模糊控制-5模糊模型识别

合集下载

第五章++模糊自适应控制

第五章++模糊自适应控制

E (kT − dT ) = fuzz[e(kT − dT )] ∆E (kT − dT ) = fuzz[∆e(kT − dT )] U (kT − dT ) = fuzz[u (kT − dT )] V (kT − dT ) = fuzz[u (kT − dT ) + Pi (kT )]
如此模糊化后, 如此模糊化后,原来的控制相当于执行如下的控 制规则: 制规则: 若 e( kT − dT ) 是 E (kT − dT ) and ∆e( kT − dT ) 是 ∆E ( kT − dT ) ,则u是 U ( kT − dT ) 该控制规则需修改为: 该控制规则需修改为: 若 e( kT − dT ) 是 E (kT − dT ) and ∆e( kT − dT ) 是 ∆E ( kT − dT ) ,则u是 V ( kT − dT ) 写成模 是 糊关系矩阵为
2 控制对象增量模型 性能测量给出了为达到期望的系统性能所需要 的输出修正量。为实现自适应控制, 的输出修正量。为实现自适应控制,需将该输 出修正量变换为控制修正量, 出修正量变换为控制修正量,所以必须对控制 对象的特性有一定了解。 对象的特性有一定了解。 1) (1)需知道过去哪一时刻的控制量影响当前时刻 的系统性能,即必须知道控制对象延迟时间dT, 的系统性能,即必须知道控制对象延迟时间 它决定了应对哪一时刻的控制作用加以修正。 它决定了应对哪一时刻的控制作用加以修正。 (2)对多变量系统,对于给定的输出修正量,需 )对多变量系统,对于给定的输出修正量, 知道应修正哪一个输入控制作用及所需的修正 多变量系统带来输入与输出间的交叉耦合, 量。多变量系统带来输入与输出间的交叉耦合, 因而需知道控制对象的增量模型J(表示 因而需知道控制对象的增量模型 表示

模糊系统的辨识与自适应控制

模糊系统的辨识与自适应控制

模糊系统的辨识与自适应控制在现代控制理论研究中,模糊控制是一种重要的控制方法。

模糊控制是对非线性系统的一种解决方案,这种控制方法利用模糊逻辑来处理不确定性和信息丢失问题,从而提高了控制的效率和精度,因此在自适应控制中得到了广泛的应用。

一、模糊系统辨识模糊系统辨识是指对模糊控制系统进行参数辨识和模型识别,目的是为了找到最佳的控制方案。

模糊系统的辨识过程也是确定模糊控制系统结构和参数的过程。

模糊控制系统需要依赖于模糊规则库和隶属函数来完成参数辨识和模型识别。

模糊规则库是一个包含了各种规则的数据库,其中每个规则由一组条件和一组相应的控制动作组成。

隶属函数用来描述输入变量和输出变量之间的映射关系。

在模糊系统辨识的过程中,需要收集大量的数据来分析和处理,以便从中提取有用的信息。

这里的数据包括输入数据和输出数据,输入数据包括控制输入和环境输入,输出数据包括控制输出和系统响应。

通过对这些数据进行分析、模型识别和参数辨识,可以得到一个模糊控制系统的模型,并对其进行优化调整,以使其更好地适应所需的控制任务。

二、自适应控制模糊系统的自适应控制是利用模糊控制系统的动态特性,不断根据控制系统的变化自动调整控制参数,以达到最优的控制效果。

因此,自适应控制算法是一种重要的控制算法,它可以自动调整控制参数以快速响应外部变化。

自适应控制有多种方法,包括自适应模糊控制、自适应神经网络控制、自适应PID控制、自适应模型预测控制等。

其中,自适应模糊控制是一种广泛应用的控制方法,它可以自动调整模糊规则库、隶属函数以及控制输出,以适应不同的控制任务和环境条件。

三、结论总之,在现代控制领域中,模糊控制方法是一种重要的控制方法之一,具有较高的鲁棒性和鲁棒性。

模糊控制方法除了能够处理非线性系统,还可以处理模糊系统,因此在实际控制中被广泛应用。

模糊系统的辨识和自适应控制是模糊控制方法的两个基本方面,它们为模糊控制的优化和应用提供了基础和保障。

模糊控制简介

模糊控制简介
以二元模糊关系为例,设������和������是两个非空集合,则在 积空间������ × ������ = {(������, ������)|������ ∈ ������, ������ ∈ ������}中的一个模糊子集������称为 ������ × ������中的一个二元模糊关系。������可表示为

������������ (������)������������ (������) (������, ������)
������������
模糊逻辑与近似推理
➢ 近似推理过程: 前提1(事实):������是������’ 前提2(规则):������������ ������ 是 ������,������ℎ������������ ������ 是 ������ 结论:������是������’ 这里������’和������是论域������中的模糊集合,������’和������是论域������中的模
⋯ ������������ ������2, ������������


������������ ������������, ������1 ������������ ������������, ������2 ⋯ ������������ ������������, ������������
例:������ = {子,女},������ = {父,母},模糊关系������“子女与
父母长得相似”,用模糊矩阵表示则为:
父母
������
=
子 女
0.8 0.3
0.3 0.6
模糊控制的数学基础
➢ 模糊关系合成 设������、������、������是论域, ������是������到������的一个模糊关系, ������是������到������

模糊控制5模糊模型识别

模糊控制5模糊模型识别

内积与外积的性质
(1) (A ° B )c = Ac⊙Bc; (2) (A⊙B )c = Ac ° Bc; (3) A ° Ac ≤1/2; (4) A⊙Ac ≥1/2. 证明(1) (A ° B)c = 1-∨{A(x) ∧B(x) | x∈X }
= ∧{[1- A(x)]∨[1- B(x)] | x∈X } = ∧{Ac(x)∨Bc(x) | x∈X } = Ac⊙Bc.
模型),构成了一个标准模型库,若对任一x0∈X,取定水平∈[0,1].
若存在 i1, i2, … , ik,使Aij(x0)≥ ( j =1, 2, …, k),则判决为:
x0相对隶属于 Ai1 Ai2 ... Aik .
若∨{Ak(x0)| k =1, 2, …, m}<,则判决为:不能识别,应当找原因
模糊模型识别
所谓模糊模型识别,是指在模型识别中,模型是模糊的。也就 是说,标准模型库中提供的模型是模糊的.
• 模糊模式识别问题的分类
• 一种是模式库(所有已知模式的全体)是模糊的,而待识别 对象是分明的模式识别问题;另一种模式库和待识别对象 都是模糊的模式识别问题。
• 解决前一种模糊模式识别问题的方法称为模糊模式识别的 直接方法;而解决后者的方法称为模糊模式识别的间接方 法。
若X 上的n个模糊子集A1, A2, …, An的隶属函数分别为A1(x), A2(x) , …, An(x),则定义模糊向量集合族 A = (A1, A2, …, An)的隶属 函数为
或者
A(x) = ∧{A1 (x1), A2 (x2) , … , An(xn)}
A(x) = [A1 (x1) + A2 (x2) + … + An(xn)]/n. 其中x = (x1, x2, …, xn)为普通向量.

智能控制基础-第3章 模糊建模和模糊辨识

智能控制基础-第3章 模糊建模和模糊辨识

13
智能控制 基础
3.2 模糊系统的通用近似特性
n
其中
p j ( x ) i1 Aij ( xi ) M
n
3-7
(
j 1
i 1
Aij ( xi
))
称为模糊基函数(Fuzzy Basis Function,FBF),而式(3-6) 称为模糊系统的模糊基函数展开式。模糊基函数具有下列特点:
(1) 每条规则对应一个基函数; (2) 基函数是输入向量x的函数。一旦输入变量的模糊集合个数 及隶属函数确定,模糊基函数也就确定了;
i
3-10
( ( x ) ( x )) j 11 j2 1 i1
A1ji1
i
A2j2i
i
Chapter 5 Perspectives on Fuzzy Control
17
智能控制 基础
3.2 模糊系统的通用近似特性
k1 k2
n
f1( x )
f2( x )
(
z zj1 j2 12
)(
既然每条规则都推导出了一个精确输出,Tsukamoto 模糊模型通过加权平均的方法把每条规则的输出集成起来 ,这样就避免了耗时的解模糊过程。
Chapter 5 Perspectives on Fuzzy Control
7
智能控制 基础
3.1
模糊模型的类型与分割形式
最小或相乘
A1
B1
C1
A2
w1
X
j1 1 j2 1
k1 k2
n
i 1
( x ) ( x )) A1ji1
i
A2ji2
i
3-11
( ( x ) ( x )) j 11 j2 1 i1

自动化控制系统中的模糊控制方法与调参技巧

自动化控制系统中的模糊控制方法与调参技巧

自动化控制系统中的模糊控制方法与调参技巧自动化控制系统中的模糊控制方法是一种基于模糊逻辑的控制策略,可以处理系统模型复杂、不确定性强的问题。

模糊控制方法通过将模糊逻辑应用于控制器设计中,能够有效地应对实际系统中的各种非线性、时变和不确定性因素,提高控制系统的鲁棒性和自适应能力。

在模糊控制系统中,模糊逻辑通过将模糊的自然语言规则转化为数学形式,对系统的输入和输出进行模糊化处理,从而实现对系统的自动控制。

模糊控制方法主要包括模糊推理、模糊建模和模糊控制器设计三个主要步骤。

首先,模糊推理是模糊控制方法的核心,它根据一组模糊规则对输入变量进行模糊推理,从而确定最终的控制策略。

在模糊推理中,需要定义一组模糊规则,每个模糊规则都由若干个模糊集和若干个模糊关系所组成。

通过对输入变量的模糊化处理和模糊规则的匹配,可以得到控制器的输出。

其次,模糊建模是模糊控制方法的前提,它是将实际系统映射为模糊控制系统的关键步骤。

模糊建模可以通过实验数据、专家知识或模型等方式获得系统的输入输出数据,然后利用聚类和拟合等方法建立系统的模糊模型。

模糊建模的目的是找到系统的内在规律和数学模型,以便后续的模糊控制器设计和参数调优。

最后,模糊控制器设计是模糊控制方法的具体实现,它根据模糊推理和模糊建模的结果,确定模糊控制器的结构和参数。

模糊控制器的结构包括输入变量的模糊集合和输出变量的模糊集合,参数则决定了模糊控制器的具体行为。

参数调优是模糊控制器设计的关键环节,通过合理地设置参数,可以使模糊控制器在实际系统中具有良好的控制性能和鲁棒性。

为了获得较好的控制性能,模糊控制系统中的调参技巧是必不可少的。

调参技巧通常包括以下几个方面:首先,选取适当的输入变量和输出变量,并对其进行模糊化处理。

输入变量和输出变量的选择应考虑到系统的特性和控制目标,而模糊化处理的方法则可以采用三角函数、梯形函数等常用的模糊集合类型。

其次,确定模糊规则的数量和形式。

模糊规则的数量和形式直接影响到模糊控制系统的稳定性和鲁棒性。

模糊控制

模糊控制

第2章模糊控制2.1 模糊控制自从1965年美国加利福尼亚大学控制论专家L .A .zadeh教授提出模糊数学以来”,吸引了众多的学者对其进行研究,使其理论与方法日臻完善,并且广泛地应用于自然科学和社会科学的各个领域,尤其是在第5代计算机研制和知识工程开发等领域占有特殊重要的地位。

把模糊逻辑应用于控制领域则始于1973年”。

1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机控制。

此后20多年来,模糊控制不断发展并在许多领域中得到成功应用。

由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种系统的推理方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。

从广义上讲,模糊控制是适于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。

它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。

模糊控制的突出特点在于:①控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。

⑦控制系统的鲁棒性强,适应于解决常规控制难以解决的非线性、时变及大纯滞后等问题。

③以语言变量代替常规的数学变量,易于形成专家的“知识”。

④控制推理采用“不精确推理”(Approximatc Reasoning)。

推理过程模仿人的思维过程。

由于介入了人类的经验.因而能够处理复杂甚至“病态”系统。

2.1.1模糊数学模糊数学是基于模糊集理论。

模糊集的概念与古典集非此即彼的概念相对应,描述没有明确、清楚地定义界限的集合。

模糊集的理论叙述为:模糊集A是定义在一个输入ξ之上并由其隶属函数µA(·):ξ→[0,1]表征的集合。

假设ξ是一个普通集合,称为论域。

从ξ到区间[0,1]的映射A称为ξ上的一个模糊集合。

µA(·)表示ξ隶属于模糊集合A的程度,称为隶属度。

模糊控制简介

模糊控制简介

R=(NBe × PBu ) + ( NSe × PSu ) + (0e × 0u ) + ( PSe × NSu ) + ( PBe × NSu )
NBe × PBu = (1, 0.5, 0, 0, 0, 0, 0) × (0, 0, 0, 0, 0, 0.5,1) NSe × PSu = (0, 0.5,1, 0, 0, 0, 0) × (0, 0, 0, 0,1, 0.5, 0) 0e × 0u = (0, 0, 0.5,1, 0.5, 0, 0) × (0, 0, 0.5,1, 0.5, 0, 0) PSe × NSu = (0, 0, 0, 0,1, 0.5, 0) × (0, 0.5,1, 0, 0, 0, 0) PBe × NSu = (0, 0, 0, 0, 0, 0.5,1) × (1, 0.5, 0, 0, 0, 0, 0) 0 0 0 0 0.5 1 0 0 0 0 0 0.5 0.5 0.5 0 0 0.5 0.5 1 0 0 R= 0 0 0.5 1 0.5 0 0 0 0.5 1 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0.5 0 0 0 0 0
学习功能
数据存储 单元
y
∗ k
e
r + —


k
e
e
k
c
2
e
k
Байду номын сангаас
r
模糊 控制 规则
k

u
u
u
u
k −1
k
+ +
被 控 对 象
y
k
六.思考
矛盾对立统一规律: 矛盾对立统一规律:两面性 • 优点:模糊逻辑本身提供了由专家构造语 优点: 言信息并将其转化为控制策略的一种系统 的推理方法, 的推理方法,因而能够解决许多复杂而无 法建立精确数学模型系统的控制问题, 法建立精确数学模型系统的控制问题,所 以它是处理推理系统和控制系统中不精确 和不确定性的一种有效方法。从广义上讲, 和不确定性的一种有效方法。从广义上讲, 模糊控制是适于模糊推理, 模糊控制是适于模糊推理,模仿人的思维 方式, 方式,对难以建立精确数学模型的对象实 施的一种控制策略。 施的一种控制策略。它是模糊数学同控制 理论相结合的产物, 理论相结合的产物,同时也是智能控制的 重要组成部分。 重要组成部分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.3 择近原则(间接方法)
设在论域X ={x1, x2, … , xn}上有m个模糊子集A1, A2, … , Am(即 m个模型),构成了一个标准模型库. 被识别的对象B也是X上一个模糊集,它与标准模型库中那一个 模型最贴近?这是第二类模糊识别问题.
先将模糊向量的内积与外积的概念扩充.
设A(x), B(x)是论域X上两个模糊子集的隶属函数,定义 内积: A ° B = ∨{A(x) ∧B(x) | x∈X };
第三章
模糊模型识别
1
模糊模式识别
§3.1模糊模型识别
模型识别
已知某类事物的若干标准模型,现有这类事物中的一个具体 对象,问把它归到哪一模型,这就是模型识别。 模型识别在实际问题中是普遍存在的。例如,学生到野外采 集到一个植物标本,要识别它属于哪一纲哪一目;投递员(或分 拣机)在分拣信件时要识别邮政编码等等,这些都是模型识别。
模糊模型识别
所谓模糊模型识别,是指在模型识别中,模型是模糊的。也就 是说,标准模型库中提供的模型是模糊的.
• 模糊模式识别问题的分类
• 一种是模式库(所有已知模式的全体)是模糊的,而待识别 对象是分明的模式识别问题;另一种模式库和待识别对象 都是模糊的模式识别问题。 • 解决前一种模糊模式识别问题的方法称为模糊模式识别的 直接方法;而解决后者的方法称为模糊模式识别的间接方 法。
三角形 E和非典型三角形T 四个标准类型,取论域X为:




X={(A,B,C )| A+B+C =180, A≥B≥C} 已知:
• 现给定三角形x1=(A,B,C)=(85,50,45),则x1对以上四个标准 类型的隶属度分别为:
• 由最大隶属度原则,x1相对属于直角三角形。 • 取d=0.9,由于 I ( x1 ) 0.916 0.9, R( x1 ) 0.94 0.9 • 按阈值原则,x1相对地属于 I R ,即x1=(85,50,45)可识别 为等腰直角三角形。
例3 细胞染色体形状的模糊识别
细胞染色体形状的模糊识别就是几何图形的模糊识别,而几何图形 常常化为若干个三角图形,故设论域为三角形全体.即 X={(A,B,C )| A+B+C =180, A≥B≥C} 标准模型库={E(正三角形),R(直角三角形), I(等腰三角形),I∩R(等腰 直角三角形),T(任意三角形)}. 某人在实验中观察到一染色体的几何形状,测得其三个内角分别 为94,50,36,即待识别对象为x0=(94,50,36).问x0应隶属于哪一种三1, x2, … , xn }上有m个模糊子集A1, A2, … , Am(即m个 模型),构成了一个标准模型库,若对任一x0∈X,取定水平∈[0,1].
若存在 i1, i2, … , ik,使Aij(x0)≥ ( j =1, 2, …, k),则判决为:
x0相对隶属于 Ai Ai ... Ai . 1 2 k
内积与外积的性质
(a ° b )c = a c⊙b c ; (a⊙b ) c = a c ° b c. 取余运算,ac=1-a,Ac={1-ai}
模糊向量集合族
设A1, A2, …, An是论域X上的n个模糊子集,称以模糊集A1, A2, …, An为分量的模糊向量为模糊向量集合族,记为A = (A1, A2, …, An). 若X 上的n个模糊子集A1, A2, …, An的隶属函数分别为A1(x), A2(x) , …, An(x),则定义模糊向量集合族 A = (A1, A2, …, An)的隶属 函数为 A(x) = ∧{A1 (x1), A2 (x2) , … , An(xn)} 或者 A(x) = [A1 (x1) + A2 (x2) + … + An(xn)]/n. 其中x = (x1, x2, …, xn)为普通向量.
任意三角形的隶属函数
T(A,B,C) = Ic∩Rc∩Ec= (I∪R∪E)c.
T(x0) =(0.766∨0.955∨0.677)c = (0.955)c = 0.045. 通过以上计算,R(x0) = 0.955最大,所以x0应隶属于直角三角形. 或者(I∩R)(x0) =0.10; T(x0)= (0.54)c = 0.46. 仍然是R(x0) = 0.54最 大,所以x0应隶属于直角三角形.
A(88) =0.8
―良”:
0, x 70 , 10 B( x) 1, 95 x , 10 0,
0 x 70, 70 x 80, 80 x 85, 85 x 95, 95 x 100;
B(88) =0.7
外积: A⊙B = ∧{A(x)∨B(x) | x∈X }.
• 问题: • 若给定三角形x1=(85,50,45),应属于何种三角形?
• 例4(通货膨胀识别问题). • 设论域为价格指数的集合R+={xR: x0}.通货膨胀状态
可分成五个类型: • 通货稳定A1; 轻度通货膨胀A2; 中度通货膨胀A3;重度通货 膨胀A4; 恶性通货膨胀A5. • 以上五个类型(标准类型或模糊模式)作为R+上的模糊集, 其隶属函数分别为:
先建立标准模型库中各种三角形的隶属函数. 直角三角形的隶属函数R(A,B,C)应满足下列约束条件: (1) 当A=90时, R(A,B,C)=1; (2) 当A=180时, R(A,B,C)=0; (3) 0≤R(A,B,C)≤1. 因此,不妨定义R(A,B,C ) = 1 - |A - 90|/90. 则R(x0)=0.955. 或者 1
• 模糊模式识别的步骤
• 1、提取识别对象的特征; • 2、建立标准类型的隶属函数; • 3、选定识别判决准则,并用之识别待识别对象。
• 常用的识别判决准则是最大隶属度原则(直接法) 和择近原则(间接法)。
§3.2 最大隶属原则(直接方法)
模糊向量的内积与外积
定义 称向量a = (a1, a2, …, an)是模糊向量, 其中0≤ai≤1. 若ai 只取0 或1, 则称a = (a1, a2, …, an)是Boole向量. 设 a = (a1, a2, …, an), b = (b1, b2, …, bn)都是模糊向量,则定义 内积: a ° b = ∨{(ak∧bk) | 1≤k≤n}; 外积:a⊙b = ∧{(ak∨bk) | 1≤k≤n}.
x 30 9
2
x 50 15
2
0 x 50 x 50
现给定x0=8或40, 即物价上涨8%或40%. 问此价格指数应属 于哪一种通货膨胀类型?
• 解 依次计算得 A1(x0) 0.3679, A2(x0) 0.8521, A3(x0) 0.0529, A4(x0) 0.0032, A5(x0) 0.0001. • 按最大隶属度原则, x0=8时应视为轻度通货膨胀. • 类似地计算可得, x0=40时应视为恶性通货膨胀。
模型识别的原理
为了能识别待判断的对象x = (x1, x2,…, xn)T是属于已知类A1, A2,…, Am中的哪一类? 事先必须要有一个一般规则, 一旦知道了x的值, 便能根据这 个规则立即作出判断, 称这样的一个规则为判别规则. 判别规则往往通过的某个函数来表达, 我们把它称为判别 函数, 记作W(i; x). 一旦知道了判别函数并确定了判别规则,最好将已知类别 的对象代入检验,这一过程称为回代检验,以便检验你的判别 函数和判别规则是否正确.
若∨{Ak(x0)| k =1, 2, …, m}<,则判决为:不能识别,应当找原因 另作分析.(也称为“拒识”,应查找原则另作分析) 该方法也适用于判别x0是否隶属于标准模型Ak.
若Ak(x0)≥,则判决为:x0相对隶属于Ak;
若Ak(x0)<,则判决为: x0相对不隶属于Ak.
• 例5:若三角形形状分为等角三角形 I、直角三角形 R 、正
p p 1 , R( A, B, C ) 90 1,
则R(x0)=0.54.
p 0, p 0.
其中 p = | A – 90|
正三角形的隶属函数E(A,B,C)应满足下列约束条件: (1) 当A = B = C = 60时, E(A,B,C )=1; (2) 当A = 180, B = C = 0时, E(A,B,C)=0; (3) 0≤E(A,B,C)≤1. 因此,不妨定义E(A,B,C ) = 1 – (A – C)/180.则E(x0) =0.677. 或者 1
0 x 70, 1, 80 x C( x) , 70 x 80, 10 80 x 100. 0
C(88) =0. A(88) =0.8, B(88) =0.7, C(88) =0. 根据最大隶属原则Ⅰ,88分这个成绩应隶属于A,即为“优”.
• 例2 论域 X = {x1(71), x2(74), x3(78)}表示三个学生 的成绩,哪一位学生的成绩最差?
0 x 70, 1, 80 x C( x) , 70 x 80, 10 80 x 100. 0
• C(71) =0.9, C(74) =0.6, C(78) =0.2, • 根据最大隶属原则Ⅱ, x1(71)最差.
p p 1 , E ( A, B, C ) 180 1,
p 0, p 0.
其中 p = A – C
则E(x0)=0.02.
等腰三角形的隶属函数I(A,B,C)应满足下列约束条件: (1) 当A = B 或者 B = C时, I(A,B,C )=1; (2) 当A = 180, B = 60, C = 0时, I(A,B,C ) = 0; (3) 0≤I(A,B,C )≤1. 因此,不妨定义 I(A,B,C ) = 1 – [(A – B)∧(B – C)]/60. 则I(x0) =0.766. 1 或者
相关文档
最新文档