重要高中数学知识点集锦
高中数学知识点大全总结

高中数学知识点大全总结高中数学是一门重要的学科,它是其他学科的基础,也是培养学生逻辑思维能力和解决问题能力的重要手段。
在高中数学中,有许多重要的知识点需要掌握,下面将对高中数学的重要知识点进行总结。
一、初等数论1. 自然数的性质及其运算法则2. 整数的性质及其运算法则3. 有理数的性质及其运算法则4. 整除与最大公因数5. 求解同余方程6. 等比数列的性质及公式二、代数学1. 多项式的运算与恒等式2. 二次函数与一般二次方程3. 四种基本函数及其性质(线性函数、二次函数、指数函数、对数函数)4. 高次方程的求解方法(韦达定理、有理根定理、根的分布情况)三、平面几何1. 直角三角形和斜角三角函数2. 圆的性质及其相关定理(切线定理、弦定理、正弦定理、余弦定理)3. 三角函数的图像与性质4. 平面向量的定义及其运算法则(向量的模、向量的共线性、向量的夹角、向量的垂直)5. 平面几何的证明方法(巴比内斯定理、相似三角形的证明、正弦定理的证明)四、立体几何1. 三角形与四边形的性质2. 球与球面的性质3. 正多面体的性质4. 空间直线的位置关系5. 空间几何中的立体角6. 空间向量的运用(平面与直线的交线与夹角、平面与平面的夹角)五、数列与数列极限1. 等差数列与等比数列的性质及其求和公式2. 数列的极限概念与性质3. 单调数列与有界数列的性质4. 黎曼和与定积分的关系5. 等差数列与等比数列的极限六、函数与导数1. 基本初等函数的性质与图像2. 极限与连续性3. 函数的求导法则(常用函数的导数、和差积商的求导法则)4. 函数的极值与最值5. 曲线的切线与法线6. 定积分与函数的面积七、微分学应用1. 可导函数的微分近似与应用(导数与函数的近似、函数的单调性、最值问题)2. 积分与定积分的性质及其应用(黎曼和与函数的面积、曲线长度和旋转体体积)3. 微分方程的基本概念及一阶微分方程的解法4. 概率统计与数理统计的基本概念与方法(随机事件、条件概率、正态分布)以上是高中数学的一些重要知识点总结,这些知识点是高中数学学习的基础,也是高考数学考试的重点。
高中数学259个知识点

高中数学259个知识点一、集合与函数概念。
1. 集合。
- 集合的定义:把一些元素组成的总体叫做集合。
- 集合元素的特性:确定性、互异性、无序性。
- 集合的表示方法:列举法、描述法、韦恩图法。
- 集合间的基本关系:子集(如果集合A的所有元素都是集合B的元素,那么A是B的子集,记作A⊆ B)、真子集(如果A⊆ B且A≠ B,则A是B的真子集,记作A⊂neqq B)、相等(A = B当且仅当A⊆ B且B⊆ A)。
- 集合的基本运算:- 交集:A∩ B={xx∈ A且x∈ B}。
- 并集:A∪ B = {xx∈ A或x∈ B}。
- 补集:设U为全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
2. 函数及其表示。
- 函数的概念:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→ B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
- 函数的三要素:定义域、值域、对应关系。
- 函数的表示方法:解析法、图象法、列表法。
3. 函数的基本性质。
- 单调性:- 增函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1),那么就说函数y = f(x)在区间D上是增函数。
- 减函数:设函数y = f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量的值x_1,x_2,当x_1时,都有f(x_1)>f(x_2),那么就说函数y = f(x)在区间D上是减函数。
- 奇偶性:- 奇函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)= - f(x),且0∈ D时f(0)=0,则函数y = f(x)是奇函数。
- 偶函数:设函数y = f(x)的定义域为D,如果对于任意x∈ D,都有f(-x)=f(x),则函数y = f(x)是偶函数。
高中数学重点知识归纳(3篇)

高中数学重点知识归纳(3篇)文章一:一、函数与导数1. 函数的概念:函数是两个集合之间的一种特定关系,具有唯一性、确定性、有序性。
2. 函数的性质:单调性、奇偶性、周期性、对称性。
3. 基本初等函数:常数函数、正比例函数、一次函数、二次函数、指数函数、对数函数、三角函数。
4. 复合函数:复合函数是由两个或两个以上的函数通过自变量和函数值的关系组合而成的函数。
5. 反函数:如果函数f(x)在其定义域内是一一对应的,那么可以通过反解法得到它的反函数f^(1)(x)。
6. 导数的概念:导数表示函数在某一点附近的变化率,是函数的局部线性近似。
7. 导数的运算:四则运算法则、复合函数求导法则、反函数求导法则。
8. 导数的应用:求极值、最值、拐点、单调区间、凹凸性。
二、三角函数与平面向量1. 三角函数的定义:正弦、余弦、正切、余切、正割、余割。
2. 三角函数的图像与性质:周期性、奇偶性、单调性、对称性。
3. 三角恒等变形:和差公式、倍角公式、半角公式、积化和差与和差化积、正弦定理、余弦定理。
4. 平面向量的概念:向量有大小和方向,可以用有向线段表示。
5. 向量的运算:向量加法、向量减法、数乘向量、向量点积、向量叉积。
6. 向量的应用:解三角形、物理运动问题、线性方程组。
文章二:三、数列与极限1. 数列的概念:数列是按照一定规律排列的一列数。
2. 数列的性质:单调性、有界性、收敛性。
3. 常见数列:等差数列、等比数列、斐波那契数列。
4. 数列的极限:数列的极限表示数列无限接近于某个值。
5. 数列的求和:错位相减法、分组求和法、求和公式。
6. 数列的应用:求解级数、判断级数的收敛性、求解函数的极限。
四、解析几何1. 坐标系:直角坐标系、极坐标系。
2. 直线方程:点斜式、斜截式、两点式、截距式。
3. 圆的方程:标准式、一般式。
4. 椭圆的方程:标准式、一般式。
5. 双曲线的方程:标准式、一般式。
6. 抛物线的方程:标准式、一般式。
高中数学必考知识点

章节/主题
必考知识点
集合与函数
1. 集合的表示法(列举法、描述法)2. 集合的运算(交集、并集、补集)3. 函数的概念与表示法4. 函数的单调性、奇偶性5. 幂函数、指数函数、对数函数的性质与图像
数列
1. 数列的定义与表示法2. 等差数列的定义、通项公式、性质及求和3. 等比数列的定义、通项公式、性质及求和4. 数列的极限及其应用
三角函数
1. 三角函数的定义、诱导公式、同角关系式2. 三角函数的性质(周期性、奇偶性、单调性)3. 三角函数的图像与性质4. 三角恒等变换5. 解三角形(正弦定理、余弦定理、面积公式)
平面向量与解析几何
1. 向量的表示法(模长、坐标表示)2. 向量的加法、减法、数乘运算3. 向量的数量积、向量积、混合积4. 直线的方程(点斜式、斜截式、两点式)5. 圆的方程与性质6. 直线与圆的位置关系
导数及其应用
1. 导数的概念与运算2. 导数的几何意义3. 导数的应用(单调性判断、极值与最值问题、曲线的切线问题)4. 定积分的概念与运算5. 定积分的应用(平面图形的面积计算、体积计算)
概率与统计
1. 概率的基本概念(必然事件、不可能事件、随机事件)2. 概率的计算(等可能事件的概率、互斥事件的概率、独立事件的概率)3. 统计的基本概念(总体、个体、样本、样本容量)4. 统计方法(频率分布表、直方图、折线图)5. 概率与统计的应用(抽样调查、回归分析、独立性检验)
立体几何
1. 空间几何体的结构特征(柱体、锥体、球体)2. 空间几何体的表面积和体积3. 空间点、直线、平面的位置关系4. 空间向量的应用5. 三视图(正视图、侧视图、俯视图)
不等式与线性规划
1. 不等式的性质与解法(一元二规划的实际应用
高中数学知识点大全(一)

高中数学知识点大全(一)一、函数与极限1. 函数概念(1)函数的定义:设A、B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
(2)函数的表示法:解析法、表格法、图象法、分离法。
(3)函数的基本性质:单调性、奇偶性、周期性、对称性。
2. 基本初等函数(1)常数函数:y=c(c为常数)(2)幂函数:y=x^α(α为实数)(3)指数函数:y=a^x(a>0,且a≠1)(4)对数函数:y=log_ax(a>0,且a≠1)(5)三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。
(6)反三角函数:反正弦函数、反余弦函数、反正切函数、反余切函数。
3. 函数的极限(1)数列的极限:设{a_n}是一个数列,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正整数N,使得当n>N时,|a_nA|<ε,那么就称A是数列{a_n}的极限,记作lim(n→∞)a_n=A。
(2)函数的极限:设函数f(x)在点x_0的某一去心邻域内有定义,如果存在实数A,对于任意给定的正数ε(无论多么小),总存在正数δ,使得当0<|xx_0|<δ时,|f(x)A|<ε,那么就称A是函数f(x)当x趋向于x_0时的极限,记作lim(x→x_0)f(x)=A。
(3)无穷小量与无穷大量:无穷小量是指极限为0的量,无穷大量是指极限为无穷的量。
(4)极限的运算法则:四则运算法则、复合函数的极限运算法则。
(5)极限存在的条件:夹逼定理、单调有界定理。
二、导数与微分1. 导数的概念(1)导数的定义:设函数y=f(x)在点x_0的某一邻域内有定义,如果极限lim(Δx→0)[f(x_0+Δx)f(x_0)]/Δx存在,那么就称这个极限为函数y=f(x)在点x_0处的导数,记作f'(x_0)。
高中数学知识点大全(完整版)

高中数学知识点大全(完整版)高中数学学问点大全一、集合、简易规律1、集合;2、子集;3、补集;4、交集;5、并集;6、规律连结词;7、四种命题;8、充要条件。
二、函数1、映射;2、函数;3、函数的单调性;4、反函数;5、互为反函数的函数图象间的关系;6、指数概念的扩充;7、有理指数幂的运算;8、指数函数;9、对数;10、对数的运算性质;11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)1、数列;2、等差数列及其通项公式;3、等差数列前n项和公式;4、等比数列及其通顶公式;5、等比数列前n项和公式。
四、三角函数1、角的概念的推广;2、弧度制;3、任意角的三角函数;4、单位圆中的三角函数线;5、同角三角函数的基本关系式;6、正弦、余弦的诱导公式;7、两角和与差的正弦、余弦、正切;8、二倍角的正弦、余弦、正切;9、正弦函数、余弦函数的图象和性质;10、周期函数;11、函数的奇偶性;12、函数的图象;13、正切函数的图象和性质;14、已知三角函数值求角;15、正弦定理;16、余弦定理;17、斜三角形解法举例。
五、平面对量1、向量;2、向量的加法与减法;3、实数与向量的积;4、平面对量的坐标表示;5、线段的定比分点;6、平面对量的数量积;7、平面两点间的距离;8、平移。
六、不等式1、不等式;2、不等式的基本性质;3、不等式的证明;4、不等式的解法;5、含肯定值的不等式。
七、直线和圆的方程1、直线的倾斜角和斜率;2、直线方程的点斜式和两点式;3、直线方程的`一般式;4、两条直线平行与垂直的条件;5、两条直线的交角;6、点到直线的距离;7、用二元一次不等式表示平面区域;8、简洁线性规划问题;9、曲线与方程的概念;10、由已知条件列出曲线方程;11、圆的标准方程和一般方程;12、圆的参数方程。
八、圆锥曲线1、椭圆及其标准方程;2、椭圆的简洁几何性质;3、椭圆的参数方程;4、双曲线及其标准方程;5、双曲线的简洁几何性质;6、抛物线及其标准方程;7、抛物线的简洁几何性质。
高中数学知识点总结全(最新)

高中数学知识点总结全(最新)一、集合与函数概念1. 集合的基本概念集合的定义:集合是确定的、互不相同的对象的全体。
元素与集合的关系:属于(∈)、不属于(∉)。
集合的表示方法:列举法、描述法、图示法。
2. 集合的基本运算并集(∪):由两个集合的所有元素组成的集合。
交集(∩):由两个集合的共同元素组成的集合。
补集(C):全集中不属于某集合的元素组成的集合。
差集():由一个集合中不属于另一个集合的元素组成的集合。
3. 函数的概念函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
函数的三要素:定义域、对应关系、值域。
4. 函数的性质单调性:增函数、减函数。
奇偶性:奇函数、偶函数。
周期性:存在一个非零常数T,使得对于定义域内的任意x,都有f(x+T) = f(x)。
最值:最大值、最小值。
二、基本初等函数1. 一次函数定义:形如y = kx + b(k≠0)的函数。
图像:一条直线。
性质:单调性(k>0时增,k<0时减)、截距(b为y 轴截距)。
2. 二次函数定义:形如y = ax² + bx + c(a≠0)的函数。
图像:一条开口向上或向下的抛物线。
性质:顶点(b/2a, c b²/4a)、对称轴(x = b/2a)、单调性、最值。
3. 指数函数定义:形如y = a^x(a>0且a≠1)的函数。
图像:过点(0,1),当a>1时单调递增,当0<a<1时单调递减。
性质:无界性、单调性、特殊点。
4. 对数函数定义:形如y = log_a(x)(a>0且a≠1)的函数。
图像:过点(1,0),当a>1时单调递增,当0<a<1时单调递减。
性质:定义域(x>0)、单调性、特殊点。
5. 三角函数正弦函数:y = sin(x),周期为2π,图像为波形曲线。
高中数学知识点大全

高中数学知识点大全一、代数部分1. 整式与分式1.1 定义与性质1.2 合并同类项1.3 四则运算法则1.4 分式的运算2. 方程与不等式2.1 一元一次方程2.2 一元一次不等式2.3 二次方程2.4 二次不等式2.5 一元高次方程3. 函数3.1 函数的基本概念3.2 常见函数类型3.3 函数的运算3.4 反函数与复合函数3.5 函数的图像与性质4. 数列与数列的表示4.1 等差数列4.2 等比数列4.3 通项公式与求和公式二、几何部分1. 几何基础知识1.1 点、线、面的基本概念 1.2 角的定义与性质1.3 相交线与平行线1.4 同位角与内错角2. 三角形与四边形2.1 三角形的分类与性质 2.2 三角形的面积和周长 2.3 直角三角形2.4 各类四边形的性质3. 圆的属性3.1 圆的基本概念3.2 圆心角与弧长3.3 切线与切圆3.4 圆的面积和周长4. 空间几何与立体图形4.1 空间图形的投影与展开 4.2 空间几何的基本概念4.3 空间几何的性质与计算4.4 立体图形的体积和表面积三、概率与统计1. 概率1.1 随机事件与样本空间1.2 概率的定义与性质1.3 事件的计算与排列组合1.4 条件概率与独立事件2. 统计2.1 统计数据的收集与整理2.2 统计量的计算2.3 随机变量与概率分布2.4 抽样与估计四、解析几何1. 平面与直线的相关知识1.1 平面与直线的方程1.2 平面与直线的位置关系1.3 两平面与两直线的位置关系1.4 空间中的平行与垂直关系2. 空间曲面与方程2.1 二次曲面的性质2.2 空间曲面的方程2.3 曲线的参数方程2.4 曲线在曲面上的投影与切线3. 空间解析几何相关定理3.1 距离公式与中点坐标3.2 空间点的投影与距离3.3 空间线段的位置关系3.4 空间角的计算与性质五、数学思维与方法1. 数学证明1.1 数学归纳法1.2 数学递推法1.3 反证法与逆否命题2. 问题解决与数学建模2.1 解决实际问题的数学模型2.2 优化问题与约束条件2.3 数学建模的基本步骤2.4 实际问题的数学求解方法这篇文章详细介绍了高中数学的各个知识点,包括代数、几何、概率与统计、解析几何以及数学思维与方法等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学重要知识点集锦第一章、三角函数 §1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合:{}Z k k ∈+=,2παββ.§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 rl =α. 3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π. §1.2.1、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xy x y ===αααtan ,cos ,sin . 2、 设点()00,y x A 为角α终边上任意一点,那么:(设2020y x r +=)r y 0sin =α,r x 0cos =α,00tan x y =α. 3、 αsin ,αcos ,αtan 在四个象限的符号和三角函数线的画法. 4、 诱导公式一:()()().tan 2tan ,cos 2cos ,sin 2sin απααπααπα=+=+=+k k k (其中:Z k ∈)5、 特殊角0°,30°,45°,60°,90°,180°,270°的三角函数值.1、 平方关系:1cos sin 22=+αα. 2、 商数关系:αααcos sin tan =.§1.3、三角函数的诱导公式 1、 诱导公式二:()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+2、诱导公式三:()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-3、诱导公式四:()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-4、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-5、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象1、记住正弦、余弦函数图象:2、 能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、 会用五点法作图.§1.4.2、正弦、余弦函数的性质 1、 周期函数定义:对于函数()x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()x f T x f =+,那么函数()x f 就叫做周期函数,非零常数T 叫做这个函数的周期.§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:2、 能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.§1.5、函数()ϕω+=x A y sin 的图象 1、 能够讲出函数x y sin =的图象和函数()b x A y ++=ϕωsin 的图象之间的平移伸缩变换关系. 2、 对于函数:()()0,0sin >>++=ωϕωA b x A y 有:振幅A ,周期ωπ2=T ,初相ϕ,相位ϕω+x ,频率πω21==Tf .§1.6、三角函数模型的简单应用 1、 要求熟悉课本例题.第二章、平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、向量的大小,也就是向量的长度(或称模);长度为零的向量叫做零向量;长度等于1个单位的向量叫做单位向量.3、方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、三角形法则和平行四边形法则.2、++.§2.2.2、向量减法运算及其几何意义1、与a长度相等方向相反的向量叫做a的相反向量.§2.2.3、向量数乘运算及其几何意义1、规定:实数λ与向量a的积是一个向量,这种运算叫做向量的数乘.记作:λ,它的长度和方向规定如下:⑴=,⑵当0>λ时, aλ的方向与a的方向相同;当0<λ时, aλ的方向与的方向相反.2、平面向量共线定理:向量()≠与b共线,当且仅当有唯一一个实数λ,使λ=.§2.3.1、平面向量基本定理1、平面向量基本定理:如果21,ee是同一平面内的两个不共线向量,那么对于这一平面内任一向量a,有且只有一对实数21,λλ,使2211eeλλ+=. §2.3.2、平面向量的正交分解及坐标表示1、()yxj yi xa,=+=.§2.3.3、平面向量的坐标运算1、设()()2211,,,yxbyxa==,则:⑴()2121,yyxxba++=+,⑵()2121,yyxx--=-,⑶()11,yxλλλ=,⑷1221//yxyx=⇔.2、 设()()2211,,,y x B y x A ,则: ()1212,y y x x --=. §2.3.4、平面向量共线的坐标表示 1、设()()()332211,,,,,y x C y x B y x A ,则⑴线段AB 中点坐标为()222121,y y x x ++, ⑵△ABC 的重心坐标为()33321321,y y y x x x ++++.§2.4.1、平面向量数量积的物理背景及其含义 1、θb a =⋅.2、 在θcos . 3、2=. 4、=.5、 0=⋅⇔⊥.§2.4.2、平面向量数量积的坐标表示、模、夹角 1、 设()()2211,,,y x y x ==,则:⑴2121y y x x +=⋅2121y x +=⑶02121=+⇔⊥y y x x b a 2、 设()()2211,,,y x B y x A ,则:()()212212y y x x -+-=.§2.5.1、平面几何中的向量方法 §2.5.2、向量在物理中的应用举例第三章、三角恒等变换§3.1.1、两角差的余弦公式1、()βαβαβαsin sin cos cos cos +=-2、记住15°的三角函数值:1、()βαβαβαsin sin cos cos cos -=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin cos cos sin sin +=+4、()βαβαβαtan tan 1tan tan tan -+=+.5、()βαβαβαtan tan 1tan tan tan +-=-.§3.1.3、二倍角的正弦、余弦、正切公式1、αααcos sin 22sin =, 变形:ααα2sin cos sin 21=.2、ααα22sin cos 2cos -=1cos 22-=αα2sin 21-=,变形1:22cos 12cos αα+=, 变形2:22cos 12sin αα-=.3、ααα2tan 1tan 22tan -=.§3.2、简单的三角恒等变换 1、注意正切化弦、平方降次.数学基础知识必修5:第一章:解三角形 1、正弦定理: R CcB A 2sin sin sin ===. 2、余弦定理:.2cos ,2cos ,2cos .cos 2,cos 2,cos 2222222222222222222abc b a C ac b c a B bc ac b A C ab b a c B ac c a b A bc c b a -+=-+=-+=-+=-+=-+=3、三角形面积公式:B ac Abc C ab S ABC sin 21sin 21sin 21===∆第二章:数列1、数列中与S 之间的关系:⎩⎨⎧>-==-.1,1,11时当时,当n S S n S a n nn2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
⑵通项公式:d n a a n )1(1-+= ⑶求和公式:()()22111n a a d n n na S n n +=-+=3、等比数列⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵通项公式:11-=n n q a a⑶求和公式:()qq a q q a a S nn n --=--=11111第三章:不等式 1、()时取等号当且仅当时,当b a abb a b a =≥+>20,2、()时取等号当且仅当时,当b a abb a R b a =≥+∈2,223、变形:2,2222b a ab b a ab +≤⎪⎭⎫⎝⎛+≤ 必修2:1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
2、空间几何体的三视图和直观图把光由一点向外散射形成的投影叫中心投影,中心投影的投影线交于一点;把在一束平行光线照射下的投影叫平行投影,平行投影的投影线是平行的。
3、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面⑶圆台侧面积:l R l r S ⋅⋅+⋅⋅=ππ侧面 ⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()h S S S S V 下下上上台体+⋅+=31⑸球的表面积和体积:32344R V R S ππ==球球,.第二章:点、直线、平面之间的位置关系 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。
2、公理2:过不在一条直线上的三点,有且只有一个平面。
3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、公理4:平行于同一条直线的两条直线平行.5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
6、线线位置关系:平行、相交、异面。
7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。