数列常见解题方法

合集下载

数列解题方法大全

数列解题方法大全

数列方法大全一、求通项公式各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 已知数列{}n a 满足211=a ,1n n a a n +=+,求n a 。

变式: 已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式. 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

变式:(2004,全国I,理15.)已知数列{a n },满足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例3:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .类型4 nn n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

(或1n n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1+n q,得:qq a q p q a n n n n 111+•=++引入辅助数列{}n b (其中nnn qa b =),得:qb q p b n n 11+=+再待定系数法解决。

数列题型及解题方法

数列题型及解题方法

数列题型及解题方法题型1:等差数列解题方法:首先确定数列的首项和公差,然后使用递推公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。

根据题目给出的条件,可以求得所求的项或者公式中的未知数。

题型2:等比数列解题方法:首先确定数列的首项和公比,然后使用递推公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。

根据题目给出的条件,可以求得所求的项或者公式中的未知数。

题型3:斐波那契数列解题方法:斐波那契数列是指后一项等于前两项之和的数列,即an = an-1 + an-2。

根据题目给出的条件,可以使用递归或循环的方式计算斐波那契数列的第n项。

题型4:数列求和解题方法:对于等差数列和等比数列,可以使用求和公式直接计算数列的和。

等差数列的和用Sn = (n/2)(a1 + an)表示,等比数列的和用Sn = a1(1 - r^n)/(1 - r)表示。

根据题目给出的条件,代入公式计算即可得到所求的和。

题型5:数列拓展解题方法:有时候题目需要在基本的数列模型上进行拓展,可以根据数列的特点和题目的要求进行分析和解答。

可以使用递推公式或者递推关系式进行推导,并根据题目给出的条件计算所求的项或和。

题型6:递推关系式解题方法:有时候数列无法使用基本的递推公式进行求解,需要根据数列的特点建立递推关系式。

递推关系式是指数列的每一项与前面的若干项之间存在某种关系,通过这个关系可以递推求解数列的项或和。

根据题目给出的条件,建立递推关系式,并根据初始条件求解所求的项或和。

数列解题方法与技巧

数列解题方法与技巧

数列解题方法与技巧
解题方法和技巧有很多种,以下是一些常见的数列解题方法和技巧:
1. 找规律:观察数列中的数字是否有一定的规律或者模式,例如等差数列、等比数列等。

通过找到规律可以推断出数列中的其他数字。

2. 列方程:将数列中的数字用变量表示,然后列出方程,通过求解方程来确定数列中的其他数字。

3. 递推关系:如果数列中的第n个数字可以通过前面的数字推断出来,可以利用递推关系来求解数列。

4. 数列求和公式:如果要求解数列的和,可以利用数列求和公式来计算。

5. 辅助数列:有些数列可以通过构造辅助数列来求解,例如斐波那契数列可以通过构造一个新的辅助数列来求解。

6. 数学工具:利用一些数学工具和技巧,例如数学归纳法、二项式定理等来求解数列。

7. 模拟计算:有时候可以通过模拟计算来求解数列,即通过计算数列中的前几个数字,找到数列中的规律,然后根据规律来计算其他数字。

8. 看题意:有时候可以根据题目中的提示和要求来判断数列的性质和规律,然后进一步求解。

以上是一些常用的数列解题方法和技巧,但具体的解题方法和技
巧还需要根据具体的数列问题来确定。

在解题过程中,还需注意审题、理清思路、细心计算等问题。

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案

数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。

这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。

下面我们逐个讲解这些重要的方法。

递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。

这种方法有两种类型。

第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。

但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。

第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。

累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。

其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。

只要适合an=an-1+f(n)的形式,都可以使用累加法。

基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。

+f(n)。

因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。

累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。

它的基本书写步骤格式是:an=a1*f(2)*f(3)*。

*f(n)。

以上是数列通项公式的三种求法。

2.改写每段话:首先,我们来看等式左右两边的乘积。

左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。

数列题解析常见的数学题型及解题技巧

数列题解析常见的数学题型及解题技巧

数列题解析常见的数学题型及解题技巧数列题解析:常见的数学题型及解题技巧数学中,数列是一种按照一定规律排列的数字序列。

数列题是中学数学常见的题型之一,考察学生对数列的理解和解题能力。

本文将介绍数列题的常见题型,并提供解题技巧。

一、等差数列1. 等差数列概念等差数列是指数列中相邻两项之间的差值都相等的数列。

通常用字母a表示首项,d表示公差。

等差数列的通项公式为:an = a + (n-1)d。

2. 等差数列题型及解题技巧(1) 求前n项和:可以利用等差数列的求和公式Sn = (n/2)(2a + (n-1)d)来计算。

(2) 求项数:已知等差数列的首项和公差,求第n项可以利用通项公式an = a + (n-1)d。

(3) 求公差:已知等差数列的首项和任意两项,可以利用公式d = an - a(n-1)来计算。

二、等比数列1. 等比数列概念等比数列是指数列中相邻两项之间的比值都相等的数列。

通常用字母a表示首项,q表示公比。

等比数列的通项公式为:an = a * q^(n-1)。

2. 等比数列题型及解题技巧(1) 求前n项和:可以利用等比数列的求和公式Sn = (a(1-q^n))/(1-q)来计算。

(2) 求项数:已知等比数列的首项和公比,可以利用通项公式an = a * q^(n-1)进行转化求解。

(3) 求公比:已知等比数列的首项和任意两项,可以通过求项数的方式来计算公比。

三、递推数列递推数列是指数列中的每一项都由前一项递推而来的数列。

递推数列题型比较灵活,常见的有斐波那契数列、阶乘数列等。

解决递推数列题目的关键是找到递推关系式,将问题转化为数列的求解问题。

四、复合数列复合数列是指数列中同时具有等差和等比特征的数列。

可以通过将复合数列拆分成等差数列和等比数列两部分来解决问题。

解决复合数列题目的关键是根据题目给出的条件,分别求解等差数列和等比数列的部分,然后将结果综合起来。

五、其他常见数列题型除了上述三种常见的数列题型外,还有一些其他常见的数列题型,如费马数列、幂次数列等。

数列方法大全

数列方法大全

1.1+n a =n a +)(n f 型累加法:n a =(n a -1-n a )+(1-n a -2-n a )+…+(2a -1a )+1a =)1(-n f +)2(-n f +…+)1(f +1a例1.已知数列{n a }满足1a =1,1+n a =n a +n 2(n ∈N +),求n a . [解]n a =n a -1-n a +1-n a -2-n a +…+2a -1a +1a=12-n +22-n +…+12+1=2121--n=n2-1∴n a =n2-1 (n ∈N +)3.1+n a =p n a +q 型(p 、q 为常数)方法:(1)1+n a +1-p q =)1(-+p q a p n , 再根据等比数列的相关知识求n a .(2)1+n a -n a =)(1--n n a a p再用累加法求n a .(3)11++n n p a =nn p a +1+n p q ,先用累加法求nnp a 再求n a .例 3.已知{n a }的首项1a =a (a 为常数),n a =21-n a +1(n ∈N +,n ≥2),求n a .[解] 设n a -λ=2(1-n a -λ),则λ=-1∴n a +1=2(1-n a +1) ∴{1+na }为公比为2的等比数列.∴n a +1=(a+1)·12-n∴n a =(a+1)·12-n -12.)(1n g a a nn =+型 累乘法:n a =1-n n a a ·21--n n a a …12a a ·1a例 2.已知数列{n a }满足n a a nn =+1(n ∈N +),1a =1,求n a .[解]n a =1-n n a a ·21--n n a a …12a a ·1a=(n -1)·(n -2)…1·1=(n -1)! ∴n a =(n -1)! (n ∈N +)4.1+n a =p n a +)(n f 型(p 为常数) 方法:变形得11++n n p a =nn p a +1)(+n pn f , 则{nn p a }可用累加法求出,由此求n a .例4.已知{na }满足1a =2,1+n a =2n a +12+n .求n a .[解] 112++n n a =n na 2+1∴{n na 2}为等差数列.n n a 2=n n a =-+121∴n a =n ·n25.2+n a = p 1+n a +q n a 型(p 、q 为常数)特征根法:q px x +=2(1)21x x ≠时,n a =1C ·n x 1+2C ·nx 2(2)21x x =时,n a =(1C +2C ·n )·n x 1 例5.数列{n a }中,1a =2,2a =3,且2n a =1-n a +1+n a (n ∈N +,n ≥2),求n a . [解]1+n a =2n a -1-n a∴122-=x x∴121==x x∴n a =(1C +2C ·n )·n1=1C +2C ·n∴⎩⎨⎧=+=+3222121C C C C ∴⎩⎨⎧==1121C C∴)(1+∈+=N n n a n7.“已知n S ,求n a ”型方法:n a =n S -1-n S (注意1a 是否符合)例6.设n S 为{n a }的前n 项和,n S =23(n a -1),求n a (n ∈N +) [解] ∵n S =23(n a -1) (n ∈N +) ∴当n=1时,1a =23(1a -1)∴1a =3当n ≥2时,n a =n S -1-n S=23(n a -1)-23(1-n a -1) ∴n a =31-n a ∴n a =n3(n ∈N +)6.1+n a =DCa BAa n n ++型(A 、B 、C 、D 为常数)特征根法:x =D Cx BAx ++(1)21x x ≠时,21x a x a n n --=C ·2111x a x a n n ----(2)21x x =时, 11x a n -=C x a n +--111例6. 已知1a =1,1+n a =22+n na a (n ∈N +),求n a .[解] x =22+x x∴021==x x∴n a 1=11-n a +C∵1a =1,2a =32,∴代入,得C=21∴⎭⎬⎫⎩⎨⎧n a 1为首项为1,d=21的等差数列.∴na 1=21+n ∴n a =12+n (n ∈N +) 8.“已知n a ,1+n a ,n S 的关系,求n a ”型方法:构造与转化的方法.例8. 已知{n a }的前n 项和为n S ,且n a +2n S (1+n S -1+n a -n a )=0(n ≥2),1a =21,求n a . [解] 依题意,得n S -1-n S +2n S ·1-n S =0∴n S 1-11-n S =2 ∴nS 1=2+2(n -1)=2n ∴n S =n21,1-n S =)1(21-n∴n a =n S -1-n S=-2×n 21×)1(21-n=)1(21n n -(2≥n ) ∴n a =⎪⎪⎩⎪⎪⎨⎧≥∈-=+)2,()1(21)1(21n N n n n n一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。

一、典型题的技巧解法 1、求通项公式 (1)观察法。

(2)由递推公式求通项。

对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。

(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。

求a n 。

例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)2434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。

数列公式大全

数列公式大全

数列公式大全数列是数学中的重要概念,在高考中也是常见的考点。

以下是数列的一些常见公式和性质,供高考复习参考。

1.等差数列等差数列是数列中最简单的一种形式,公式为:an = a1 + (n-1)d。

其中,an表示数列的第n项,a1表示首项,d表示公差。

常见性质:-公差d的求解方法:d=a2-a1=a3-a2=...- 前n项和公式:Sn = (a1 + an) * n / 2- 根据首尾两项和项数求公差:d = (an - a1) / (n-1)2.等比数列等比数列是指数列中后一项与前一项的比相等的数列。

公式为:an = a1 * r^(n-1)。

其中,an表示数列的第n项,a1表示首项,r表示公比。

常见性质:-公比r的求解方法:r=a2/a1=a3/a2=...-前n项和公式:Sn=a1*(1-r^n)/(1-r)(当,r,<1)-无穷项和公式:Sn=a1/(1-r)(当,r,<1)3.等差数列与等比数列的转换对于等差数列,可以通过等比数列进行转换。

公式为:an = ar^(n-1)。

其中,an表示等差数列的第n项,a表示等差数列的公差,r表示等差数列的首项和公差的比。

4.斐波那契数列斐波那契数列是一个特殊的数列,公式为:an = an-1 + an-2,其中a1 = 1,a2 = 1常见性质:5.平方数列平方数列是指数列中每一项都是一个平方数的数列。

公式为:an = n^2常见性质:-平方数和公式:Sn=n(n+1)(2n+1)/6-平方数的性质:n^2=(n-1)^2+2n-16.立方数列立方数列是指数列中每一项都是一个立方数的数列。

公式为:an = n^3常见性质:-立方数和公式:Sn=n^2(n+1)^2/4-立方数的性质:n^3=(n-1)^3+3n(n-1)+1除了以上几种常见的数列外,高考中还会涉及到其他类型的数列,如等差数列和等比数列的组合、绝对值数列、等差中项数列等等,这些数列的性质和公式需要根据具体的题目进行掌握和记忆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列解题方法 一、基础知识:数列:1.数列、项的概念:按一定 次序 排列的一列数,叫做 数列 ,其中的每一个数叫做数列的项.2.数列的项的性质:① 有序性 ;② 确定性 ;③ 可重复性 .3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示项的位置序号,因此数列的一般形式可以写成a 1,a 2,a 3,…,a n ,(…),简记作 {a n } .其中a n 是该数列的第 n 项,列表法、 图象法、 符号法、 列举法、 解析法、 公式法(通项公式、递推公式、求和公式)都是表示数列的方法.4.数列的一般性质:①单调性 ;②周期性 . 5.数列的分类:①按项的数量分: 有穷数列 、 无穷数列 ;②按相邻项的大小关系分:递增数列 、递减数列 、常数列、摆动数列 、其他;③按项的变化规律分:等差数列、等比数列、其他; ④按项的变化范围分:有界数列、无界数列.6.数列的通项公式:如果数列{a n }的第n 项a n 与它的序号n 之间的函数关系可以用一个公式a n =f (n )(n ∈N +或其有限子集{1,2,3,…,n}) 来表示,那么这个公式叫做这个数列的 通项公式 .数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是 散点图 ,点的横坐标是 项的序号值 ,纵坐标是 各项的值 .不是所有的数列都有通项公式,数列的通项公式在形式上未必唯一.7.数列的递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一项a n -1(或前几项a n-1,a n -2,…)间关系可以用一个公式 a n =f (a 1n -)(n =2,3,…) (或 a n =f (a 1n -,a 2n -)(n=3,4,5,…),…)来表示,那么这个公式叫做这个数列的 递推公式 . 8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n =1ni i a =∑=a 1+a 2+…+a n ,如果S n 与项数n 之间的函数关系可以用一个公式 S n = f (n )(n =1,2,3,…) 来表示,那么这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系:通项公式a n 与求和公式S n 的关系可表示为:11(1)(n 2)n n n S n a S S -=⎧=⎨-≥⎩等差数列与等比数列:数列的项n a 与前n 项和n S 的关系:11(1)(2)n n n s n a s s n -=⎧=⎨-≥⎩数列求和的常用方法:1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差) 可裂项为:111111()n n n n a a d a a ++=-⋅1d= 等差数列前n 项和的最值问题:1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。

(ⅰ)若已知通项n a ,则n S 最大⇔10n n a a +≥⎧⎨≤⎩; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值(ⅰ)若已知通项n a ,则n S 最小⇔10n n a a +≤⎧⎨≥⎩;(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2qp-的非零自然数时n S 最小; 数列通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

已知12()n a a a f n =求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++-1a +(2)n ≥。

⑸已知1()n na f n a +=求n a ,用累乘法:121121n n n n n a a a a a a a a ---=⋅⋅⋅⋅(2)n ≥。

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n k 得到一个等差数列后,再求n a 。

(2)形如11n n n a a ka b--=+的递推数列都可以用倒数法求通项。

(3)形如1k n n a a +=的递推数列都可以用对数法求通项。

(8)遇到q a a d a a n n n n ==--+-+1111或时,分奇数项偶数项讨论,结果可能是分段形式数列求和的常用方法:(1)公式法:①等差数列求和公式;②等比数列求和公式。

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k=-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k -=<<=-++--;④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤11(1)!!(1)!n n n n =-++;⑥=<<=二、解题方法:求数列通项公式的常用方法:1、公式法2、n n a S 求由(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴ n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a∴a n n =+21∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++1115344、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-=又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()……∴……a a f f f n n =++++023()()()[练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--6、等比型递推公式 ()a ca d c d c c d n n =+≠≠≠-1010、为常数,,,()可转化为等比数列,设a x c a x n n +=+-1 ()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a d c c n +-⎧⎨⎩⎫⎬⎭+-111∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111[练习] {}数列满足,,求a a a a a n n n n 11934=+=+7、倒数法 例如:,,求a a a a a n nn n 11122==++ 由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-=∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n ·∴a n n =+21数列前n 项和的常用方法:1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。

{}如:是公差为的等差数列,求a d a a n k k k n111+=∑解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-⎛⎝ ⎫⎭⎪≠∴11111111a a d a a k k k nkk k n+=+=∑∑=-⎛⎝ ⎫⎭⎪=-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥=-⎛⎝ ⎫⎭⎪++11111111111223111d a a a a a a d a a n n n ……[练习]求和: (11)1211231123+++++++++++n3、错位相减法:{}{}{}若为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n{}和,可由求,其中为的公比。

S qS S q b n n n n -如:……S x x x nx n n =+++++<>-12341231()x S x x x x n x nx n n n ·……=+++++-+<>-234122341()<>-<>-=++++--121121:……x S x x x nx n n n()()x S x x nx x n n n≠=----11112时,()x S n nn n ==++++=+112312时,……4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

相关文档
最新文档