第十章基于秩次的非参数检验

合集下载

医学统计学 -第10章 基于秩次的非参数检验

医学统计学  -第10章 基于秩次的非参数检验
Kruskal-Wallis H检验,用于推断计量资料或等级资料的 多个独立样本所来自的多个总体分布是否有差别。
H0:多个总体分布相同(或者中位数相等) H1:多个总体分布不同或不全相同(或者中位数不全相等)
26
例10.5
某医院用3种方法治疗15例胰腺癌患者,每种方 法各治疗5例,治疗后生存月数如下表,问3种方法的 疗效有无差别?
当n≤50时,通过查T界值表来确定是否波动过

T在界值范围内,波动不大
P>α
T在界值范围外或等于界值时,波动大,P≤α
11
(4) 查表及推断结论 查T界值表T0.05(16)=29~107 由于T=28在上下界值范围外,所以P≤0.05。 按a=0.05检验水准拒绝H0,接受H1,可以 认为该厂工人尿铅含量不当地正常人有差异, 通过正负秩和的大小可以推断工人的尿铅含 量要高于正常人。
第十章 基于秩次的非参数检验
1
假设检验的方法分为两类
参数检验(parametric test)
已知总体分布类型,对未知参数(μ、π)进行统计推断 依赖于特定分布类型,比较的是参数 一般有严格的适用条件
如:样本来自正态分布、总体方差齐同等 这类方法比如:t检验、F检验等
非参数检验(nonparametric test)
Z
T n1(N 1) / 2 0.5
n1n2 (N 3 N
12N(N 1)
(t
3 j
t
j
))
2036 40(84 1) / 2 0.5
40 44 (843 84 (323 32) (323 32) (203 20)) 12 40 (84 1)
7.01
由于Z=7.01,大于Z0.05=1.96,所以P<0.05,按照α=0.05 检验水准拒绝H0,接受H1,可以认为夏冬两季居民体 内核黄素含量有差别。根据平均秩次可以知道夏季的含

基于秩次的非参数检验

基于秩次的非参数检验

基于秩次的非参数检验1. 问题的提出前面学习了连续型资料两组样本均数差异的假设检验方法:小样本用t检验,条件是变量服从正态分布和方差齐;大样本用标准正态分布的Z检验。

如果是小样本,变量的分布不清,或者已知不服从正态分布或经变量转换后仍不服从正态分布时,如何检验两个样本或多个样本均数差异的统计学意义呢?需要一种不依赖于分布假定的检验方法,即非参数检验。

2. 基本概念前面介绍的检验方法首先假定分析变量服从特定的已知分布(如正态分布),然后对分布参数(如均数)作检验。

这类检验方法称参数检验(parametric test)。

今天介绍的检验方法不对变量的分布作严格假定,检验不针对特定的参数,而是模糊地对变量的中心位置或分布位置作比较。

这类检验称非参数检验(nonparametric test),由于其对总体分布不作严格假定,所以又称任意分布检验。

(distribution-free test)非参数检验的优点:a.不受总体分布的限制,适用范围广。

b.适宜定量模糊的变量和等级变量。

c.方法简便易学。

缺点:如果是精确测量的变量,并且已知服从或者经变量转换后服从某个特定分布(如正态分布),这时人为地将精确测量值变成顺序的秩,将丢失部分信息,造成检验功效能下降。

基于秩次非参数检验(秩和检验)的基本思想假设变量X有观察值1.1, 1.3, 1.7, 4.3, 11.4显然这变量不服从正态分布,观察值间差异较大,既不对称,标准差也较大。

但如果将变量作转换,变成秩变量Y=1,2,3,4,5,则分布对称了,观察值间的差异也均匀了,标准差也减小了。

然后对这秩分布的中心位置(中位数)作检验,这就是秩和检验。

7.1 配对样本的符号秩检验(Wilcoxon signed rank test)例7.1为研究出生先后的孪生兄弟间智力是否存在差异,12对孪生兄弟测试的结果见表7.3。

表7.3 12对孪生兄弟测试结果T +=24.5,T -=41.5符号秩检验的分布理论:假定有4个差值,如果H 0成立时,这4个差值有同等的概率取正值或负值,即每个值取正值的概率等于1/2。

第十章 基于秩次的非参数检验

第十章 基于秩次的非参数检验

?
? Zc=
T ? n(n?1)/ 4 ? 0.5 n(n?1)(2n?1)? (t3j ? tj)
24
48
? 式中(j=1,2,…)为第个相同秩次 (即平均秩次 )的个数,
假定有2个差值为“ 1.5”,3个差值为“ 6”,5差值为个
“13”,则 t=1 2, t 2=3, t3 =5,故有
? (t3j ? tj )=(23-2)+(33-3)+(53-5)=150
-1
-2
-3
0.62 -1.88 -12
0.78 -1.72 -10
2.13 -0.37 -5
2.48 -0.02 -1
2.54 -0.04
2
2.68 0.18
3
2.73 0.23
4
3.01 0.51
6
尿铅 差值di 含量di ? xi ? 2.50
-1
-2
秩次 -3
3.13 0.63
7
3.27 0.77
?
H0:差值的总体中位数等于零,即 Md=0
?
H1:差值的总体中位数不等于零,即 Md≠ 0
?
a= 0. 05
? 2.计算检验统计量 T值
? (1 ) 求差值d:
(2)编秩: 按差值的绝对值由小到大编秩,编秩 时,差值为 0,舍去不计;若差值的绝对值相等, 称为相持,这时取平均秩次,并按差值的正负给秩 次加上正负号。
? 例10-1 已知某地正常人尿铅含量的中位数 为2.50μmol/L。今在该地随机抽取16名工人, 测定尿铅含量见表10-1第(1)栏。问该厂工人 的尿铅含量是否高于当地正常人?
表10-1 某厂16名工人与当地正常人的尿铅含量(μmol/L)比较

10非参数秩和检验

10非参数秩和检验

n2=7
T2=134
Kruskal-Wallis test
(1) 建立假设检验
H0:四组鼠脾DNA含量的总体分布相同
H1:四组鼠脾DNA含量的总体分布位置不全相同 α=0.05
(2) 计算统计量
‣ 四个样本总例数N=8+7+9+8=32。将四样本32个观
察值统一由小到大编秩,见上表第(2)、(4)、(6)、 (8)列。在不同组中有相同含量值10.3两个,12.3三 个,均取各自的平均秩次。
Kruskal-Wallis test
Ti 2 12 H 3( N 1) N ( N 1) ni 1262 1342 123.5 2 54.5 2 12 3( 32 1) 19.90 32( 32 1) 8 7 9 8
Wilcoxon rank sum test
(3) 查表及结论
‣ n=n2-n1,查T界值表T0.05(4)=91~159,
两组患者的平均生存时间不同。
T1=162
落在界值范围外,所以P<0.05,拒绝H0,认为
二、正态近似法

例10-3 44例健康人与24例慢性气管炎病人痰液嗜酸 性粒细胞数的测量值(×106/L),问健康人与慢性 气管炎病人痰液嗜酸性粒细胞数有无显著差别?
0
计量 T 与总体的平均秩和应该相差不大;当与平均
秩相差太大时,超过了抽样误差可以解释的范围,
则 有 理 由 怀 疑 原 假 设 的 正 确 性 , 从 而 拒 绝 H0 。
(刘启贵)
的血清抗体滴度水平间差异是否有统计学意义?
抗体 滴度 (1) 1:10 1:20 1:40 1:80 1:160 1:320 合计 气 雾 组 皮下注 80亿 100亿 射组 (2) (3) (4) 2 15 10 5 1 — 33 4 7 12 7 2 — 32 2 1 13 9 5 1 31 累计 平均 秩次 (6) 4.5 20 49 77 91.5 96 秩 80亿 (7) 9 300 490 385 91.5 — 1275.5 100亿 (8) 18 140 588 539 183 — 1468 和 皮下 (9) 9 20 637 693 475.5 96 1912.5 和

第十章 基于秩次的非参数检验

第十章 基于秩次的非参数检验

第十章基于秩次的非参数检验习题一、选择题1.两小样本均数比较,方差不齐时,下列说法不正确的是().A. 采用秩和检验B. 采用t′检验C. 仍用t检验D. 变量变换后再作决定E. 要结合正态性检验结果方能作出决定H是().2. 两样本秩和检验的A. 两样本秩和相等B. 两总体分布相同C. 两样本分布相同D. 两总体秩和相等E. 两总体均数相等3. 在统计检验中是否选用非参数统计方法().A. 要根据研究目的和数据特征作决定B. 可在算出几个统计量和得出初步结论后进行选择C. 要看哪个统计结论符合专业理论D. 要看哪个P值更小E. 既然非参数统计对资料没有严格的要求,在任何情况下均能直接使用4. 配对样本差值的Wilcoxon符号秩和检验,确定P值的方法是().A. T越大,P值越小B.T越大,P值越大C. T值在界值范围内,P值小于相应的αD. T值在界值范围内,P值大于相应的αE. T值在界值范围上,P值大于相应的α5. 成组设计两样本比较的秩和检验,其检验统计量T是().A. 为了查T界值表方便,一般以秩和较小者为TB. 为了查T界值表方便,一般以秩和较大者为TC. 为了查T界值表方便,一般以例数较小者秩和为TD. 为了查T界值表方便,一般以例数较大者秩和为TE. 当两样本例数不等时,任取一样本的秩和为T都可以查T界值表多样本定量资料比较,当分布类型不清时应选择().A. 方差分析B. t检验C. Z检验D. Kruskal-Wallis检验E. Wilcoxon检验6. 多组样本比较的Kruskal-Wallis检验中,当相同秩次较多时,如果用H值而不用校正后H值,则会().的cA.提高检验的灵敏度B.把一些无差别的总体推断成有差别C. 把一些有差别的总体推断成无差别D.Ⅰ、Ⅱ类错误概率不变E. 以上说法均不对二、简答题1. 对于完全随机设计两样本定量资料的比较,如何选择统计方法?2. 为什么在秩和检验编秩次时不同组间出现相同数据要给予“平均秩次”,而同一组的相同数据不必计算“平均秩次”?3. 多组定量资料比较时,统计处理的基本流程是什么?。

第十章基于秩次的非参数检验课件

第十章基于秩次的非参数检验课件

缺点:方法比较粗糙,对于符合参数检验条件者,采用
非参数检验会损失部分信息,其检验效能较低;样本含
2020/9/24量较大时,两者结论常相同
10
一、非参数统计的概念
秩次:观察值由小到大排列后得到的秩序号, 当几个数据大小相同时,取平均秩次作 为其秩次。
秩和:用秩次代替原始数据求和得到。 秩和检验:用秩和进行假设检验的方法。
(甲,乙,丙,丁,戊)(很好,好,一般,差)
2020/9/24
等级资料?
2
以下资料如何进行统计推断呢?
•不服从正态分布的资 料 •多组资料满足正态分 布但方差不齐 •等级资料
2020/9/24
非参数检验方法!
3
第十章 基于秩次的非参数检验
nonparametric test
第十章 基于秩次的非参数检验
2020/9/24
11
本章介绍的非参数统计方法 均基于秩次
秩次(rank)——将数值变量值从小到大,或等级变量值从弱到
强所排列的序号。
例1 11只大鼠存活天数:
存活天数4,10,7,50,3,15,2,9,13,>60,>60
秩次 3 6 4 9 2 8 1 5 7 10 11
秩次相同(tie)取平均秩次!!
10.5 10.5
例2 7名 肺炎病人的治疗结果: 危险程度 治愈 治愈 死亡 无效 治愈 有效 治愈
秩次 1 2 7 6 3 5 4 平均秩次 2.5 2.5 7 6 2.5 5 2.5
2020/9/24
12
二、配对设计和单样本资料的符号秩和检验
(一)、 配对设计资料的符号秩和检验
例10-1 某研究者欲研究保健食品对小鼠抗疲劳作用,将同 种属的小鼠按性别和年龄相同、体重相近配成对子,共10 对,并将每对中的两只小鼠随机分到保健食品两个不同的 剂量组,过一定时期将小鼠杀死,测得其肝糖原含量 (mg/100g),结果见表10-1, 问不同剂量组的小鼠肝糖 原含量有无差别?

基于秩次的非参数检验PPT课件

基于秩次的非参数检验PPT课件

表10-4 某地居民夏冬两个季节体内核黄素营养状况比较
核黄素 营养状况
例数
夏季
冬季
合计 累积频数 秩次范围 平均秩次
缺乏
10
22
32
32
1~32
16.5
不足
14
18
32
64
33~64 48.5
适宜
16
4
20
84
65~84 74.5
合计
40
44
84


n140 T11.5 61 04.5 81 47.5 41 62036
绝对值|d| 1.88 1.72 0.37 0.02 0.04 0.18 0.23 0.51 0.63 0.77 1.04 1.88 1.88 2.55 3.58 8.77
秩次 12 10 5 1 2 3 4 6 7 8 9 12 12 14 15 16
分配符号 -12 -10 -5 -1 2 3 4 6 7 8 9 12 12 14 15 16
9
3
14.9
13.5
1.4
3
3
4
30.2
27.6
2.6
8
8
5
8.4
9.1
-0.7
1.5
-1.5
6
7.7
7.0
0.7
1.5
1.5
7
16.4
14.7
1.7
5
5
8
19.5
17.2
2.3
6
6
9
127.0
155.0
-28.0
10
-10
10
18.7
16.3

第十章 基于秩次的非参数检验(本)_PPT幻灯片

第十章 基于秩次的非参数检验(本)_PPT幻灯片

(二)正态近似法
若n>25,超出T界值表的范围,可用正态 近似法作Z检验:
T nn 1 4
T n(n 1)(2n 1)/ 24
Z T T T nn 1 4 0.5
T
n(n 1)(2n 1)/ 24
式中0.5为连续性校正数。
如果相同秩次较多(不包括差值为0 者),应计算校正的Zc。
T nn1 4 0.5
0
77
65
-12
-10
91
90
-1
-1.5
70
65
-5
-5.5
71
80
9
9
88
81
-7
-8
87
72
-15
-11
T+=24.5, T-=41.5
H0:Md=0 (M1=M2) H1:Md≠0 (M1≠M2) α=0.05 求各对子的差值d; 编秩:按差值绝对值大小编秩并加上正负号,差值的绝对值
相同时取平均秩次;
治疗后 4.2 5.5 6.3 3.8 4.4 4.0 5.9 8.0 5.0
差值(d)
秩次
1.8
6.5
-0.7
-4.5
-1.8
-6.5
-0.4
-3
2.6
8
-0.2
-2
0.1
1
-4.5
-9
-0.7
-4.5
T+=15.5, T-=29.5
(二)方法步骤
H0:Md=0 H1:Md≠0
α=0.05
求各对子的差值d;
H0:Md=0 (即M=2.15) H1:Md>0 (即M>2.15) 单侧α=0.05
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章
1. 两样本定量资料比较的假设检验,首先应考虑。

A. 用t 检验
B. 用秩和检验
C. t检验与秩和检验
D 资料符合t检验还是秩和检验的条件 E. X2检验
2.在作等级资料的比较时,宜用。

A. t 检验
B. X2检验
C. 秩和检验
D. F检验
E. 方差分析
3. 在作两样本均数比较时,已知均小于30,总体方差不齐且呈极度偏峰的资料
宜用。

A. t ′检验
B. t 检验
C.U检验
D. 秩和检验
E t ′检验和秩和检验均可
4.非参数统计的应用条件是。

A. 样本数据来自正态总体
B.若两组比较,要求两样本方差相等
C.总体分布类型未知
D.要求样本例数很大
E.总体属于某种已知的分布类型
5.在进行成组设计两样本秩和检验时,以下检验假设中正确的是。

A. H O两样本对应的总体均数相同
B. H O两样本均数相同
C. H O两样本对应的总体分布位置相同
D. H O两样本的中位数相同
E. H O两样本差值的中位数相同
6.配对设计的符号检验的基本思路是:如果检验假设成立,则对样本来
说。

A.正秩和的绝对值与负秩和的绝对值不会相差很大
B.中的秩和为零
C.正秩和的绝对值与负绝对值不会相差很大
D.正秩和的绝对值与负绝对值相等
E.符号相同,按顺序编秩
7.秩和检验和t 检验相比,其优点是。

A.计算更简便
B.公式更为合理
C. 检验效能高
D.抽样误差小
E.不受分布限制
8.秩和检验是一种。

A.U检验
B. X2检验
C.F检验
D.非参数检验
E.以上都不对
9.非参数统计不适合。

A.正态分布且方差齐的资料
B.偏态分布的资料
C.半定量资料
D.有过大值或小值的资料
E.以上均不可
11.不同人群血清反应(- + ++)资料比较宜用:
A.t检验
B.X2检验
C.秩和检验
D.F检验
E. Z检验
12.成组设计两样本比较的秩和检验,其检验统计量T是。

A.以秩和较小者为T
B. 以秩和较大者为T
C.以例数较小者秩和为T
D. 以例数较大者秩和为T
E.当两样本例数不等时,科任区一样本的秩和为T 13.请指出下列五个秩和检验的结果哪个是错误的。

A.配对计量资料n=12,T+=7,T-=71,查得T0.05=13~65,P<0.05
B.配对计量资料n=8,T+=12,T-=24,查得T0.05=3~33,P<0.05
C.两组计量资料n1=12, n2=10,T1=173,T2=80,查得T0.05=84~146,P<0.05 D.两组计量资料n1=10, n2=10,T1=55,T2=155,查得T0.05=78~132,P<0.05 E.两组计量资料n1=9, n2=13,T1=58,T2=195,查得T0.05=73~134,P<0.05 14.配对设计的符号秩合检验中,其检验假设H0为。

A 差值总体均数等于零即u d=0
B 差值总体均数不等于零即u d≠0
C 差值总体中倍数等于零即M d=0
D 差值总体中位数不等于零即M d≠0
E 以上都不对
二.是非题:
1.两样本比较的秩和检验,当n1>10,n2-n1>10时采用检验属于参数检验。

()2.完全随机设计多组独立样本比较的秩和检验得P<0.05,X需进行两两比较。

()3.非参数检验有称任意分布检验,其意义为与任何分布无关。

( )。

相关文档
最新文档