1993年诺贝尔化学奖.
【历届诺贝尔奖得主(八)】1993年物理学奖,化学奖和生理学或医学奖

1993年12月10日第九十三届诺贝尔奖颁发。
物理学奖国科学家赫尔斯、泰勒因发现一对脉冲双星,即两颗靠引力结合在一起的星,这是对爱因斯坦相对论的一项重要验证而共同获得诺贝尔物理学奖。
约瑟夫·胡顿·泰勒(JosephHootonTaylor,1941年3月29日费城),美国物理学家,1993年获诺贝尔物理学奖。
泰勒继1974年休伊什教授因发现脉冲星而获得诺贝尔物理学奖之后,1993年拉塞尔·赫尔斯和约瑟夫·泰勒两位教授又因发现射电脉冲双星共同获得该年度诺贝尔物理学奖。
按照广义相对论理论的预言,宇宙空间中可能存在引力场及引力波,人们在地球上的实验室中建造了许多探测宇宙引力波的仪器装置,可均未捕捉到过有关引力波的可靠信号。
引力波的探测成为一项为物理学家们牵肠挂肚的重大课题。
辐射比较强的引力波源都是天体系统,因此探测引力波也是天体物理学研究的重大课题。
任何一种新的理论都需要观测和实验来验证。
然而,有关引力波理论的验证让人们等了半个多世纪。
1968年泰勒获得博士学位后,立即投入发现才1年的脉冲星的观测研究,为了搜寻周期更短、距离更远、流量更弱的脉冲星,他筹划了一个技术先进的脉冲星巡天计划。
选定了阿雷西博这个世界最大的天线、研制了有消色散能力的接收机和应用计算机来处理观测资料。
执行这一巡天观测的是他的学生赫尔斯,他以惊人的毅力和工作热情顺利完成了140平方度天区的观测和资料处理,在当时脉冲星仅有100颗的情况下,一下子增加了40颗,对脉冲星的观测研究有巨大的促进。
特别是发现了第一个脉冲双星系统,更使这一次巡天观测成果身价百倍。
这第一个射电脉冲双星非同一般,它是一个轨道椭率很大、轨道周期很短的双中子星系统,可以成为验证引力辐射存在的空间实验室。
根据广义相对论理论推算,这个双星系统的引力辐射很强,将导致它的轨道周期发生变化,其变化率为秒/秒。
只要在观测上能测出这个双星轨道周期的变化,就可以对广义相对论预言的引力波是否存在作出判断。
历届诺贝尔奖获奖名录10(1990~1999年度)

1990~1999年度诺贝尔奖获奖名录1990年12月10日第九十届诺贝尔奖颁发。
美国科学家弗里德曼、肯德尔、加拿大科学家泰勒因发现夸克的第一个证据而共同获得诺贝尔物理学奖。
美国科学家科里因创立关于有机合成的理论和方法获诺贝尔化学奖。
美国医生默里因成功地完成第一例肾移植手术、美国医生托马斯因开创骨髓移植而共同获得诺贝尔生理学或医学奖。
墨西哥作家帕斯因作品“体现了一种完整的人道主义”获诺贝尔文学奖。
苏联总统戈尔巴乔夫获诺贝尔和平奖。
美国经济学家马克威茨因发展了有价证券理论、美国经济学家米勒因对公司财政理论的贡献、美国经济学家夏普因提出资本资产定价模式而共同获得诺贝尔经济学奖。
1991年12月10日第九十一届诺贝尔奖颁发。
法国科学家热纳因把研究简单系统有序现象的方法,应用到更为复杂物质、液晶和聚合体的组合上作出贡献获诺贝尔物理学奖。
瑞士科学家恩斯特因对核磁共振光谱高分辩方法发展作出重大贡献获诺贝尔化学奖。
德国科学家内尔、扎克曼因发现细胞中单离子道功能,发展出一种能记录极微弱电流通过单离子道的技术而共同获得诺贝尔生理学或医学奖。
南非女作家戈迪默因小说《贵宾》、《七月一家人》和《自然资源保护论者》获诺贝尔文学奖。
缅甸反对党全国民主联盟领导人昆山素季获诺贝尔和平奖。
美国经济学家科斯因揭示交易价值在经济组织结构的产权和功能中的重要性获诺贝尔经济学奖。
1992年12月10日第九十二届诺贝尔奖颁发。
法国科学家夏帕克因发明多线路正比探测器,推动粒子探测器发展获诺贝尔物理学奖。
美国科学家马库斯因对化学系统中的电子转移反应理论作出贡献获诺贝尔化学奖。
美国科学家费希尔、克雷布斯因在逆转蛋白磷酸化作为生物调节机制的发现中作出巨大贡献而共同获得诺贝尔生理学或医学奖。
圣卢西亚作家沃尔科特因以其植根于多种文化的历史想像力作出了光辉的诗作获诺贝尔文学奖。
危地马拉女政治家门楚因为其冲破不同种族、文化和社会疆界所做出的努力获诺贝尔和平奖。
1950~1959年度诺贝尔奖获奖名录

1950~1959年度诺贝尔奖获奖名录1957年12月10日第五十七届诺贝尔奖颁发。
英国科学家托德因研究核苷酸和核苷酸辅酶获诺贝尔化学奖。
1958年12月10日第五十八届诺贝尔奖颁发。
英国科学家Sanger因确定胰岛素分子结构获诺贝尔化学奖。
美国科学家比德尔、塔特姆因对化学过程的遗传调节的研究、美国科学家莱德伯格因有关细菌的基因重组和遗传物质结构方面的发现而共同获得诺贝尔生理学或医学奖。
1959年12月10日第五十九届诺贝尔奖颁发。
美国科学家奥乔亚、Kornberg因人工合成核酸,并发现其生理作用而共同获得诺贝尔生理学或医学奖。
1962年12月10日第六十二届诺贝尔奖颁发。
英国科学家肯德鲁、佩鲁茨因研究蛋白质的分子结构获诺贝尔化学奖。
英国科学家Crick、威尔金斯、美国科学家Watson沃森因发现脱氧核糖核酸的分子结构而共同获得诺贝尔生理学或医学奖。
1968年12月10日第六十八届诺贝尔奖颁发。
美国科学家Holley、Khorana、Nirenberg因解释遗传密码而共同获得诺贝尔生理学或医学奖。
1970年12月10日第七十届诺贝尔奖颁发。
阿根廷科学家莱格伊尔因发现糖核甙酸及其在碳水化合物的生物合成中的作用获诺贝尔化学奖。
1971年12月10日第七十一届诺贝尔奖颁发。
加拿大科学家赫茨伯格因研究分子结构、美国科学家安芬森因研究核糖核酸梅的分子结构而共同获得诺贝尔化学奖。
英国科学家萨瑟兰因在分子水平上阐明激素的作用机理获诺贝尔生理学或医学奖。
1972年12月10日第七十二届诺贝尔奖颁发。
美国科学家穆尔、斯坦因因研究核糖核酸梅的分子结构而共同获得诺贝尔化学奖。
1974年12月10日第七十四届诺贝尔奖颁发。
美国科学家克劳德因研究细胞的结构和功能、比利时科学家德·迪夫因发现溶酶体、美国科学家帕拉德因发现核糖核蛋白质而共同获得诺贝尔生理学或医学奖。
1978年12月10日第七十八届诺贝尔奖颁发。
瑞士科学家阿尔伯、美国科学家史密斯、内森斯因发现并应用脱氧核糖核酸的限制酶而共同获得诺贝尔生理学或医学奖。
1993年诺贝尔化学奖

操作步骤 1.在冰浴中,按以下次序将各成分加入一无菌0.5ml离心管中。 10×PCR buffer 5 μl dNTP mix (2mM) 4 μl 引物1(10pM) 2 μl 引物2(10pM) 2 μl Taq酶 (2U/μl) 1 μl DNA模板(50ng-1μg/μl) 1 μl 加ddH2O至 50 μl 视PCR仪有无热盖,不加或添加石蜡油。 2. 调整好反应程序。将上述混合液稍加离心,立即置PCR仪上,执行 扩增。一般:在93℃预变性3-5min,进入循环扩增阶段:93℃ 40s → 58℃ 30s → 72℃ 60s,循环30-35次,最后在72℃ 保温7min。 3. 结束反应,PCR产物放置于4℃待电泳检测或-20℃长期保存。 4.PCR的电泳检测:如在反应管中加有石蜡油,需用100μl氯仿进行抽 提反应混合液,以除去石蜡油;否则,直接取5-10μl电泳检测。
Introduction
Polymerase chain reaction (PCR) has rapidly become one of the most widely used techniques in molecular biology and for good reason: it is a rapid, inexpensive and simple means of producing relatively large numbers of copies of DNA molecules from minute quantities of source DNA material-even when the source DNA is of relatively poor quality. PCR involves preparation of the sample, the master mix and the primers, followed by detection and analysis of the reaction products
历届诺贝尔化学奖得主及其成就

历届诺贝尔化学奖得主及其成就历届诺贝尔化学奖得主及其成就(1960——2008)(2009-04-03 11:30:05)1960年W.F.利比(美国人)发明了“放射性碳素年代测定法”1961年M.卡尔文(美国人)揭示了植物光合作用机理1962年M.F.佩鲁茨,J.C.肯德鲁(英国人)测定出蛋白质的精细结构1963年K.齐格勒(德国人),G.纳塔(意大利人)发现了利用新型催化剂进行聚合的方法,并从事这方面的基础研究1964年D.M.C.霍金奇(英国人)使用X射线衍射技术测定复杂晶体和大分子的空间结构1965年R.B.伍德沃德(美国人)对有机合成法的贡献1966年R.S.马利肯(美国人)用量子力学创立了化学结构分子轨道理论,阐明了分子的共价键本质和电子结构1967年R.G.W.诺里什,G.波特(英国人),M.艾根(德国人)发明测定快速化学反应技术1968年L.翁萨格(美国人)从事不可逆过程热力学的基础研究1969年O.哈塞尔(挪威人),D.H.R.巴顿(英国人)为发展立体化学理论作出贡献1970年L.F.莱洛伊尔(阿根廷人)发现糖核苷酸及其在糖合成过程中的作用1971年G.赫兹伯格(加拿大人)从事自由基的电子结构和几何学结构的研究1972年C.B.安芬森(美国人)确定了核糖核苷酸酶的分子氨基酸排列S.莫尔,W.H.斯坦(美国人)从事核糖核苷酸酶的活性区位研究1973年E.O.菲舍尔(德国人),G.威尔金森(英国人)从事具有多层结构的有机金属化合物的研究1974年P.J.弗洛里(美国人)从事高分子化学的理论、实验两方面的基础研究1975年J.W.康福思(澳大利亚人)研究酶催化反应的立体化学V.普雷洛格(瑞士人)从事有机分子以及有机反应的立体化学研究1976年W.N.利普斯科姆(美国人)从事甲硼烷的结构研究1977年I.普里戈金(比利时人)主要研究非平衡热力学,提出了“耗散结构”理论1978年P.D.米切尔(英国人)从事生物膜上的能量转换研究1979年H.C.布郎(美国人),G.维蒂希(德国人)研制了新的有机合成法1980年P.伯格(美国人)从事核酸的生物化学研究W.吉尔伯特(美国人),F.桑格(英国人)确定了核酸的碱基排列顺序1981年福井谦一(日本人),R.霍夫曼(美国人)从事化学反应过程的研究1982年A.克卢格(英国人)开发了结晶学的电子衍射法,并从事核酸蛋白质复合体的立体结构的研究1983年H.陶布(美国人)阐明了金属配位化合物电子反应机理1984年R.B.梅里菲尔德(美国人)开发了极简便的肽合成法1985年J.卡尔,H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法1986年D.R.赫希巴奇,李远哲(美籍华人),J.C波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学1987年C.J.佩德森,D.J.克拉姆(美国人),J.M.莱恩(法国人)合成冠醚化合物1988年J.戴森霍弗,R.胡伯尔,H.米歇尔(德国人)分析了光合作用反应中心的三维结构1989年S.奥尔特曼,T.R.切赫(美国人)发现RNA自身具有酶的催化功能1990年E.J.科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论1991年R.R.恩斯特(瑞士人)发明了傅里叶变换核磁共振分光法和二维核磁共振技术1992年R.A.马库斯(美国人)对溶液中的电子转移反应理论作出贡献1993年K.B.穆利斯(美国人)发明“聚合酶链式反应”法M.史密斯(加拿大人)开创“寡聚核苷酸基定点诱变”法1994年G.A.欧拉(美国人)在碳氢化合物即烃类研究领域作出了杰出贡献1995年P.克鲁岑(德国人),M.莫利纳,F.S.罗兰(美国人)阐述了对臭氧层厚度产生影响的化学机理,证明了人造化学物质对臭氧层构成破坏作用1996年R.F.柯尔(美国人),H.W.克罗托因(英国人),R.E.斯莫利(美国人)发现了碳元素的新形式——富勒氏球(也称布基球)C601997年P.B.博耶(美国人),J.E.沃克尔(英国人),J.C.斯科(丹麦人)发现人体细胞内负责储藏转移能量的离子传输酶1998年W.科恩(奥地利人)提出密度函数理论J.波普(英国人)提出量子化学的方法1999年A.兹韦勒(美籍埃及人)利用激光闪烁研究化学反应2000年美国的阿兰?黑格和阿兰?麦克迪尔米德、日本的白川秀树,表彰他们发现了导电的塑料和研发具有传导性能的聚合体2001年美国的威廉?诺尔斯、巴里?夏普莱斯、日本的野依良治,表彰他们在更好地控制化学反应方面所作出的贡献。
历年诺贝尔化学奖

发展了使用碳14同位素进行年代测定的方法
1961年:梅尔温·卡尔文
研究了植物对二氧化碳的吸收,以及光合作用
1962年:马克斯·佩鲁茨,,约翰·肯德鲁
研究了肌红蛋白的结构
1963年:卡尔·齐格勒,朱里奥·纳塔
对聚合物的研究,齐格勒-纳塔聚合
1964年:多罗西·克劳富特·霍奇金(Dorothy Crowfoot Hodgkin,英国)
1929年:亚瑟·哈登, 汉斯·奥伊勒-克尔平
对糖类的发酵以及发酵酶的研究和探索
1930年:汉斯.费歇尔
对血红素和叶绿素等的研究
1931年:卡尔·博施, 弗里德里希·柏吉斯
在高压化学合成技术上的贡献
1932年:兰格缪尔
对表面化学的研究
1934年:哈罗德·尤里
发现了氘
1990年:伊莱亚斯·科里
开发了计算机辅助有机合成的理论来自方法 1991年:理乍得·恩斯特
对开发高分辨率核磁共振(NMR)的贡献
1992年:罗道夫·阿瑟·马库斯
对创立和发展电子转移反应的贡献
1993年:凯利·穆利斯, 迈克尔·史密斯
对DNA化学的研究,开发了聚合酶链式反应(PCR)
1938年:理乍得·库恩
对类胡罗卜素和维生素的研究
1939年:阿道夫·弗雷德里希·Johann·布特南特, 利奥波德·Ruzicka
对性激素的研究 以及 对聚亚甲基和高萜烯的研究
1940年:未发奖。
1941年:未发奖。
1942年:未发奖。
1943年:格奥尔格·赫维西
对在化学变化中使用同位素作为失踪物的研究
1979年:赫伯特·布朗, 乔治·维蒂希
历届诺贝尔化学奖获得者名单及贡献

历届诺贝尔化学奖获得者名单及贡献1901-荷兰科学家范托霍夫因化学动力学和渗透压定律获诺贝尔化学奖。
1902-德国科学家费雪因合成嘌呤及其衍生物多肽获诺贝尔化学奖。
1903-瑞典科学家阿伦纽斯因电解质溶液电离解理论获诺贝尔化学奖。
1904-英国科学家拉姆赛因发现六种惰性所体,并确定它们在元素周期表中的位置获得诺贝尔化学奖。
1905-德国科学家拜耳因研究有机染料及芳香剂等有机化合物获得诺贝尔化学奖。
1906-法国科学家穆瓦桑因分离元素氟、发明穆瓦桑熔炉获得诺贝尔化学奖。
1907-德国科学家毕希纳因发现无细胞发酵获诺贝尔化学奖。
1908-英国科学家卢瑟福因研究元素的蜕变和放射化学获诺贝尔化学奖。
1909-德国科学家奥斯特瓦尔德因催化、化学平衡和反应速度方面的开创性工作获诺贝尔化学奖。
1910-德国科学家瓦拉赫因脂环族化合作用方面的开创性工作获诺贝尔化学奖。
1911-法国科学家玛丽·居里(居里夫人)因发现镭和钋,并分离出镭获诺贝尔化学奖。
1912-德国科学家格利雅因发现有机氢化物的格利雅试剂法、法国科学家萨巴蒂埃因研究金属催化加氢在有机化合成中的应用而共同获得诺贝尔化学奖。
1913-瑞士科学家韦尔纳因分子中原子键合方面的作用获诺贝尔化学奖。
1914-美国科学家理查兹因精确测定若干种元素的原子量获诺贝尔化学奖。
1915-德国科学家威尔泰特因对叶绿素化学结构的研究获诺贝尔化学奖。
1916-1917-1918-德国科学家哈伯因氨的合成获诺贝尔化学奖。
1919-1920-德国科学家能斯脱因发现热力学第三定律获诺贝尔化学奖。
(1921年补发)1921-英国科学家索迪因研究放射化学、同位素的存在和性质获诺贝尔化学奖。
1922-英国科学家阿斯顿因用质谱仪发现多种同位素并发现原子获诺贝尔化学奖。
1923-奥地利科学家普雷格尔因有机物的微量分析法获诺贝尔化学奖。
1924-1925-奥地利科学家席格蒙迪因阐明胶体溶液的复相性质获诺贝尔化学奖。
历届诺贝尔奖得主的介绍与主要贡献

历届诺贝尔奖得主的介绍与主要贡献1901范特荷甫【荷兰】化学动力学、溶液的渗透压等方面的成就1902 埃·费什尔【德国】合成糖类和嘌呤的衍生物1903 阿仑尼乌斯【瑞典】电解质溶液理论研究上的成就1904 拉姆塞【英国】发现惰性气体元素并确定了它们在周期表内的位置1905 拜尔【德国】有机染料的合成和氢化芳香族化合物方面的贡献1906摩瓦桑【法国】发现了氟元素及其制取的电解法,发明了电弧炉1907 毕希纳【德国】发现了无细胞发酵及在生物化学上的研究1908卢瑟福【英国】在研究元素核衰变和原子结构上的成就1909 奥斯特瓦尔德【德国】在催化作用,化学平衡理论与反应速度方面的研究1910 瓦拉赫科塞尔【德国】对萜类脂环族化合物的首创性研究在研究核酸和生理化学上的成就1911 玛丽·居里【法国人】发现钋和镭、提纯它们的化合物,元素蜕变系统的研究(第二次获奖)1912格林尼亚、萨巴特【法国】在有机金属镁化合物的研究及成就金属催化剂和加氢反应在有机化学里的应用1913维尔纳【瑞士籍法国人】络合物结构及原子价理论的研究1914理查德【美国】精密地测定了大批元素的相对原子质量1915 维尔斯滕特【德国】在植物色素特别是对叶绿素(a、b)方面的研究1916 (未授奖)1917 (未授奖)1918 哈伯【德国】氨的合成方面的成就并解决了工业生产的实际问题1919 (未授奖)1920能斯特【德国】提出并阐明热力学第三定律等热力学理论和实验应用等成就1921 索迪【英国】放射化学、同位素产生的理论和性质的研究1922 阿斯顿【英国】发明质谱仪并发现了非放射性元素的同位素及其整数定律1923 普赖格尔【奥地利】有机化合物微量分析的首创性研究1924 (未授奖)1925 齐格蒙迪【奥地利】胶体溶液的多相性及现代胶体化学研究法1926 斯维伯格【瑞典】发明高速离心机并用于高分散胶体上的研究1927 维兰德【德国】发现胆汁酸及对类似化合物的研究1928 温道斯【德国】对固醇和维生素等研究的成就1929 哈登【英国】欧勒·切尔平【瑞典】对糖的发酵及其酶作用的研究1930 H.费歇尔【德国】在血红素合成上的成果及叶绿素、血红素方面的研究1931 波许【德国】伯尔厅斯【波兰】高压方法在化学里的应用,氨的合成、煤高压下氢化液化等方面的研究1932 兰茂尔【美国】表面化学、气体吸附作用及热离子发射1933 (未授奖)1934 尤里【美国】发现重氢同位素1935 约里奥·居里和伊伦·居里【法国】人工放射性元素合成及首创性的研究1936 德拜【荷兰】用X射线、电子衍射、偶极矩测定分子结构1937 哈沃思【英国】卡勒尔【瑞士】糖及维生素C的结构研究及成就对类胡萝卜素、核黄素及维生素A的结构等方面的研究1938 库恩【德国】对维生素B和类胡萝卜素的研究1939 布特南德、鲁齐卡【德国】对性激素的研究1940 因第二次世界大战评奖停止1941 因第二次世界大战评奖停止1942 因第二次世界大战评奖停止1943 德赫维西【匈牙利】放射性同位素的示踪在化学反应中的应用1944 哈恩【德国】重核裂变及制造超铀元素方面的研究成就1945 弗塔南【芬兰】对农业化学和营养化学上的研究,发明饲料保藏法1946 萨姆纳、斯坦利、诺思罗普【美国】发现结晶酶结晶蛋白酶、病毒蛋白酶的制备1947 鲁宾逊【英国】在生物碱及其它植物制品的研究成就1948 蒂斯留斯【瑞典】对电泳、吸附作用分析及对血清蛋白的研究1949 吉奥克【美国】对物质在超低温条件下的性质的研究1950 迪尔斯、阿德尔【德国】发现双烯合成反应1951 麦克米伦、西博格【美国】发现并研究蜕变元素—镎和钚1952 马丁、辛格【英国】纸上层析分析方法的发现和研究1953 施陶丁格【德国】对链状高分子化合物的研究及成就1954鲍林【美国】对化学键的研究1955 维格诺德【美国】首次合成并分析脑下垂体激素1956 欣谢尔伍德【英国】西蒙诺夫【苏联】对动力学理论和链反应的研究1957 塔德【英国】对核苷酸和核苷酸辅酶等的研究1958 桑格【英国】确定了胰岛素的分子结构1959 海洛夫斯基【捷克斯洛伐克】发明并改进极谱分析法1960 利比【美国】1961 卡尔文【美国】对光合作用过程中化学步骤的研究1962 肯德鲁、佩鲁茨【英国】确定血红蛋白分子结构确定血红蛋白分子结构1963 奈达【意大利】齐格勒【德国】研究聚乙烯、聚丙烯,与催化聚合的成功1964 霍奇金【英国】1965 伍德沃德【美国】用人工方法合成固醇、叶绿素等获得成功1966 米利肯【美国】用分子轨道理论对化学键和电子结构的研究1967 艾根【德国】诺里什、波特【英国】在极端快速化学反应方面的研究1968 翁萨格【美国】建立不可逆热力学的理论基础1969 巴顿【英国】哈塞尔【挪威】分子空间构型概念的建立引入及分析等方面的研究1970 列莱奥【阿根廷】在糖合成中核苷酸辅酶的发现及其作用的研究1971 赫茨伯格【加拿大】对分子光谱,特别是对自由基电子结构的研究1972 安芬森、摩尔、斯坦因【美国】对核糖核酸酶分子结构的研究和成就1973 费歇尔【德国】威尔金森【英国】对有机金属化合物的广泛研究1974 弗洛里【美国】广泛研究高链分子的物理化学上的问题1975 康福斯【英国】普雷洛洛【瑞士】对有机物、有机化学反应的立体化学方面的研究1976 利普斯科姆【美国】对硼烷结构的研究1977 普利戈金【比利时】对非平衡态热力学尤其是耗散结构理论上的研究1978 米切尔【英国】运用膜转化活性(化学渗透理论)研究生物能的转换1979 布朗【美国】维蒂希【德国】发展了硼化物、磷化物等作为重要试剂在有机化学里的应用1980 保罗·伯格、弗雷德里克·桑格、沃尔特·吉尔伯特【美国】在重组DNA和测定DNA等方面的研究和创造等重大贡献1981 福田谦一【日本】罗尔德·霍夫曼【美国】在边缘轨道理论(前沿轨道理论、分子轨道对称守恒原理)上的研究成就1982 艾伦·克卢格【英国】(生于南非)对晶体电子显微镜和核酸—蛋白质复合体的研究和贡献1983 亨利·陶布【美国】(生于加拿大)在金属络合物电子转移反应机理方面的研究成就1984 罗勃特·勃罗斯、梅里菲尔德【美国】在多肽和蛋白质合成新方法方面的贡献1985年豪普特曼、卡尔勒【美国】因发展了直接测定晶体结构的方法而共同获得诺贝尔化学奖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
他开始用人类神经生长因子作为目标序列
进行扩增,没有结果。转而他选择PBR322质
粒作为模板,实验中通过缩小反应体积来增加 各成分的浓度,并将复性温度降低到32℃,减 少每次加入的聚合酶的量,在10次循环后停止,
结果他看到一条浅的带。接着,他又对方法进
行了改进,增加几次循环,得到的带还是较浅。 他又尝试用50kb碱基对的λ噬菌体做模板,用 限制酶将模板降解为2000碱基对左右,扩增没
1971 年 , Khorana 曾 提 出 : 经 过 DNA 变性,与合适引物杂交,用DNA聚合 酶延伸引物,并不断重复该过程便 可克隆tRNA基因。
但由于测序和引物合成的困难,以 及70年代基因工程技术的发明使克 隆基因成为可能,所以,Khorana的 设想被人们遗忘了……
因此,30年来没有人去改 革这个方法,人人都满足于这 个方法。就连Mullis本人在大 学做基础研究时,也没有想到 要去开发一种更简便的方法, 以取代Khorana的方法。
பைடு நூலகம்
凯利·穆利斯(Kary Mullis 1944—) 1944年12月28日出生于美国北卡罗来纳 州的勒诺。穆利斯在南卡罗来纳州的一 个小镇度过了童年,成长环境非常宽松, 使他享有充分的自由和空间,这为他性 格的形成提供了条件。
1962年他在佐治亚州理工学院学习 化学,获学士学位;1966—1972在加州 大学伯克利分校攻读生物化学博士学位; 接着,先后在堪萨斯大学医学院和加州 大学旧金山分校作博士后;1979年任职 于Cetus公司,其间发明了PCR技术。
有成功。他再次更换模板改用实验室合成的 100碱基对的寡核苷酸作模板,对ß珠蛋白基因 进行扩增,结果得到扩增产物。这期间Cetus公 司成立了PCR小组,经全体成员的共同努力, 1984年11月,终于得到与预期分子完全符合的 扩增量,首次取得可信的结果,证明了PCR的 可行。
Mullis最初使用的DNA聚合酶是大肠杆 菌DNA聚合酶I的Klenow片段,其缺点是: ①Klenow酶不耐高温,90℃会变性失活, 每次循环都要重新加。②引物链延伸反应在 37℃下进行,容易发生模板和引物之间的碱 基错配,其PCR产物特异性较差,合成的 DNA片段不均一。此种以Klenow酶催化的 PCR技术虽较传统的基因扩增具备许多突出 的优点,但由于Klenow酶不耐热,在DNA
上。PCR的点子,也就是在这样的情 况下诞生的。
1983年4月一个周末的晚上,他 驾车与一位同事去乡村别墅在蜿蜒 的乡间公路上开着车,,他思绪不 断,一段DNA反复复制的景像,在 他的脑海里冒了出来。他萌发了 PCR的构想。
整个周末他都在思考着PCR问题, 他想DNA合成起始于DNA解链,在一段 寡核苷酸作为引物下,聚合酶沿着模板 从引物的末端开始进行DNA的扩增,这 需要人工加入核苷酸,这一过程在实验 室可以实施。他还反复思考能否用两个 引物来代替现行的单引物法?如果两个 引物的大小不同,结果两条链的序列将 同时被测定,而且互为印证;其次,他 想能否分两次加入聚合酶,以防止新合 成DNA的核苷酸易于脱落和被聚合酶错 搭到新生链中的现象。
再有,经常使用计算机使他注意到了 “循环”,他也想到DNA呈指数增长的 趋势;最后他还想到扩增是否具有专一 性的问题,因为在合成第一次反应中, 人们无法终止聚合酶对引物的扩延。但 穆利斯注意到在第二次及后续的链反应 中,由第一次反应得到的那些“长反应 产物”只能被扩延到另一引物与模板 DNA相结合的部位,过了那个位点,扩 延反应就无法进行了(没有模板)。所 以PCR产物的长度是确定的。
耐高温,不需每次加入,大大提高了扩
增片段特异性和扩增效率。此酶被命名
为TagDNA聚合酶。此酶的发现使PCR 广泛的被应用。
原理简介: PCR 技术的基本原理是 DNA的半保留复制。由于DNA复制是 半保留的,两条链都可以作为模板。在 体内,DNA复制是周期性的,所以基因 扩增的数量有限;PCR技术在体外利用 人工合成的引物,再加上DNA聚合酶和 一些合适的底物和因子,通过对温度的 控制,使DNA不断位于变性、复性和合 成的循环中,达到扩增DNA的目的。
1993年诺贝尔化学奖 Kary mullis
PCR 技术
The method of polymerase chain reaction
聚合酶链式反应(polymerase chain reaction,PCR)一个非常简 单,然而却是很有用的体外DNA聚合 反应。PCR技术在生命科学中掀起了 一场革命,它可以使人们通过几个 小时的试管内的DNA聚合反应,就可 将DNA扩增109倍。通过PCR技术不仅 可以扩增存在于样品中的DNA,也可 以富集混合DNA分子中的任一种。 PCR的重要价值在于扩增存在微量而 特殊的DNA序列。
1986—1988年任 Xytronyx公司分子生 物学部主任。从1987 年开始在加州任PCR 技术与核酸化学的非 官方顾问。他现在是 加州奥克兰儿童医院 和研究所的知名专家, 并为几家公司作科学 顾问。
19世纪50年代,Khorana合成了 寡聚核苷酸,同时,他利用合成的 寡聚核苷酸DNA合成酶以及DNA,开 发出了使DNA扩增的方法。当时,这 一领域的研究人员通常都使用 Khorana的DNA扩增技术。可以说, 这是一个司空见惯的基本技术,谁 也没有去想过这种方法的不便之处。
1979年,穆利斯进入Cetus公 司,从事合成寡聚核苷酸的工作。 1981年他担任DNA合成实验室主任, 主要任务是加速和优化寡聚核苷酸 的合成。80年代初DNA合成仪进入 实验室,他对这台原型机提出了许
多改进的意见,还试着编写新的程 序。由于DNA合成仪的应用使寡核 苷酸的合成效率提高10倍。这样, 穆利斯能把更多的时间用于计算机
模板进行热变性时,会导致此酶钝化,每加
入一次酶只能完成一个扩增反应周期,给 PCR技术操作程序添了不少困难。
这使得PCR技术在一段时间内没能 引起生物医学界的重视。1988年初, Keohanog改用T4DNA聚合酶进行PCR, 其扩增的DNA片段很均一,真实性较高, 只有所期望的一种DNA片段。但每循环 一次,仍需加入新酶。1988年,Cetus公 司的Saiki等从温泉中分离的一株水生嗜 热杆菌(thermus aquaticus)中提取到 一种耐热DNA聚合酶,此酶最大特点是