆1, 李福枝3, 刘跃军3 (1.中南大学粉末冶金研究所,长沙410083; 2.中南林业科技大学,长沙410004; 3.湖南工业大学包装新材料与技术重点实验室,湖南株洲412008) 摘 要: 超疏水表面材料具有防水、防污、可减少流体的粘滞等优良特性,是目前功能材料研究 的热点之一。其中超疏水表面的制备方法是研究的关键点。介绍和评述超疏水表面的制备方法, 对该领域的发展方向进行了展望。 关键词: 超疏水;表面;制备方法 中图分类号: O647 文献标识码: A 文章编号: 1008-9357(2008)02-0230-07 Methods to Prepare Superhydrophobic Surface SH I Pu 1,3, CH EN H ong 2, GONG H u-i qing 3, YUAN Zh-i qing 1, LI Fu -zhi 3, LIU Yue -jun 3 (1.Institute o f Pow der M etallurgy ,Central South U niv ersity ,Chang sha 410083,China; 2.Central South University of Forestry and Technology ,Changsha 410004,China; 3.Key Laboratory of New Material and Technology for Package,Hunan University of Technology ,Zhuzhou 412008,Hunan,China)Abstract: Superhydr ophobic m aterials have received tremendous attention in recent year s because of its special proper ties such as w ater -proof,ant-i po llution,reduction resistance o f flow ing liquid,etc.It beco mes ho tspo t research in functional m aterial field,and the preparation m ethods to acquir e excellent superhydropho bic surface are key to the r esearch.Repr esentative articles in r ecent years about prepar ation methods are review ed in this article.T he prospect of dev elo pments is proposed. Key words: super hy drophobic;surface;preparation methods 自从Onda 等[1]1996年首次报道在实验室合成出人造超疏水表面以来,超疏水表面引起了研究人员的广泛兴趣。总体说来,目前的研究主要集中在以下几个领域:(1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。高雪峰和江雷[2]、冯琳[3]、郭志光[4~5]等的论文中有详细的描述和精美的电镜照片。(2)使用无机物[6]或在金属表面制备具有超疏水性表面的材料。(3)使用高分子材料制备具有超疏水性的表面。(4)理论研究[7~11],主要是通过构建模型以探讨表面结构状况与接触角或滚 动角的关系。关于超疏水表面的基本理论,金美华的博士论文[38]有详细论述。 超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米-纳米级粗糙结构;另外一类是用低表面能物质在微米-纳米级粗糙结构上进行修饰处理。其中,制备合适微米-纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶-凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。 230

超疏水材料制备及其在油水分离中的应用研究进展

超疏水材料制备及其在油水分离中的应用研究进展 摘要随着世界机械化以及工业化的发展,全球的水资源污染逐渐严重,人民群众对于水资源的供应以及淡水资源的处理越发关注,且为水资源处理技术的发展做出了较大贡献。作为水资源净化技术的重要组成部分,油水分离净化技术水平不仅关系着淡水资源的提供质量,而且对于人民群众的身体健康也具有重要影响。基于此,本文将超疏水材料制备及其在油水分离中的应用作为主要研究内容,通过对超疏水材料进行简单阐述,进而对超疏水材料的应用以及其在油水分离中的应用进行详细的研究与分析。本文旨在为超疏水材料在油水分离中的应用研究提供几点参考性建议,并为水资源的净化处理技术发展提供积极的推动作用。 关键词超疏水材料制备;油水分离;应用研究 前言 由于工业化的发展导致海洋中的水资源污染情况越加恶劣,有大量的油产品以及机溶剂污染流入海洋中,对海洋中的水资源产生了严重破坏,进而为水资源净化技术提出了更高的要求,对人类生存与发展也产生了威胁。基于此种宏观环境,本文对超疏水材料在油水分离中的应用进行详细的研究与分析。 1 超疏水材料概述 超疏水材料主要是利用其中较为独特的化学结构以及其本身的润湿性能来作为水资源净化技术中的一种使用材料。由于该种材料在材质表面上具有润湿性的特殊原理,并能够作为超疏水材料而应用至油水分离的水资源净化中,其还具有两方面的特征。第一方面,表面为微纳米结构。第二方面,表面具有低表面能的特色。同时,在该种材料的制备过程中还具有成本较低以及制备材料环保的优势。因此,在油水分离的水资源净化中被广泛使用。但在超疏水材料的具体制备中还有耗时周期长的缺点,而该种缺点与实际制备中的优势相比并不对超疏水材料的实际应用构成威胁[1]。 2 超疏水材料的应用 由于超疏水材料在近几年的广泛使用中其本身的特殊性能受到各领域研究人员的关注,进而推动着超疏水材料在多个研究领域以及生活领域被应用。本文将超疏水材料的应用特性总结为以下五个方面。第一方面,自清洁的特性应用。由于超疏水材料本身具有良好的润湿性,在其进行使用的过程中能够对自身的灰尘与脏污进行自行清理。在具体的应用中,将超疏水材料的特性应用在城市高楼的建设中,利用超疏水材料的自清洁特性减少建筑玻璃清洁的次數,降低楼房玻璃清洁的成本,并在一定程度上节约水资源[2]。第二方面,抗冰雪的特性应用。由于在冰天雪地的寒冷地区,电线、航行等方面均会有风雪粘粘,进而导致电力能源的传输问题,并对正常的航行产生困扰。而应用超疏水材料的抗冰雪特性将

电厂管理信息系统

电厂管理信息系统(MIS) 电厂管理信息系统(MIS)包括:基建MIS和生产MIS。在建设期建立的基建MIS 是整个MIS的一部分。 1)基建期MIS 基建期MIS对基建期整个过程进行信息管理。主要包括:进度计划管理、质量管理、费用管理、合同管理、设备管理、材料管理、办公自动化管理、财务管理、档案管理、企业网站/综合查询等。基建MIS数据将在电厂建成后自动转入生产期MIS系统。 2)生产期MIS 建立电厂管理信息系统是给电厂的管理人员提供大量实时和非实时的、准确的、完整的、可靠的信息和进行加工、运算分析后的信息,以提高电厂管理的效率和决策的正确性,使发电厂的经营和管理者们将以往粗糙的管理经营方式精细化,以企业特征为根本,降低发电成本、减少维护费用、合理经营策略,以实现利润的最大化,确保企业在将来的竞争中立于不败之地。电厂管理信息系统MIS主要功能包括:经营管理、生产管理、行政管理、系统维护等四大部分。 厂级监控信息系统(SIS) 为了提高电厂的整体管理水平和运行效率,增强电厂的市场竞争力,拟建立厂级监控信息系统。该系统在传统的DCS、辅助车间控制系统与MIS之间形成了一个重要的管理控制一体化层面,完成对全厂的实时过程的优化管理和控制。 SIS的主要功能是采集DCS、TCS、全厂辅助车间等控制系统的数据来实现电厂运行优化、负荷调度分配优化、经济性能分析、设备故障诊断及设备寿命管理等功能,对全厂的实时过程进行优化管理,为电厂运行管理人员提供运行指导和决策依据,确保电厂在保证安全生产的基础上通过最优化控制策略使整个电厂的设备潜能得到充分发挥,使整个生产保持在最佳、最稳定、最经济的运行状态,用最少的成本带来最多的效益。 厂级监视信息系统(SIS)的功能包括:生产过程信息采集、处理和监视;厂级经济性能计算、分析和操作指导等功能。SIS为厂级管理信息系统(MIS)提供所需的生产过程信息。 厂级监控信息系统(SIS) 3.1设计依据 SIS应符合下列标准或与之相当的其它国际标准:

中国在超疏水材料研究方面的进展

中国在超疏水材料研究方面的进展 分子一班 张雷 3013207391 Abstract : 摘要:具有超疏水性、超双疏性等的微纳复合材料在人们的日常生活和国民生产各个部门都有着广泛的应用前景,因而也引起科学界的广泛关注。由于固体表面的浸润性决定于其表面的化学组成和表面形貌,因此通过改变固体的表面自由能和表面形貌可以实现对固体材料表面浸润性控制。近些年来,这方面的研究吸引了许多科学家和课题组的注意。可以说,超疏水、超双疏材料的制备正成为一个研究的热点问题。本文在查阅有关文献的基础上,分析中国在超疏水、超双疏材料制备方面的进展。 关键词:超疏水、超双疏、表面改性、润湿性

1、背景: 表面润湿性是指液体(通常为水)在固体材料表面的铺展能力。它是固体表面的重要性质之一, 许多物理化学过程,如吸附、润滑、黏合、分散和摩擦等均与表面的润湿性密切相关1。研究表明, 固体表面的润湿性是由其化学组成和微观几何结构共同决的, 定外场如光、电、磁、热等对固体表面的润湿性也有很大的影响2。固体表面的润湿性通常用水滴在其表面上形成的接触角来衡量, 接触角小于9 0°的表面称为亲水表面,大于9 0°的表面称为疏水表面, 而超疏水固体表面是指与水的接触角为1 5 0°以上的表面。 自然界中存在很多超疏水表面, 最典型的如以荷叶为代表的多种植物叶子表面(荷叶效应Lotus-effect)、蝴蝶等鳞翅目昆虫的翅膀以及水鸟的羽毛等3。受这些自然界中现象的启发,许多课题组都开展了超疏水材料制备方面的研究。 2、超疏水材料制备方法分类: 2.1 模板法: 江雷课题组组报道了一种以多孔氧化铝为模板制备超疏水材料的方法2。具体是将一定孔径的氧化铝模板覆盖在聚碳酸酯(PC)膜上,然后加热PC膜将其溶化并将其压入模板的孔内,最后除去模板即可得到纳米棒状的阵列结构。将模板制备成圆筒状重复上述过程可以得到大面积的阵列PC纳米棒。

2011-金属基体超疏水表面制备及应用的研究进展

金属基体超疏水表面制备及应用的 研究进展 Progress in Fabrication and A pplicat ion of Superhydrophobic Surfaces on M etal Substrat es 徐文骥,宋金龙,孙 晶,窦庆乐 (大连理工大学精密与特种加工教育部重点实验室,辽宁大连116024) XU Wen ji,SONG Jin long,SUN Jing,DOU Q ing le (Key Labor ator y for Precision and No n traditio nal M achining Technolog y fo r M inistry of Education,Dalian U niversity of T echno logy,Dalian116024,Liaoning,China) 摘要:在介绍润湿性相关理论的基础上,综述了国内外金属基体超疏水表面的制备方法及应用,重点讨论了阳极氧化法、电化学沉积法、化学腐蚀法、化学沉积法、一步浸泡法、热氧化法、模板法、复合法等,及超疏水表面在响应开关、自清洁、流体减阻、耐腐蚀、防冰霜、油水分离、微型水上运输器等方面的应用,最后评述了各种方法的特点,提出了在金属基体上制备超疏水表面所面临的问题。 关键词:金属基体;超疏水表面;研究进展 中图分类号:T G66 文献标识码:A 文章编号:1001 4381(2011)05 0093 06 Abstract:On the basis of the fundamental theories,the fabr ication and application of superhydropho bic surfaces on metal substrates w er e r eview ed.It em phasized to discuss preparation methods of anod ization,electro chem ical depositio n,chem ical etching,chemical deposition,one step solution imm er sion,thermal ox idatio n,template,co mposite,etc.Super hy drophobic surfaces on m etal substrates w ere also summarized in the applicatio n of response sw itch,self cleaning,drag reduction,corro sion resistance,anti icing,w ater and oil m ixture separatio n,miniatur e transporter over w ater.M ean w hile,characteristics of different kinds o f techniques w ere discussed.Finally,the pr oblem s about fabricatio n of super hy drophobic sur faces on m etal substrates w er e bro ug ht fo rw ar d. Key words:metal substrate;superhydropho bic surface;research progr ess 润湿性是固体表面的重要性质之一[1],常用接触角来衡量,当接触角小于90 时为亲水表面,小于5 时为超亲水表面,大于90 时为疏水表面,大于150 时为超疏水表面。在自然界中,到处可见超疏水现象,荷叶、水稻叶子等植物叶片具有自清洁效应,水黾能够毫不费力地站在水面上[2],蝴蝶翅膀能在雨中不被淋湿。1996年Onda等[3]首次报道了人工合成超疏水表面, 1997年,德国植物学家Bar thlott和Neinhuis[4,5]对植物的超疏水性进行了系统研究,发现荷叶的自清洁性是由表面微米结构和表面蜡层共同引起的。江雷等[6]对荷叶的进一步研究,发现微米结构的乳突上还存在纳米结构,而微纳米结构和表面蜡层共同作用是引起荷叶表面超疏水的根本原因。 由于超疏水表面具有自清洁[7,8]、减阻[9-11]、耐腐蚀[12,13]、防结冰[14-19]等特性,而金属材料在工农业生产中又被广泛地应用,因此研究金属基体超疏水表面的制备方法及应用极为重要,也引起了各国研究人员的极大兴趣。 1 相关理论 1.1 Yong氏模型 当少量液滴滴在理想固体(绝对光滑)表面,在固、液、气三相的交界处,由固、液界面经过液体内部至液、气界面的夹角称为接触角 ,其大小满足Yo ng氏方程[20]: cos =( sg- sl)/ lg(1)式中: sg, sl和 lg分别表示固 气、固 液、液 气界面的表面张力。 由式(1)可得,当液体确定时,即 lg确定时,接触

超疏水表面

关于超疏水表面的基本介绍及其制备 【摘要】超疏水表面材料具有防水,防污,可减少流体的粘滞等优良特性,是目前功能材料研究的热点之一。其中关于超疏水表面材料性能的研究及其制备是关键,从微观角度对其性能的说明,介绍和评述超疏水的制备方法,并对该领域的发展进行了展望。 【引言】尽管人们很早就知道荷叶表面“自清洁”效应,但是一直无法了解荷叶表面的秘密。直到20世纪90年代,德国的两个科学家首先用扫描电子显微镜观察了荷叶表面的微观结构,认为“自清洁”效应是由荷叶表面上的微米级乳突以及表面蜡状物共同引起的。其后江雷等人对荷叶表面微米结构进行深入分析,发现荷叶表面乳突上还存在纳米结构,这种微米与纳米结构同时存在的二元结构才是引起荷叶表面“自清洁”的根本原因。自从Onda等1996年首次报道在实验室合成出人造超疏水表面以来,这引起了研究人员的广泛兴趣。总体来说,目前的研究主要集中以下几个领域:1)研究自然界中具有超疏水表面的植物和动物,为开发具有新型表面结构的材料提供灵感。2)使用无机物或在金属表面制备具有超疏水性表面的材料。3)使用高分子材料制备具有超疏水性的表面。4)理论研究,主要是通过构建模型以探讨表面结构状况与接触角或滚动角的关系。 超疏水表面一般可以通过两类技术路线来制备:一类是在低表面能的疏水材料表面上构建微米纳米级粗糙结构;另外一类是用低表面能物质在微米纳米级粗糙结构上进行修饰处理。其中,制备合适微米纳米级粗糙结构的方法是相关研究的关键。从制备方法来说,主要有蒸汽诱导相分离法、模板印刷法、电纺法、溶胶凝胶法、模板挤压法、激光和等离子体刻蚀法、拉伸法、腐蚀法以及其他方法。在此对各种制备方法进行分类评述。 【超疏水表面特性】根据水在固体表面的浸润程度,固体可以分为亲水性和疏水性,所谓超疏水(憎水)表面一般是指与水的接触角大于150度的表面。对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。只有拥有较大的接触角(CA>150和较小的滚动角(SA<10)的表面才是真正意义上的超疏水表面。所谓接触角,就是液滴在固体表面形成热力学平衡时所持有的角。通过液体-固体-气体接合点中水珠曲线的终点和固体表面的接触点测定出来。滚动角可作为评价表面浸润性的另一指标,指的是一定质量的液滴在倾斜面上开始滚动的临界角度。滚动角越小,固体表面表现出的疏水性越好。因为地球的重力作用,水滴在倾斜的固体表面有下滑的趋势。随着固体倾斜角的变大,水滴沿斜面方向的下滑分力也在不断增大,当倾斜角增大到某一临界角度时,水滴会从固体表面滑落下来,这时的临界角就是水在此种固体表面的滚动角。滚动角越小,固体表面的超疏水性能越好。 接触角三大理论 杨氏方程(1805年)

超疏水材料研究报告进展

超疏水材料研究进展 摘要:本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b)

发电厂管理信息系统的设计与实现

发电厂管理信息系统的设计与实现 发表时间:2019-01-03T14:47:09.240Z 来源:《基层建设》2018年第34期作者:谢志华 [导读] 摘要:近年来,随着我国国民经济提高,我国的电力事业取得了飞速的发展,同时随着计算机与信息技术近几年的迅猛发展也带动了各个产业的电子信息化,使各产业的各项工作通过信息网络更加便捷迅速的开展。 河北大唐国际迁安热电有限责任公司河北省唐山市迁安市 064400 摘要:近年来,随着我国国民经济提高,我国的电力事业取得了飞速的发展,同时随着计算机与信息技术近几年的迅猛发展也带动了各个产业的电子信息化,使各产业的各项工作通过信息网络更加便捷迅速的开展。利用信息技术手段提高发电厂竞争力,建设信息化的数据平台,使发电厂企业的核心竞争力增强是目前相关单位管理人员的需求。针对这种需求,本文从发电厂的角度出发对管理信息系统的设计与实现展开了研究与探讨。 关键词:发电厂;管理信息系统;人机系统 0.引言 20世纪,随着全球经济的蓬勃发展,众多经济学家纷纷提出了新的管理理论。其中计算机与信息技术领域的管理信息系统的提出使各行各业的业内人士纷纷给予期望与好评。经济学家们设想以较低的管理成本得到准确度较高,传播更为迅速的信息,并且通过这种管理使各项各层工作能得到更好的分配以及高层更好的掌控中低层的工作。现今管理信息系统已被普遍运用于各个领域之中。近几年,随着我国发电厂的数量及工作的增加,为了提高发电厂的工作效率,引进管理信息系统是目前解决相对问题的重要措施。本文综合考虑了目前我国发电厂生产管理运行以及科学管理方式,对管理信息系统引进发电厂与计划实现展开了探讨。 1.管理信息系统的含义与特点 管理信息系统(简称MIS)是一个以人起主导作用,利用计算机硬件、软件、网络通信设备以及其他办公设备,对信息进行采集利用的系统。 他的整个信息系统是由信息的采集、传递、储存、加工、维护和信息的使用六个方面组成。随着时代的变迁和如今计算机与通讯技术的进步,MIS的定义也随着时代潮流不断更新,在现阶段普遍被认为是由人和计算机设备或其他信息处理手段、组成并用于管理信息。因此管理信息系统具有综合性的特点,他是一个综合的人机系统,由人掌控相应设备对相关信息进行管理与应用,将管理方法与手段完美结合。同时它也是多学科交叉形成的边缘学科,支持高层决策、中层控制和基层运作的集成化系统,保证了组织各层分工明确,避免工作会造成混乱。当然,具有可扩充性和功能的补充性也是管理信息系统备受赞赏的重点之一,它能根据企业相应状态及发展要求下对原有系统功能进行修改和补充,使企业在对应的时间有对应的决策。发电厂企业的运行不仅仅是一个纯技术的工作,而是与机构组织、管理模式、工作流程、人员素质等方面因素都息息相关的整体化流程,在现今的电力化市场环境下,发电厂企业迫切需要实施完整,统一的信息化管理系统流程,管理信息系统的引进使得电力产业信息化管理更为规范,同时也使资源共享更为便利,电力企业信息建设能够真正的实现电力企业的数据共享。当然,良好的管理信息系统可以为发电厂单位提供整体高效的管理手段,大大降低了管理成本的投资同时也提高了效益。 2.发电厂管理信息系统的设计与实现 2.1发电厂管理信息系统的设计 过去传统意义的信息系统只能起到实现生产、运行、管理数据的采集和储存,仅仅只用于最基本的数据收集与储存。这种方式的管理存在许多问题,例如设备管理单一,局限于设备的台账和检修,忽视监督流程以及考核;缺乏分析功能和有效的决策与支持,倘若管理人员需要了解一段时间的用电量与电价时,就必须亲自去查阅大量分布于各个部门的资料,而这种情况因为时间问题是往往没有可行性的,最后相关人员就根据一般经验进行判断用量,这种情况在加大了管理层人员工作的同时也不具有权威性。显而易见,在如今网络发达的时代中,过去传统意义上的管理系统已经不能满足现今形势下电力企业的需求,所以引进计算机与信息技术领域里的管理信息系统被广大人士关注,建立新的信息系统已经刻不容缓。 在建立管理信息系统过程中可分为设备管理、生产管理、经营管理、综合管理查询以及系统维护等几个方面进行。首先设备管理是是电厂运行和维护管理的基础,所以设备维修是设备管理的集中体现,建立设备基础数据及其相关型号信息直接影响着设备运行与维修的速度,比如将设备供应商、保修信息、备用零件储存位置和设备型号录入系统中,假如设备在运行中出现故障,维修人员可以通过系统管理迅速做出对策进行修补并做出相关维修记录,以便在往后的检修中有重点的进行。发电厂生产管理是电力企业最基本的一项活动,生产管理是整个企业管理中的基本组成部分,设备运行过程中所有工作的值班日志、运行记录本,值班日志中可以记录主要设备的运行状态、参数、值班记录,并提供实时的数据采集功能。建立信息管理系统,可以方便员工的工作查询,能够通过按时间、关键词以及编号搜索值班记录,准确无误且全面的定义每一台设备正在或者将要进行的工作,同时也可以监控每一台机器的使用。系统也会根据多方面的因素科学安排设备运行及检修计划,严格控制进度和流程,在这种情况下每个设备按照一定的期限与指标进行考察,在降低了设备事故多发性的同时也提高了工作效率。经营管理不仅是对企业过去经营活动的总结同样也是对未来经营活动的预测和指导,MIS的运用对全厂的生产经营统计、计划、成本核算和价格管理工作产生了快速达到的作用,它将帮助计划管理人员更好的做好本职工作,减轻工作人员繁琐的工作量和工作负担,有效提高各项工作的效率。MIS加快了信息的整理和传递,促进规划、计划制定的科学性与权威性,使各部门有序开展工作,做到经济且安全发电。以人力资源为主的办公室管理更是整个企业的核心,在运用MIS后原本居于相关数据采集和整理方面的工作人员工作量得到明显的减少,在不费人力的情况下统计与整理数据提高了人力资源的利用效率,降低了人力资源的成本,根据网络自动整理的数据也避免了少数工作人员弄虚作假,有效调动了人员的工作积极性。系统维护管理中应对整个MIS系统提供软件的权限、代码、系统日志等系统设定进行维护与管理,加强对系统运行的信息管理,提高系统扩展能力,能够实时的改善及扩充系统功能。 2.2发电厂管理信息系统的实现 针对上述所叙述的状况,管理信息系统的实现离不开发电厂高层、中层、低层的各层人员的支持与努力。在设备管理过程中,对于系统维护电厂所有与生产设备有关的的设备台账信息资料,中低层人员应该采用结构化的信息形式,进行设备的基本信息定义,根据系统设定一定的时间对设备进行定期的维护检查,做好相应的记录工作。运行管理是生产管理的重要步骤,管理系统的操作技术人员利用网络技术辅助发电运行人员接收调度指令并安排好发电计划,对设备运行及人员管理日志进行实时数据采集和读取,使人员和设备都有较准确的

神奇的超疏水材料:我虐水滴千百遍水滴待我如初恋

神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋! 神奇的超疏水材料:我虐水滴千百遍,水滴待我如初恋!一盆水泼向一块金属板,水珠像钢珠一样滚落,金属板仍然干爽;一只船桨浸入水缸,拿出来竟然未带出一滴水珠,就像是从没放进去过一样;一杯水倒在一块经过特殊处理的玻璃板上,水紧紧靠在中央“不越雷池半步”,即使用手搅出来一两滴也立即跑回去……这些违背我们肉眼“常识”的现象,就是“超疏水材料”捣的鬼。这种通过改变材料的表面自由能和表面粗糙度获得的新型材料,灵感来自于自然界中的荷叶。由于其防水、防腐蚀、抗菌的特殊效果,如今已经成为国际热门的研究领域,可以在环保、工业、医疗等各种你想象不到的领域大展身手。一、超疏水简介超疏水技术是一种具有特殊表面性质的新型技术,具有防水、防雾、防雪、防污染、抗氧化、防腐蚀和自清洁以及防止电流传导等重要特点,在科学研究和生产、生活等诸多领域中有极为广泛的应用前景。超疏水技术对于建筑工业、汽车工业、金属行业等的防腐防锈及防污也很有现实意义。特别是近年来的微电子系统、光电子元器件及纳米科技等高新技术的高速发展,给超疏水涂层的研究和应用于勃勃生机。超疏水材料的研究以诗句“出淤泥而不染,灌清涟而不妖”为契机,以科学的手段向我们解释这一奇特的自然现象,荷花表面覆盖的天然

超疏水薄膜,使得水滴聚集成股,顺势流下,冲刷着荷叶表面的淤泥,营造了出淤泥而不染的状态。因此荷叶在雨后会变得一尘不染,这种现象在生活中很常见,我们称之为“荷叶效应”。二、超疏水现象荷叶效应--超疏水性原理为什么“粗糙”表面能产生超疏水性呢?对于一个疏水性的固体表面来说,当表面有微小突起的时候,有一些空气会被“关到”水与固体表面之间,导致水珠大部分与空气接触,与固体直接接触面积反而大大减小。由于水的表面张力作用使水滴在这种粗糙表面的形状接近于球形,其接触角可达150度以上,并且水珠可以很自由地在表面滚动。即使表面上有了一些脏的东西,也会被滚动的水珠带走,这样表面就具有了“自清洁”的能力。这种接触角大于150度的表面就被称为“超疏水表面”。而一般疏水表面的接触角仅大于90度。三、自然界中的超疏水现象1999年,Barthlott和Neihuis认为:自清洁的特征是由于粗糙表面上的微米结构的乳突以及表面蜡 状物的存在共通引起的;乳突的平均直径为5~9um。荷叶表面的微/纳米复合结构2002年,江雷等提出微米结构下面还存在纳米结构,二者相结合的阶层结构才是引起表面超疏水的根本原因。单个乳突由平均直径为120nm结构分支组成。超疏水各向异性的水稻叶子水稻叶表面存在滚动的各向异性,水滴更容易沿着平行叶边缘的方向流动。超疏水的蝉翼表面蝉翼表面由规则排列的纳米柱状结构组成,纳米柱的直

超疏水材料研究进展

超疏水材料研究进展

超疏水材料研究进展 摘要: 本文介绍了超疏水材料的性质、应用、转变、制备以及存在的问题等。详细介绍了超疏水材料在流体减阻中、抗腐蚀中、建筑防污耐水等领域内、微流体控制方面的应用和常用的几种制备方法。 关键词:超疏水材料;超疏水应用;制备 1 引言 近年来,超疏水材料引起了人们的普遍关注。所谓超疏水材料,就是指水在材料平面上的接触角大于150°的材料。超疏水材料的特性最初是在荷叶上发现的,荷叶表面的超疏水特性赋予了它们非常好的自清洁效应,污染物很容易被水滴带走[1]。有关超疏水的基础理论研究始于上世纪50年代,因其优异的自洁性有望在国防、众多工业领域和日常生活等方面有广阔的应用前景,研究工作备受各国重视。固体表面的润湿性是由其化学组成和表面微观结构共同决定的。目前,通过对荷叶表面自洁性的仿生研究表明,因其层级微、纳米结合的双微观结构和覆盖在上面的低表面能物质的协同效应而表现出完美的疏水性[2]。 人们通常用液体在材料表面的接触角来表征材料表面的润湿性。按照水滴在材料表面接触角大小的不同,我们可以将材料进行如下分类当接触角小于90o时,我们认为这种材料是亲水材料;如果水滴在材料表面的接触角小于5o,那么这种材料是超亲水材料,例如经浓硫酸和双氧水(体积比为7:3)处理过的硅片,水滴在它的上面会立刻铺展开,展示出超亲水的性质;当材料表面接触角大于90o时,我们认为这种材料是疏水材料;如果材料的表面接触角大于150o那么我们认为这种材料是超疏水材料,例如我们前面所提到的荷叶,水滴在其表面的接触角大于150o,不能稳定停留,极易滑落,因而造就了它“出淤泥而不染”的性质。如图1所示,(a)为亲水,(b)为疏水。 (a) (b) 图1 接触角示意图

相关文档
最新文档