计算机图形学与三维建模实验报告
计算机图形学实验报告4

计算机图形学实验报告4一、实验目的本次计算机图形学实验旨在深入了解和掌握计算机图形学中的一些关键概念和技术,通过实际操作和编程实现,提高对图形生成、变换、渲染等方面的理解和应用能力。
二、实验环境本次实验使用的软件环境为_____,编程语言为_____,硬件环境为_____。
三、实验内容1、二维图形的绘制使用基本的绘图函数,如直线、矩形、圆形等,绘制简单的二维图形。
通过设置线条颜色、填充颜色等属性,增强图形的表现力。
2、图形的几何变换实现图形的平移、旋转和缩放操作。
观察不同变换参数对图形的影响。
3、三维图形的生成构建简单的三维模型,如立方体、球体等。
应用光照和材质效果,使三维图形更加逼真。
四、实验步骤1、二维图形的绘制首先,在编程环境中导入所需的图形库和相关模块。
然后,定义绘图窗口的大小和坐标范围。
接下来,使用绘图函数按照指定的坐标和参数绘制直线、矩形和圆形。
最后,设置图形的颜色和填充属性,使图形更加美观。
2、图形的几何变换对于平移操作,通过修改图形顶点的坐标值来实现水平和垂直方向的移动。
对于旋转操作,根据旋转角度计算新的顶点坐标,实现图形的绕中心点旋转。
对于缩放操作,将图形的顶点坐标乘以缩放因子,达到放大或缩小图形的效果。
3、三维图形的生成首先,定义三维模型的顶点坐标和三角形面的连接关系。
然后,设置光照的位置、颜色和强度等参数。
接着,为模型添加材质属性,如颜色、反射率等。
最后,使用渲染函数将三维模型显示在屏幕上。
五、实验结果与分析1、二维图形的绘制成功绘制出了各种简单的二维图形,并且通过颜色和填充的设置,使图形具有了更好的视觉效果。
例如,绘制的矩形和圆形边缘清晰,颜色鲜艳,填充均匀。
2、图形的几何变换平移、旋转和缩放操作都能够准确地实现,并且变换效果符合预期。
在旋转操作中,发现旋转角度的正负会影响旋转的方向,而缩放因子的大小直接决定了图形的缩放程度。
3、三维图形的生成生成的三维模型具有一定的立体感和真实感。
三维建模毕业实习报告

一、实习背景随着计算机技术的飞速发展,三维建模技术已经成为现代设计、影视制作、游戏开发等领域的重要工具。
为了提升自己的专业素养,增强实践能力,我选择了三维建模作为毕业实习的主题。
本次实习旨在通过实际操作,熟练掌握三维建模软件的使用方法,提高自己的设计水平和创新能力。
二、实习目的1. 掌握三维建模软件的基本操作,熟悉软件界面和功能。
2. 学会创建和修改三维模型,掌握建模技巧和技巧。
3. 了解三维场景搭建、材质贴图、灯光渲染等基本流程。
4. 培养自己的设计思维和创新能力,提高自己的审美水平。
三、实习内容1. 软件学习本次实习主要使用的是Autodesk 3ds Max软件,它是目前国际上最流行的三维建模和渲染软件之一。
在实习过程中,我学习了以下内容:(1)软件界面及功能:熟悉了3ds Max的界面布局、工具栏、菜单栏等基本元素,了解了软件的各项功能。
(2)基本建模技巧:学会了使用Box、Cylinder、Sphere等基本几何体创建模型,掌握了布尔运算、切割、放样等建模技巧。
(3)高级建模技巧:学习了NURBS曲面建模、多边形建模等高级建模技巧,提高了建模的灵活性和精确度。
2. 场景搭建在实习过程中,我搭建了以下场景:(1)室内场景:包括客厅、卧室、卫生间等,对家具、装饰品、灯光等进行了合理布局。
(2)室外场景:包括公园、街道、广场等,对植被、建筑物、道路等进行了真实还原。
3. 材质贴图为了使场景更加真实,我学习了材质贴图的使用方法,为场景中的物体添加了合适的材质和贴图,包括:(1)常用材质类型:学习并掌握了常用材质类型,如标准材质、混合材质、贴图材质等。
(2)贴图制作:学会了使用Photoshop等软件制作材质贴图,提高了材质的真实感。
4. 灯光渲染灯光是渲染场景的关键因素,我学习了以下内容:(1)灯光类型:了解了常用灯光类型,如点光源、聚光灯、泛光灯等。
(2)灯光设置:学会了设置灯光的位置、强度、颜色等参数,使场景的光照效果更加真实。
计算机图形学实验报告

计算机图形学实验报告实验一 3D模型的加载、渲染与三维操作学院:专业班级:指导老师:学号:姓名:完成日期:目录一、实验目的 (3)二、使用的工具软件及环境 (3)三、实验内容 (3)四、实验步骤 (3)五、思考 (12)一、实验目的1、掌握在Microsoft Visual Studio环境中使用OpenGL、GLUT 和GLUI;2、了解计算机图形学固定流水线;3、了解OpenGL编程基础;4、掌握三维观察的数学表达和程序实现;5、掌握多边形网格的绘制;二、使用的工具软件及环境Microsoft Visual Studio 2010、OpenGL、Glut、Glui三、实验内容1、在VS 2010中配置OpenGL环境;2、编译简单的GLUT程序;3、编译GLUI源代码,并在调试模式下执行6个示例程序;4、在给定的工程中添加绘制简单几何体的代码;5、在给定的工程中添加读取、绘制三维模型的代码;6、在给定的工程中添加旋转、平移和缩放的控制代码;四、实验步骤1、安装Microsoft Visual Studio软件版本选择:Microsoft Visual Studio 2010以上版本2、VS2010中配置GLUT1)下载GLUT。
Windows环境下的GLUT下载地址:/resources/libraries/glut/glutdlls37be ta.zip2)将下载的压缩包解开,将得到5个文件:glut.h、glut.lib、glut32.lib、glut.dll、glut32.dll。
3)将glut.h放到"%WinDir%\ProgramFiles(x86)\Microsoft SDKs\Windows\v7.0A\Include\gl\"文件夹中。
4)将glut.lib和glut32.lib放到"%WinDir%\ProgramFiles(x86)\Microsoft Visual Studio 10.0\VC\lib\"文件夹中。
三维建模实习总结报告

一、实习背景随着计算机技术的飞速发展,三维建模技术在各个领域中的应用越来越广泛。
为了提高自己的专业技能,培养实际操作能力,我于XX年XX月参加了三维建模实习。
本次实习旨在通过实践操作,掌握三维建模软件的基本使用方法,提高自己的三维建模能力。
二、实习目的1. 熟练掌握三维建模软件(如3ds Max、Maya等)的基本操作;2. 了解三维建模的基本流程,包括建模、材质贴图、灯光设置、渲染等;3. 培养创新思维,提高解决实际问题的能力;4. 提升团队协作能力,学会与他人共同完成项目。
三、实习内容1. 三维建模软件的学习:在实习过程中,我学习了3ds Max和Maya两种三维建模软件的基本操作。
通过自学和老师指导,掌握了软件界面、工具栏、菜单栏等基本功能,并能够独立完成简单的三维建模任务。
2. 建模实践:实习期间,我参与了多个建模项目,包括室内外景观、工业产品、角色动画等。
通过实践,我了解了建模的基本流程,掌握了建模技巧,提高了自己的建模能力。
3. 材质贴图与灯光设置:在建模的基础上,我学习了如何为模型添加材质和贴图,以及如何设置灯光和摄像机。
通过这些操作,可以使模型更加真实、美观。
4. 渲染与后期处理:实习期间,我学习了渲染的基本知识,并尝试了多种渲染设置。
此外,我还学习了后期处理技巧,如色彩校正、图像合成等,使作品更具艺术效果。
四、实习收获1. 技术能力提升:通过实习,我掌握了三维建模软件的基本操作,提高了自己的建模、材质贴图、灯光设置、渲染等技能。
2. 创新思维培养:在实习过程中,我遇到了许多实际问题,通过不断尝试和解决,培养了创新思维,提高了解决问题的能力。
3. 团队协作能力:实习期间,我与团队成员共同完成了多个项目,学会了与他人沟通、协作,提高了自己的团队协作能力。
4. 实践经验积累:实习让我将所学知识运用到实际工作中,积累了宝贵的实践经验,为今后的工作打下了坚实基础。
五、实习体会1. 学习的重要性:实习让我深刻认识到学习的重要性,只有不断学习,才能跟上时代的发展。
计算机图形学实习报告

实习报告实习名称:计算机图形学实习班级:学号:姓名:实习地点:实习指导教师:实习时间:年月日至月日一、实习目的与意义本次计算机图形学的实习分两部分,一部分是利用AutoCAD进行二维和三维模型的制作,另一部分是利用VC6.0进行编程实现对图形的简单操作。
通过对AutoCAD的实习,熟悉该软件的基本功能及操作特点,掌握二维及三维图形的基本制作过程。
通过对VC6.0的编程实习,理解图形的生成、图形的变换、图形的显示以及二维裁剪的基本思想,熟练掌握计算机图形学的基本原理和方法;熟练掌握计算机图形学算法的实现算法;学习和掌握图形系统的设计;学习用VC++编写计算机图形学程序;建立面向对象编程的基本概念。
二、实习主要内容1、AutoCAD软件操作(1)简单图形绘制(2)图形的基本编辑命令操作(3)标注文字及填充(4)三维图形绘制2.基于VC6.0下的计算机图形学程序编写(1)图形的生成:画直线、画圆、画曲线、画字符(2)图形的变换:平移、旋转、缩放、对称变换(3)图形的显示:扫描线填充、边缘填充、种子填充(4)图形的二维裁剪:CS裁剪、多边形裁剪、梁友栋裁剪、圆裁剪、中点分割法三、实习的主要过程第一部分 AutoCAD软件操作AutoCAD软件可以处理很多问题,在机械制图,土木建筑等方面有着广泛的应用,我们在机房打开AutoCAD软件对其进行系统配置,然后进行具体操作。
通过配置可以实现工具栏之类的快捷运用。
(1)简单图形绘制实习开始的第一天,在老师的讲解以及演示下,我们了解了AutoCAD软件的基本使用方法,与此同时,我们跟着老师的操作也逐渐熟悉了该软件的一些基本操作方法。
从设置基本绘图环境开始,按照指导书上的指示,采用边完成简单图形边学习各种命令的方式,逐渐熟练掌握了AutoCAD的使用,熟练掌握了其基本绘图功能,如掌握了绘图命令POINT、LINE、CIRCLE、ARC、DONUT、RECTANGLE、POLYLINE的功能及操作;掌握了实体绘图命令键盘输入的方法;掌握了缩放命令(ZOOM)的使用方法等。
图形学实验报告三维图形

图形学课程设计题目:三维真实感图形设计与绘制专业:计算机科学与技术学号姓名:一.一)课程设计目的与要求图形学课程设计的主要目的是让同学们通过图形学的实际问题应用,进一步增强计算机图形学理论的理解、算法应用、图形数据结构设计与图形程序设计等,从而提高图形学实际应用与软件开发能力。
二)课程设计题目三维真实感图形设计与绘制三)问题的提出与需求分析(1)题目内容说明:本题目要求应用OpenGL的光照技术和纹理技术实现一个简单的三维真实感图形的程序设计。
具体要求实现功能:1)通过对话方式实现交互式设计光照模型功能。
2)实现三维模型纹理映射功能。
3)用鼠标跟踪球方法实现三维模型的空间旋转。
(2)技术要点说明1)三维模型显示场景树:将三维可视化模型场景内容分解用一种树或表数据结构描述。
2)实现一个读Targa文件的程序:Targa是一种常见的图像格式文件,该文件通常以未压缩的格式存储图像。
3)实现鼠标跟踪球方法程序。
二.设计思路要设计一个良好的场景和优秀的交互方式,现在虚拟现实场景十分繁多,各种交互方式也五花八门,我们要选择特定的场景,场景要保证两点:一是其新鲜性,让人耳目一新,否则会让人有过于老套的感觉;另外就是其真实度,这是本次课题的着重关注点;在选取选定的场景后,我们要定义各交互方式,在从现有可得到的交互方式案例中提取和创新,以保证开发出来的交互方式可以最大程度的提高人机交互的效率。
场景的规模是必须考虑的,因为设计的时间和人员有限,必须限制场景规模,没有时间和人力去开发过大的场景规模,但是如果场景规模过小,演示系统就无法给人带来非常强烈的真实感冲击,而且过小规模的场景也会限制交互方式的设计和开发;所以定义适当的场景规模,对于课题的成败十分重要。
通过对计算机图形学和三维人机交互方式等相关书籍和文献的阅读和学习,了解和掌握建立真实图形显示系统的过程和三维虚拟场景中人机交互的方式。
三维图形及动画场景的显示,就是把所建立的三维空间模型,经过计算机的复杂处理,最终在计算机二维屏幕上显示的过程,并且在显示的过程要保证其真实感。
计算机图形学实验报告

计算机图形学实验报告
在计算机图形学课程中,实验是不可或缺的一部分。
通过实验,我们可以更好地理解课程中所学的知识,并且在实践中掌握这些
知识。
在本次实验中,我学习了如何使用OpenGL绘制三维图形,并了解了一些基本的图形变换和视图变换。
首先,我们需要通过OpenGL的基本命令来绘制基本图形,例
如线段、矩形、圆等。
这些基本的绘制命令需要首先设置OpenGL 的状态,例如绘制颜色、线段宽度等,才能正确地绘制出所需的
图形。
然后,在实验中我们学习了图形的变换。
变换是指通过一定的
规则将图形的形状、位置、大小等进行改变。
我们可以通过平移、旋转、缩放等变换来改变图形。
变换需要按照一定的顺序进行,
例如先进行旋转再进行平移等。
在OpenGL中,我们可以通过设
置变换矩阵来完成图形的变换。
变换矩阵包含了平移、旋转、缩
放等信息,通过矩阵乘法可以完成图形的复合变换。
最后,视图变换是指将三维场景中的图形投影到二维平面上,
成为我们所见到的图形。
在实验中,我们学习了透视投影和正交
投影两种方式。
透视投影是指将场景中的图形按照视点不同而产
生不同的远近缩放,使得图形呈现出三维感。
而正交投影则是简单地将场景中的图形按照平行投影的方式呈现在屏幕上。
在OpenGL中,我们可以通过设置视图矩阵和投影矩阵来完成视图变换。
通过本次实验,我对于计算机图形学有了更深入的了解,并掌握了一些基本的图形绘制和变换知识。
在今后的学习中,我将继续学习更高级的图形绘制技术,并应用于实际的项目中。
计算机图形学与三维建模实验报告

计算机图形学与三维建模实验报告计算机图形学实验报告openGL的基本使用1.项目代码:// 2321321.cpp : 定义控制台应用程序的入口点。
#include"stdafx.h"#include<iostream>#include<stdio.h>#include<gl/glut.h>#include<gl/glu.h>#include<gl/gl.h>using namespace std;//#include"vgl.h" opengl4.3 编程宝典第8版库函数//#include"loadshaders.h"GLfloat x=0.0,y=0.0,z=0.0;//用于平移的变量GLfloat i=1.0,j=1.0,k=1.0;//用于缩放的变量int d=1;//用于是否判断旋转的开关GLfloat angle=0.0f;//旋转角度的变量void myDisplay(void){glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 创建透视效果视图glMatrixMode(GL_PROJECTION);glLoadIdentity();gluPerspective(90.0f, 1.0f, 1.0f, 20.0f);glMatrixMode(GL_MODELVIEW);glLoadIdentity();gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 定义4光源,从4个方向入射,第一个是白光,其他为红绿蓝{GLfloat sun_light_position[] = { -5.0f, 5.0f, 0.0f, 1.0f };GLfloat sun_light_position1[] = { 5.0f, 5.0f, 0.0f, 1.0f };GLfloat sun_light_position2[] = { -5.0f, -5.0f, 0.0f, 1.0f };GLfloat sun_light_position3[] = { 5.0f, -5.0f, 0.0f, 1.0f };GLfloat sun_light_ambient[] = { 0.0f, 0.0f, 0.0f,1.0f };GLfloat sun_light_diffuse[] = { 1.0f, 1.0f, 1.0f,1.0f };GLfloat sun_light_diffuse1[] = { 1.0f, 0.0f, 0.0f, 1.0f };GLfloat sun_light_diffuse2[] = { 0.0f, 1.0f, 0.0f, 1.0f };GLfloat sun_light_diffuse3[] = { 0.0f, 0.0f, 1.0f, 1.0f };GLfloat sun_light_specular[] = { 1.0f, 1.0f, 1.0f, 1.0f };glLightfv(GL_LIGHT0, GL_POSITION,sun_light_position);glLightfv(GL_LIGHT0, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT0, GL_DIFFUSE, sun_light_diffuse);glLightfv(GL_LIGHT0, GL_SPECULAR,sun_light_specular);glLightfv(GL_LIGHT1, GL_POSITION,sun_light_position1);glLightfv(GL_LIGHT1, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT1, GL_DIFFUSE, sun_light_diffuse1);glLightfv(GL_LIGHT1, GL_SPECULAR,sun_light_specular);glLightfv(GL_LIGHT2, GL_POSITION, sun_light_position2);glLightfv(GL_LIGHT2, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT2, GL_DIFFUSE, sun_light_diffuse2);glLightfv(GL_LIGHT2, GL_SPECULAR,sun_light_specular);glLightfv(GL_LIGHT3, GL_POSITION, sun_light_position3);glLightfv(GL_LIGHT3, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT3, GL_DIFFUSE, sun_light_diffuse3);glLightfv(GL_LIGHT3, GL_SPECULAR,sun_light_specular);glEnable(GL_LIGHT0);glEnable(GL_LIGHT1);glEnable(GL_LIGHT2);glEnable(GL_LIGHT3);glEnable(GL_LIGHTING);glEnable(GL_DEPTH_TEST);}//绘制坐标轴{glBegin(GL_LINE);//x轴红色glColor3f(1,0,0);glVertex3f(10,0,0);glVertex3f(-10,0,0);//y轴绿色glColor3f(0,1,0);glVertex3f(0,10,0);glVertex3f(0,-10,0);//z轴蓝色glColor3f(0,0,1);glVertex3f(0,0,10);glVertex3f(0,0,-10);glEnd();}// 定义球体的材质并绘制{GLfloat ambient[] = { 0.2f, 0.2f, 0.2f, 1.0f };//环境颜色GLfloat diffuse[] = { 0.7f, 0.7f, 0.7f, 1.0f };//散射GLfloat specular[] = { 1.0f, 1.0f, 1.0f, 1.0f };//镜面反射GLfloat emission[] = { 0.0f, 0.0f, 0.0f, 0.5f };//发射光颜色GLfloat hininess = 50.0f; //反射指数glMaterialfv(GL_FRONT, GL_AMBIENT, ambient);glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);glMaterialfv(GL_FRONT, GL_SPECULAR, specular);glMaterialfv(GL_FRONT, GL_EMISSION, emission);glMaterialf(GL_FRONT, GL_SHININESS, shininess);glTranslatef(x,y,z);glScalef(i,j,k);if(d==1){glRotatef(angle,0.0f,0.0f,4.0f);glTranslatef(2.5f,2.5f,0.0f);}glutSolidSphere(2.0, 60.0, 60.0);}glutSwapBuffers();}void ChangeSize(GLsizei W,GLsizei H)//当视口改变时改变裁剪部分保证图形观察时不形变{GLfloat aspectRatio;if(H==0)H=1;glViewport(0,0,W,H);//视口设置glMatrixMode(GL_PROJECTION);//重置坐标系统glLoadIdentity();aspectRatio=(GLfloat)W/(GLfloat)H;if(aspectRatio<=1)//裁剪部分设置glOrtho(-2.5,2.5,-2.5/aspectRatio,2.5/aspectRatio,2.5,-2.5);elseglOrtho(-2.5*aspectRatio,2.5*aspectRatio,-2.5,2.5,2.5,-2.5);glMatrixMode(GL_MODELVIEW);glLoadIdentity();}void ProcessKeys(unsigned char ch,int a,int b){if(ch==119)//w{y+=0.1;glutPostRedisplay();}else if(ch==115)//s{y-=0.1;glutPostRedisplay();}else if(ch==97)//a{x-=0.1;glutPostRedisplay();}else if(ch==100)//d{x+=0.1;glutPostRedisplay();}else if(ch==120)//x{z-=0.1;}else if(ch==122)//z{z+=0.1;glutPostRedisplay();}else if(ch==43)//+{i+=0.1;j+=0.1;k+=0.1;glutPostRedisplay(); }else if(ch==45)//-{i-=0.1;j-=0.1;k-=0.1;}else if(ch==32)//空格键{if(d==0)d=1;else d=0;cout<<d<<endl;}//按空格开关旋转}void IdleFunc(){if(d==1){angle+=1.0f;if(angle==360.0f){angle=0.0f;}cout<<angle<<endl;myDisplay();}}int _tmain(int argc, char* argv[]){glutInit(&argc, (char**) argv);glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA); glutInitWindowPosition(100,100);glutInitWindowSize(500,500);glutCreateWindow("Hello OpenGL");glutDisplayFunc(myDisplay);glutReshapeFunc(ChangeSize);glutIdleFunc(IdleFunc);glutKeyboardFunc(ProcessKeys);glutReshapeFunc(ChangeSize);glutMainLoop();return 0;}二.系统总体布局系统流程图:本系统是常规的openGL系统,初始化后先设置视角、投影、光照、材质等因素,绘制基本的图形,再通过函数判断键盘输入进行重复绘制,完成基本的平移,缩放,旋转等操作三.系统设计思路在系统设计最初,本来想直接使用默认视角后直接设置光照和平移旋转等功能,但是发现在默认视角下对物体,特别是正方体的三维效果无法很好地观察,因此采用侧视视角然后在对材质的定义上,由于立方体设置比较麻烦,最后决定画一个球体,然后在平移旋转缩放等功能的演示上,直接演示过于简单,就是一个函数的执行,因此决定采取利用键盘控制移动和缩放及旋转的方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机图形学实验报告openGL的基本使用1.项目代码:// : 定义控制台应用程序的入口点。
#include""#include<iostream>#include<>#include<gl/>#include<gl/>#include<gl/>using namespace std;//#include"" 编程宝典第8版库函数//#include""GLfloat x=,y=,z=;//用于平移的变量GLfloat i=,j=,k=;//用于缩放的变量int d=1;//用于是否判断旋转的开关GLfloat angle=;//旋转角度的变量void myDisplay(void){glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 创建透视效果视图glMatrixMode(GL_PROJECTION);glLoadIdentity();gluPerspective, , , ;glMatrixMode(GL_MODELVIEW);glLoadIdentity();gluLookAt, , , , , , , , ;glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 定义4光源,从4个方向入射,第一个是白光,其他为红绿蓝{GLfloat sun_light_position[] = { , , , };GLfloat sun_light_position1[] = { , , , };GLfloat sun_light_position2[] = { , , , };GLfloat sun_light_position3[] = { , , , };GLfloat sun_light_ambient[] = { , , , };GLfloat sun_light_diffuse[] = { , , , };GLfloat sun_light_diffuse1[] = { , , , };GLfloat sun_light_diffuse2[] = { , , , };GLfloat sun_light_diffuse3[] = { , , , };GLfloat sun_light_specular[] = { , , , };glLightfv(GL_LIGHT0, GL_POSITION, sun_light_position);glLightfv(GL_LIGHT0, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT0, GL_DIFFUSE, sun_light_diffuse);glLightfv(GL_LIGHT0, GL_SPECULAR, sun_light_specular);glLightfv(GL_LIGHT1, GL_POSITION, sun_light_position1);glLightfv(GL_LIGHT1, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT1, GL_DIFFUSE, sun_light_diffuse1);glLightfv(GL_LIGHT1, GL_SPECULAR, sun_light_specular);glLightfv(GL_LIGHT2, GL_POSITION, sun_light_position2);glLightfv(GL_LIGHT2, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT2, GL_DIFFUSE, sun_light_diffuse2);glLightfv(GL_LIGHT2, GL_SPECULAR, sun_light_specular);glLightfv(GL_LIGHT3, GL_POSITION, sun_light_position3);glLightfv(GL_LIGHT3, GL_AMBIENT, sun_light_ambient);glLightfv(GL_LIGHT3, GL_DIFFUSE, sun_light_diffuse3);glLightfv(GL_LIGHT3, GL_SPECULAR, sun_light_specular);glEnable(GL_LIGHT0);glEnable(GL_LIGHT1);glEnable(GL_LIGHT2);glEnable(GL_LIGHT3);glEnable(GL_LIGHTING);glEnable(GL_DEPTH_TEST);}//绘制坐标轴{glBegin(GL_LINE);//x轴红色glColor3f(1,0,0);glVertex3f(10,0,0);glVertex3f(-10,0,0);//y轴绿色glColor3f(0,1,0);glVertex3f(0,10,0);glVertex3f(0,-10,0);//z轴蓝色glColor3f(0,0,1);glVertex3f(0,0,10);glVertex3f(0,0,-10);glEnd();}// 定义球体的材质并绘制{GLfloat ambient[] = { , , , };//环境颜色GLfloat diffuse[] = { , , , };//散射颜色GLfloat specular[] = { , , , };//镜面反射GLfloat emission[] = { , , , };//发射光颜色GLfloat hininess = ; //反射指数glMaterialfv(GL_FRONT, GL_AMBIENT, ambient);glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse);glMaterialfv(GL_FRONT, GL_SPECULAR, specular);glMaterialfv(GL_FRONT, GL_EMISSION, emission);glMaterialf(GL_FRONT, GL_SHININESS, shininess);glTranslatef(x,y,z);glScalef(i,j,k);if(d==1){glRotatef(angle,,,;glTranslatef,,;}glutSolidSphere, , ;}glutSwapBuffers();}void ChangeSize(GLsizei W,GLsizei H)//当视口改变时改变裁剪部分保证图形观察时不形变{GLfloat aspectRatio;if(H==0)H=1;glViewport(0,0,W,H);//视口设置glMatrixMode(GL_PROJECTION);//重置坐标系统glLoadIdentity();aspectRatio=(GLfloat)W/(GLfloat)H;if(aspectRatio<=1)//裁剪部分设置glOrtho,,aspectRatio,aspectRatio,,;elseglOrtho*aspectRatio,*aspectRatio,,,,;glMatrixMode(GL_MODELVIEW);glLoadIdentity();}void ProcessKeys(unsigned char ch,int a,int b) {if(ch==119)//w{y+=;glutPostRedisplay();}else if(ch==115)//s{y-=;glutPostRedisplay();else if(ch==97)//a{x-=;glutPostRedisplay(); }else if(ch==100)//d{x+=;glutPostRedisplay(); }else if(ch==120)//x{z-=;glutPostRedisplay(); }else if(ch==122)//z{z+=;glutPostRedisplay(); }else if(ch==43)//+i+=;j+=;k+=;glutPostRedisplay();}else if(ch==45)//-{i-=;j-=;k-=;glutPostRedisplay();}else if(ch==32)//空格键{if(d==0)d=1;else d=0;cout<<d<<endl;}//按空格开关旋转}void IdleFunc(){if(d==1){angle+=;if(angle=={angle=;}cout<<angle<<endl;myDisplay();}}int _tmain(int argc, char* argv[]){glutInit(&argc, (char**) argv);glutInitDisplayMode(GLUT_DEPTH | GLUT_DOUBLE | GLUT_RGBA); glutInitWindowPosition(100,100);glutInitWindowSize(500,500);glutCreateWindow("Hello OpenGL");glutDisplayFunc(myDisplay);glutReshapeFunc(ChangeSize);glutIdleFunc(IdleFunc);glutKeyboardFunc(ProcessKeys);glutReshapeFunc(ChangeSize);glutMainLoop();return 0;}二.系统总体布局系统流程图:本系统是常规的openGL系统,初始化后先设置视角、投影、光照、材质等因素,绘制基本的图形,再通过函数判断键盘输入进行重复绘制,完成基本的平移,缩放,旋转等操作三.系统设计思路在系统设计最初,本来想直接使用默认视角后直接设置光照和平移旋转等功能,但是发现在默认视角下对物体,特别是正方体的三维效果无法很好地观察,因此采用侧视视角然后在对材质的定义上,由于立方体设置比较麻烦,最后决定画一个球体,然后在平移旋转缩放等功能的演示上,直接演示过于简单,就是一个函数的执行,因此决定采取利用键盘控制移动和缩放及旋转的方式。
具体操作方法为wsadzx分别控制前后左右上下,space控制开始/停止旋转四.感想和心得在本次实验中,对我来说最大的问题是正确地理解视点,投影等概念;在默认状态下视角从Z轴正方向看向负方向,对于很多规则物体不旋转的话无法清楚地看到其三维特征,在调整视角的过程中遇到一些问题。