水的粘度计算表-水的动力粘度计算公式
汽水混合物 动力粘度计算公式

汽水混合物动力粘度计算公式
汽水混合物的动力粘度计算较为复杂,以下为常见的相关知识与公式推导思路:
一、单相流体动力粘度的基础。
对于单相流体(如水或蒸汽单独存在时),动力粘度(μ)是流体的一种物理性质。
1. 牛顿粘性定律。
- 对于简单的层流流动,牛顿粘性定律给出了切应力(τ)与速度梯度((du)/(dy))之间的关系:τ=μ(du)/(dy)。
- 动力粘度的单位为Pa· s(帕斯卡·秒)。
在国际单位制中,水在常温(例如20°C)下的动力粘度约为1.002×10^- 3Pa· s。
二、汽水混合物动力粘度的计算。
1. 均相流模型。
- 假设汽水混合物为均匀的单相流,此时可以根据混合物的组成按一定比例计算动力粘度。
- 如果用x表示蒸汽的质量干度(即蒸汽质量与汽水混合物总质量之比),μ_v表示蒸汽的动力粘度,μ_l表示液相(水)的动力粘度。
2. 分相流模型。
- 考虑汽水两相的相互作用,这种模型相对复杂一些。
- 一种常见的经验公式形式为:μ_m=μ_l<=ft[1+frac{x<=ft(frac{μ_v}{μ_l} - 1)}{1 + x<=ft(frac{μ_v}{μ_l}frac{ρ_l}{ρ_v}- 1)}],其中ρ_l和ρ_v分别为液相和汽相的密度。
需要注意的是,这些公式都是在一定的假设和实验基础上得出的,在实际工程应用中,可能需要根据具体的工况(如压力、温度等条件)进行修正,并且不同的行业和应用场景可能会采用不同的计算方法或经验系数。
粘度知识以及粘度单位换算表

粘度知识以及粘度单位换算表粘度基础知识:将流动着的液体看作许多相互平行移动的液层, 各层速度不同,形成速度梯度(dv/dx),这是流动的基本特征.(见图)由于速度梯度的存在,流动较慢的液层阻滞较快液层的流动,因此.液体产生运动阻力.为使液层维持一定的速度梯度运动,必须对液层施加一个与阻力相反的反向力.在单位液层面积上施加的这种力,称为切应力τ(N/m2).切变速率(D) D=d v /d x (S-1)切应力与切变速率是表征体系流变性质的两个基本参数牛顿以图4-1的模式来定义流体的粘度。
两不同平面但平行的流体,拥有相同的面积”A”,相隔距离”dx”,且以不同流速”V1”和”V2”往相同方向流动,牛顿假设保持此不同流速的力量正比于流体的相对速度或速度梯度,即:τ= ηdv/dx =ηD(牛顿公式)其中η与材料性质有关,我们称为“粘度”。
粘度定义:将两块面积为1m2的板浸于液体中,两板距离为1米,若加1N的切应力,使两板之间的相对速率为1m/s,则此液体的粘度为1Pa.s。
牛顿流体:符合牛顿公式的流体。
粘度只与温度有关,与切变速率无关,τ与D为正比关系。
非牛顿流体:不符合牛顿公式τ/D=f(D),以ηa表示一定(τ/D)下的粘度,称表观粘度。
粘度测定有:动力粘度、运动粘度和条件粘度三种测定方法。
(1)动力粘度:ηt是二液体层相距1厘米,其面积各为1(平方厘米)相对移动速度为1厘米/秒时所产生的阻力,单位为克/里米·秒。
1克/厘米·秒=1泊一般:工业上动力粘度单位用泊来表示。
(2)运动粘度:在温度t℃时,运动粘度用符号γ表示,在国际单位制中,运动粘度单位为斯,即每秒平方米(m2/s),实际测定中常用厘斯,(cst)表示厘斯的单位为每秒平方毫米(即1cst=1mm2/s)。
运动粘度广泛用于测定喷气燃料油、柴油、润滑油等液体石油产品深色石油产品、使用后的润滑油、原油等的粘度,运动粘度的测定采用逆流法(3)条件粘度:指采用不同的特定粘度计所测得的以条件单位表示的粘度,各国通常用的条件粘度有以下三种:①恩氏粘度又叫思格勒(Engler)粘度。
动力粘度单位换算表

动力粘度单位换算表流体在流动时,相邻流体层间存在着相对运动,则该两流体层间会产生摩擦阻力,称为粘滞力。
粘度是用来衡量粘滞力大小的一个物性数据。
其大小由物质种类、温度、浓度等因素决定。
粘度一般是动力粘度的简称,其单位是帕·秒(Pa·s)或毫帕·秒(mPa·s)。
粘度分为动力粘度、运动粘度、相对粘度,三者有区别,不能混淆。
粘度还可用涂—4或涂—1杯测定,其单位为秒(s)。
(动力)粘度符号是μ,单位是帕斯卡秒(Pa·s)由下式定义:L=μ·μ0/hμ0——平板在其自身的平面内作平行于某一固定平壁运动时的速度h——平板至固定平壁的距离。
但此距离应足够小,使平板与固定平壁间的流体的流动是层流L——平板运动过程中作用在平板单位面积上的流体摩擦力运动粘度符号是v,运动粘度是在工程计算中,物质的动力粘度与其密度之比,其单位为:(m2/s)。
单位是二次方米每秒(m2/s)v=μ/p粘度有动力粘度,其单位:帕斯卡秒(Pa·s);在石油工业中还使用"恩氏粘度",它不是上面介绍的粘度概念。
而是流体在恩格拉粘度计中直接测定的读数。
-------------------粘度的度量方法分为绝对粘度和相对粘度两大类。
绝对粘度分为动力粘度和运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。
1、动力粘度η在流体中取两面积各为1m2,相距1m,相对移动速度为1m/s时所产生的阻力称为动力粘度。
单位Pa.s(帕.秒)。
过去使用的动力粘度单位为泊或厘泊,泊(Poise)或厘泊为非法定计量单位。
1Pa.s=1N.s/m2=10P泊=10的3次方cp=1KcpsASTM D445标准中规定用运动粘度来计算动力粘度,即η=ρ.υ式中η-动力粘度,Pa.s期目标制ρ-密度,kg/m3 υ-运动粘度,m2/s我国国家标准GB/T506-82为润滑油低温动力粘度测定法。
流体的动力粘度计算公式

流体的动力粘度计算公式嘿,咱来聊聊流体的动力粘度计算公式这回事儿。
你知道吗,在咱们生活中,流体那可是无处不在。
就像水流在水管里欢快地跑着,空气在房间里随意地溜达,甚至咱们喝的果汁在杯子里晃悠,这些都是流体的表现。
那啥是流体的动力粘度呢?简单说,它就是用来衡量流体内部摩擦力大小的一个指标。
比如说,蜂蜜和水相比,蜂蜜流动得慢,那是因为蜂蜜的动力粘度大,内部摩擦力大,阻碍了它的流动;水呢,动力粘度小,流起来就轻松多啦。
要说流体的动力粘度计算公式,那就是τ = μ × du/dy 。
这里面的τ 表示剪应力,μ 就是动力粘度,du/dy 则是速度梯度。
这公式看起来有点复杂,其实理解起来也不难。
给您举个例子吧。
有一次我在家做实验,想比较一下不同液体的流动速度。
我准备了水、油和蜂蜜。
我把它们分别倒在一个斜面上,然后观察它们流到底部的时间。
水一下就冲下去了,油慢了点,蜂蜜那简直是在慢慢挪。
通过这个小实验,我就能感受到不同液体的动力粘度的差别。
水的动力粘度小,所以在斜面上流动得快;蜂蜜的动力粘度大,就慢吞吞的。
在工程领域,比如设计管道运输液体或者气体的时候,这个动力粘度计算公式可重要了。
要是算错了,那液体或者气体在管道里的流动就可能出问题,要么流得太慢影响效率,要么压力太大导致管道破裂。
再比如说汽车发动机里的润滑油,得选动力粘度合适的,不然发动机磨损可就大了。
还有飞机的燃油,也得考虑动力粘度,保证在高空低温环境下还能正常流动,不然飞机可就危险啦。
总之,流体的动力粘度计算公式虽然看起来有点头疼,但只要多结合实际想想,多做做实验,其实也没那么难理解。
它在咱们生活和各种工程应用中,那可是起着相当重要的作用呢!。
动力粘度

动力粘度动力粘度动力粘度(英文:Dynamic viscosity):面积各为1㎡并相距1m的两平板,以1m/s的速度作相对运动时,因之间存在的流体互相作用所产生的内摩擦力。
单位:N·s/㎡(牛顿秒每米方)既Pa·S(帕·秒)表征液体粘性的内摩擦系数,用μ表示。
常见液体的粘度随温度升高而减小,常见气体的粘度随温度升高而增大。
如何计算度量流体粘性大小的物理量。
又称粘性系数、动力粘度,比例系数,粘性阻尼系数,记为μ。
牛顿粘性定律指出,在纯剪切流动中相邻两流体层之间的剪应力(或粘性摩擦应力)为式中dv/dy为垂直流动方向的法向速度梯度。
粘度数值上等于单位速度梯度下流体所受的剪应力。
速度梯度也表示流体运动中的角变形率,故粘度也表示剪应力与角变形率之间比值关系。
按国际单位制,粘度的单位为帕·秒。
有时也用泊或厘泊(1泊=10^(-1)帕·秒,1厘泊= 10^(-2)泊)。
粘度是流体的一种属性,不同流体的粘度数值不同。
同种流体的粘度显著地与温度有关,而与压强几乎无关。
气体的粘度随温度升高而增大,液体则减小。
在温度T<2000开时,气体粘度可用萨特兰公式计算:μ/μ0=(T/T0)3/2(T0+B)/(T+B),式中T0、μ0为参考温度及相应粘度,B为与气体种类有关的常数,空气的B=110.4开;或用幂次公式:μ/μ0=(T/T0)n,指数n随气体种类和温度而变,对于空气,在90开<T<300开范围可取为8/ρ。
水的粘度可按下式计算:μ=0.01779/(1+0.03368t+0.0002210t^(2)),式中t为摄氏温度。
粘度也可通过实验求得,如用粘度计测量。
在流体力学的许多公式中,粘度常与密度ρ以μ/ρ的组合形式出现,故定义v=μ/ρ,由于v的单位米2/秒中只有运动学单位,故称运动粘度。
粘度是指液体受外力作用移动时,分子间产生的内摩擦力的量度。
动力粘度计算

一.粘度计算viscosity度量流体粘性大小的物理量。
又称粘性系数、动力粘度,记为μ。
牛顿粘性定律指出,在纯剪切流动中相邻两流体层之间的剪应力(或粘性摩擦应力)为式中dv/dy为垂直流动方向的法向速度梯度。
粘度数值上等于单位速度梯度下流体所受的剪应力。
速度梯度也表示流体运动中的角变形率,故粘度也表示剪应力与角变形率之间比值关系。
按国际单位制,粘度的单位为帕·秒。
有时也用泊或厘泊(1泊=10-1帕·秒,1厘泊=10-2泊)。
粘度是流体的一种属性,不同流体的粘度数值不同。
同种流体的粘度显著地与温度有关,而与压强几乎无关。
气体的粘度随温度升高而增大,液体则减小。
在温度T<2000开时,气体粘度可用萨特兰公式计算:μ/μ0=(T/T0)3/2(T0+B)/(T+B),式中T0、μ0为参考温度及相应粘度,B为与气体种类有关的常数,空气的B=110.4开;或用幂次公式:μ/μ0=(T/T0)n,指数n随气体种类和温度而变,对于空气,在90开<T<300开范围可取为8/ρ。
水的粘度可按下式计算:μ=0.01779/(1+0.03368t+0.0002210t2),式中t为摄氏温度。
粘度也可通过实验求得,如用粘度计测量。
在流体力学的许多公式中,粘度常与密度ρ以μ/ρ的组合形式出现,故定义v=μ/ρ,由于v的单位米2/秒中只有运动学单位,故称运动粘度。
粘度是指液体受外力作用移动时,分子间产生的内磨擦力的量度。
运动粘度表示液体在重力作用下流动时内磨擦力的量度,其值为相同温度下的动力粘度与其密度之比,在国际单位制中以米2/秒表示。
习惯用厘斯(cSt)为单位。
1厘斯=10-6米2/秒=1毫米2/秒。
粘度动态粘度绝对粘度粘度系数流体内部抵抗流动的阻力,用对流体的剪切应力与剪切速率之比表示。
单位为泊[帕。
秒] 注:对于牛顿流体,剪切应力与剪切速率之比为常数,称为牛顿粘度,对于非牛顿流体,剪切应力与剪切速率之比随剪切应力而变化,所得的粘度称在相应剪切应力下的“表观粘度”。
粘度单位换算

---------------------------------------------------------------最新资料推荐------------------------------------------------------粘度单位换算粘度单位换算常用粘度单位换算;: 1 厘泊(1cP)=1 毫帕斯卡 .秒(1mPa.s) 100 厘泊(100cP)=1 泊(1P) 1000 毫帕斯卡.秒(1000mPa.s)=1 帕斯卡 .秒 (1Pa.s)动力粘度与运动粘度的换算: η=ν. ρ 式中η--- 试样动力粘度(mPa.s) ν--- 试样运动粘度(mm2/s) ρ--- 与测量运动粘度相同温度下试样的密度(g/cm3)对液体而言,压强越大,温度越低,粘度越大;压强越小,温度越高,粘度越小。
对气体而言,压强影响不大;温度越高,粘度越大,温度越低,粘度越小。
介质粘度概念和单位换算作者:佚名文章来源:网上搜集点击数:更新时间:2008-11-7 21:17:401/ 6泵输送的各种流体都具有一定的粘性,即流体各部分之间有相对运动出现时,在做相对运动的各部分流体间,就会产生阻止这种相对运动的内摩擦力。
这种内摩擦力的大小就与输送介质的粘度成正比。
根据牛顿内摩擦定律:T=UdV/dn,其中:dv/dn 为速度梯度, U 就为动力粘度,单位为 Pa.s(N/m2.s),动力粘度的国际单位为厘泊(CP)其关系为: 1Pa.s=10P(泊)=1000CP(厘泊)运动粘度 V:即动力粘度 u 与密度 p 的比值: v=u/p,运动粘度的单位为 m2/s,习惯单位为:厘斯(mm2/s) 其关系为: 1m2/s=10000St(斯)=1000000(厘斯)恩氏粘度 E:其属相对粘度,它是 200cm3 被测介质液在某温度下,从恩氏粘度计流出所需时间 t,与同体积蒸馏水在 20C 时所需时间 t。
水 动力粘度系数

水动力粘度系数水的动力粘度系数是描述水流体黏性的物理量,它对于研究流体力学以及工程领域中的流体运动和阻力等问题具有重要意义。
本文将从定义、计算方法、影响因素以及应用等方面,全面介绍水的动力粘度系数。
首先,我们来了解一下什么是水的动力粘度系数。
动力粘度系数是描述流体内部摩擦阻力大小的物理量,用来衡量流体分子间相互滑动的阻力程度。
对于水来说,其动力粘度系数是指单位面积上垂直于流动方向的力与单位速度梯度之比。
它的单位是帕斯卡·秒(Pa·s),也可以用厘波(cP)作为单位。
计算水的动力粘度系数可以使用不同的方法,其中常用的是萨胡林-普福特方程。
该方程通过测量流体在不同温度下的粘度值,利用经验公式进行拟合得到。
萨胡林-普福特方程可以表示为:η = η0 [1+ (A·ln(T/T0))^B],其中η为动力粘度系数,η0为参考温度下的粘度值,T为实际温度,T0为参考温度,A和B为经验系数。
水的动力粘度系数受多种因素的影响。
首先,温度是影响粘度的重要因素。
随着温度的升高,水的动力粘度系数会逐渐减小,因为温度升高会使水分子间的相互作用力减弱,流体分子的运动变得更加活跃,从而降低了流体的黏滞性。
其次,压力和浓度等因素也会对水的动力粘度系数产生一定的影响。
水的动力粘度系数在实际生活和工程应用中有着广泛的应用价值。
在流体力学研究中,它被用来分析流体运动、流体阻力以及流体与固体的相互作用等问题。
同时,在工程领域中,水的粘度系数也是设计水管道、水泵以及润滑油等流体运动设备的重要参数之一。
为了降低水的动力粘度系数,提高液体的流动性和传输性,人们采取了一系列措施。
例如,在工业生产中,可以通过升高液体温度、增加搅拌强度、添加流体改性剂等方式来改善水的流动性。
这些措施能够有效地减小水的黏滞性,提高流体的运动效率,提高生产效益。
综上所述,水的动力粘度系数是描述水的黏性特征的重要物理量。
通过了解和研究水的动力粘度系数,我们可以更好地理解流体力学和流体运动的规律,并在实际应用中进行指导与应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:BG7531400019813488897SX
创作者:别如克*
水的黏度表(0~40℃)
水的物理性质
F3Viscosity decreases with pressure (at temperatures below 33°C)
Viscous flow occurs by molecules moving through the voids that exist between them. As the pressure increases, the volume decreases and the volume of these voids reduces, so normally increasing pressure increases the
viscosity.
Water's pressure-viscosity behavior [534] can be explained by the increased pressure (up to about 150 MPa) causing deformation, so reducing the strength of the hydrogen-bonded network, which is also partially responsible for the viscosity. This reduction in cohesivity more than compensates for the reduced void volume. It is thus a direct consequence of the balance between hydrogen bonding effects and the van der Waals dispersion forces [558] in water; hydrogen bonding prevailing at lower temperatures and pressures. At higher pressures (and densities), the balance between hydrogen bonding effects and the van der Waals dispersion forces is tipped in favor of the dispersion forces and the remaining hydrogen bonds are stronger due to the closer proximity of the contributing oxygen atoms [655]. Viscosity, then, increases with pressure. The dashed line (opposite) indicates the viscosity minima.
The variation of viscosity with pressure and temperature has been used as evidence that the viscosity is determined more by the extent of hydrogen bonding rather than hydrogen bonding strength.
Self-diffusion is also affected by pressure where (at low temperatures) both the translational and rotational motion of water anomalously increase as the pressure increases.
创作编号:BG7531400019813488897SX
创作者:别如克*。