线性系统的频率特性实验报告

合集下载

自动控制原理实验讲义

自动控制原理实验讲义

自动控制原理实验指导书实验一 控制系统典型环节的模拟一、 实验目的1、掌握用运放组成控制系统典型环节的电子电路2、测量典型环节的阶跃响应曲线3、通过实验了解典型环节中参数的变化对输出动态性能的影响 二、 实验仪器1、自控原理电子模拟实验箱一台2、电脑一台(虚拟示波器)3、万用表一只 三、 实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z1和Z2为复数阻抗,它们都是由R 、C 构成。

基于图中A 点的电位为虚地,略去流入运放的电流,则由图1-1得:120)(Z ZU U s G i =-= (1)由上式可求得由下列模拟电路组成的典型环节的 传递函数及其单位阶跃响应。

1、比例环节比例环节的模拟电路如图1-2所示:图1-1、运放的反馈连接1212)(R R Z Z s G ==(2)图1-2 比例环节取参考值K R 1001=,K R 2002=;或其它的阻值。

2、惯性环节惯性环节的模拟电路如图1-3所示:111/1/)(21212212+=+∙=+==TS KCS R R R R CS R CSR Z Z s G (3)图1-3 惯性环节取参考值K R 1001=,K R 1002=,uF C 1=。

3、积分环节积分环节的模拟电路如图1-4所示:TSRCS R CS Z Z s G 111)(12==== (4)图1-4 积分环节取参考值K R 200=,uF C 1=。

4、比例积分环节积分环节的模拟电路如图1-5所示:)11()11(11/1)(2212112121212ST K CS R R R CS R R R CS R CS R R CS R Z Z s G +=+∙=+=+=+==(5)图1-5 比例积分环节取参考值K R 2001=,K R 4002=,uF C 1=。

5、比例微分环节比例微分环节的模拟电路如图1-6所示:)1()1(/1/)(112111212+=+∙=+==S T K CS R R RCS R CS R R Z Z s G D (6)取参考值K R 2001=,K R 2002=,uF C 1.0=。

实验四 控制系统频率特性的测试 实验报告

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。

二.实验装置(1)微型计算机。

(2)自动控制实验教学系统软件。

三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。

这就是所谓“李沙育图形”。

由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。

(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。

在拐点处有一定的差距,在某些点处也存在较大的误差。

分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。

(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。

(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。

在实验过程中一个频率可同时记录2Xm,2Ym,2y0。

(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。

实验四 系统频率特性测量

实验四 系统频率特性测量

实验四系统频率特性测量一、实验目的1、加深了解系统及元件频率特性的物理概念。

2、掌握系统及元件频率特性的测量方法。

二、实验设备1、D1CE-AT-∏型自动控制系统实验箱一台2、带串口计算机一台3、RS232串口线三、实验原理及电路1、被测系统的方块图及原理:系统(或环节)的频率特性G(jω)是一个复变量,可以表示成以角频率3为参数的幅值和相角:G(M=IG(%)I∕G(网本实验应用频率特性测试仪测量系统或环节的频率特牲。

图4-1所示系统的开环频率特性为:B(jω)B(ιω)B(jω)G3)GR3)H(j3)=叼舟I/追采用对数幅频特牲和相频特性表示,则式(4-2)表示为:(4—1) (4-2)图4-1被测系统方块图2。

IgGG3)G∕)Hg)H。

啕需I=2(Hg1BG3-2(Hg1EG3)I (4—3) C⅛Gω)G<jω)HGω)=/*线=∕BQω)-EGω)(4-4)E(j3)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输人端Et)],然后分别测量相应的反馈信号[b⑴]和误差信号[e(t)]的对数幅值和相位。

频率特性测试仪测试数据经相关运算器后在显示器中显示。

根据式(4—3)和式(4—4)分别计算出各个频率下的开环对数幅值和相位,在半对数座标纸上作出实验曲线:开环对数幅频曲线和相频曲线。

根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。

所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符,如果测量所得的相位在高频(相对于转角频率)时不等于一900(q—p)[式中P和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。

系解实验报告结论

系解实验报告结论

系解实验报告结论引言在本次实验中,我们通过对不同类型的线性系统进行系统解析的实验研究,旨在进一步加深对线性系统系统解析的理解和掌握。

实验设计了三个不同类型的线性系统,并使用Matlab软件进行仿真和模拟实验。

本报告将对实验结果进行详细的分析和总结,得到实验的结论。

结论经过实验的研究和分析,我们得出了以下结论:1. 线性系统的稳定性对系统的工作性能有重要影响。

在本次实验中,我们研究了连续线性系统和离散线性系统的稳定性。

通过分析系统的特征方程和极点位置,我们可以判断系统的稳定性。

在系统的稳定性分析过程中,我们发现,连续系统的稳定性与极点的实部有关,而离散系统的稳定性与极点的模长有关。

稳定的系统能够保持稳定的输出,从而保证系统的正常工作。

2. 滤波器在信号处理中起着关键作用。

我们在实验中设计了一个模拟滤波器,并对不同类型的信号进行了滤波处理。

通过滤波器的设计和仿真实验,我们发现滤波器能够滤除不需要的频率分量和噪声,并突出需要的信号。

这使得我们能够更好地进行信号处理和分析,提高了系统的工作性能。

3. 频率响应是分析和设计系统的重要方法之一。

在实验中,我们通过绘制系统的频率响应曲线,观察系统在不同频率下的特性。

我们发现,频率响应曲线能够直观地反映系统的增益特性和相位特性。

通过对频率响应曲线的分析,我们可以了解系统的频率选择性、频率放大性和相位延迟等特性。

这对系统的设计和优化具有重要意义。

4. 噪声对系统的性能影响较大。

在实验中,我们引入了不同强度的噪声信号,观察系统的输出变化。

我们发现,噪声信号会造成系统的输出波形扭曲和信噪比下降。

这使得系统的工作性能受到了一定的影响。

为了提高系统的抗噪能力,我们需要采取相应的滤波和抗干扰措施,从而降低噪声对系统的影响。

5. 实验中使用的Matlab软件是进行系统解析和仿真的重要工具。

通过Matlab 软件,我们可以方便地进行系统参数的设置和修改,进行系统的频域分析和时域仿真。

东南大学实验四系统频率特性测试实验报告

东南大学实验四系统频率特性测试实验报告

东南大学实验四系统频率特性测试实验报告东南大学自动控制实验室实验报告课程名称:自动控制原理实验实验名称:实验四系统频率特性的测试院(系):自动化专业:自动化姓名:学号:实验室:417实验组别:同组人员:实验时间:20166年年1122月月202日评定成绩:审阅教师:目录一..实验目的33二.实验原理33三.实验设备33四..实验线路图44五、实验步骤44六、实验数据55七、报告要求66八、预习与回答10九、实验小结10一、实验目的(1)明确测量幅频和相频特性曲线的意义(2)掌握幅频曲线和相频特性曲线的测量方法(3)利用幅频曲线求出系统的传递函数二、实验原理在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的前提和难点。

建模一般有机理建模和辨识建模两种方法。

机理建模就是根据系统的物理关系式,推导出系统的数学模型。

辨识建模主要是人工或计算机通过实验来建立系统数学模型。

两种方法在实际的控制系统设计中,常常是互补运用的。

辨识建模又有多种方法。

本实验采用开环频率特性测试方法,确定系统传递函数,俗称频域法。

还有时域法等。

准确的系统建模是很困难的,要用反复多次,模型还不一定建准。

模型只取主要部分,而不是全部参数。

另外,利用系统的频率特性可用来分析和设计控制系统,用Bode图设计控制系统就是其中一种。

幅频特性就是输出幅度随频率的变化与输入幅度之比,即A=UoUi(),测幅频特性时,改变正弦信号源的频率测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。

测相频有两种方法:(1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T和相位差t,则相位差=∆tT360。

这种方法直观,容易理解。

就模拟示波器而言,这种方法用于高频信号测量比较合适。

(2)李沙育图形法:将系统输入端的正弦信号接示波器的X轴输入,将系统输出端的正弦信号接示波器的Y轴输入,两个正弦波将合成一个椭圆。

实验二线性系统分析

实验二线性系统分析

实验二线性系统分析一、实验目的通过实验,掌握线性系统的特性和分析方法,了解系统的幅频特性和相频特性。

二、实验原理1.线性系统线性系统是指遵循叠加原理和比例原理的系统,可以表示为y(t)=h(t)⊗x(t),其中h(t)为系统的冲激响应,x(t)为输入信号,y(t)为输出信号,⊗为线性卷积操作。

2.系统的频域特性系统的频域特性可以通过离散傅里叶变换(Discrete Fourier Transform,简称DFT)来进行分析,DFT是将离散时间域信号变换到离散频域的方法。

3.系统的幅频特性系统的幅频特性描述了输出信号的幅度随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。

4.系统的相频特性系统的相频特性描述了输出信号的相位随频率变化的规律,可以通过对系统的单位冲激响应进行DFT来得到。

三、实验步骤1.准备工作:a.将信号发生器的频率设置为100Hz,幅度设置为5V。

b.将示波器的触发模式设置为自动,并调节水平位置使信号波形居中显示。

2.测量系统的幅频特性:a.将信号发生器的输出信号连接到线性系统的输入端口,将示波器的通道1连接到线性系统的输入端口,将示波器的通道2连接到线性系统的输出端口。

b.调节示波器的时间基准使波形显示在适当的范围内。

c.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的波形。

d.在示波器中进行幅度测量,并记录下输入信号和输出信号的幅值。

e.使用DFT算法对输入信号和输出信号进行频谱分析,得到幅频特性曲线。

f.绘制输入信号和输出信号的幅频特性曲线,并进行比较和分析。

3.测量系统的相频特性:a.调节信号发生器的频率和示波器的触发模式,观察输入信号和输出信号的相位差。

b.在示波器中进行相位测量,并记录下输入信号和输出信号的相位。

c.使用DFT算法对输入信号和输出信号进行频谱分析,得到相频特性曲线。

d.绘制输入信号和输出信号的相频特性曲线,并进行比较和分析。

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

线性系统的频率特性实验报告

线性系统的频率特性实验报告

实验四 线性系统的频率特性一、实验目的:1. 测量线性系统的幅频特性2. 复习巩固周期信号的频谱测量二、实验原理:我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。

线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。

对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。

这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。

设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性)(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则时间域中输入与输出的关系)()()(t h t v t v in out *=频率域中输入与输出的关系)()()(ωωωj H j V j V in out ⋅=时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。

变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。

三、实验方法:1. 输入信号的选取这里输入信号选取周期矩形信号,并且要求τT不为整数。

这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。

周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是ΩKT,其中1=K 、2、3、… 。

图11.1 输入的周期矩形信号时域波形t图11.2 输入的周期矩形信号幅度频谱2.线性系统的系统函数幅度频率特性分析 (1)RL 低通网络(a ) RL 电路 (b ) 幅频特性曲线图11.3 RL 电路及其幅频特性曲线)()()(t v dtt dv R L t v i o o =⋅+输入周期矩形信号,通过RL 低通网络的输出波形如下:图11.4 通过RL 低通网络的输入、输出信号V )(ωjV out)(s t μ)(s t μ对比输入、输出信号,可以看到输出信号的跳变部分被平滑,说明输入信号通过RL 低通网络后,滤除高频分量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 线性系统的频率特性
一、实验目的:
1.测量线性系统的幅频特性
2.复习巩固周期信号的频谱测量
二、实验方法:
1.输入信号的选取
这里输入信号选取周期矩形信号,并且要求
τ
T
不为整数。

这是因为周期矩形
信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。

周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度
为零的频率点是Ωτ
KT
,其中1=K 、2、3、… 。

图11.2 输入的周期矩形信号幅度频谱
2.线性系统的系统函数幅度频率特性分析 (1)RL 低通网络
(a ) RL 电路 (b ) 幅频特性曲线
R
)(ωj V in )
(ωj V out L
)
(ωj H ω
)()()(t v dt
t dv R L t v i o o =⋅+
输入周期矩形信号,通过RL 低通网络的输出波形如下:
图11.4 通过RL 低通网络的输入、输出信号
对比输入、输出信号,可以看到输出信号的跳变部分被平滑,说明输入信号通过RL 低通网络后,滤除高频分量。

描述RL 低通网络的系统函数的频率特性为L
R j L R
j V j V j H i o +
=
=ωωωω)
()()(
三、实验实验设备与器件
1.函数信号发生器 2.选频电平表 3.双踪示波器 4.实验箱
5.电阻、电感、电容若干
四、实验内容
1.仪器使用与调试(参见实验一)
输入信号选取:周期方波信号,周期s T μ200=,脉冲宽度s μτ60=,脉冲幅度V V p 5=。

2.RL 低通网络
在实验箱上连接成RL 电路(4.7mH 电感、220Ω电阻)。

分别测量输入、输出的时域波形;分别测量RL 低通电路的输入、输出信号的基波到第十次谐波,
T
3T 2T )
(s t μτ
0p
V in
v
T
3T 2T )
(s t μτ
p
V out
v
并记录测量的各次谐波频率)(KHz f 及对应谐波频率的幅度)(dB V 。

测量图如下:
RL低通网络
00.20.40.60.8
10
10
20
30
40
50
60
频率f/kHz
H (j w )
实测仿真
3.RC 高通网络
在实验箱上连接成RC 电路(47nF 电容、220Ω电阻)。

测量数据的要求同RL 低通电路。

测量电路如下:
频率f(kHz)
5 10 15 20 25 30 35 40 45 50 实测
电压V i i (dB) 6.4 1.6 -12.0
-8.5
-6.0
-12.7
-18.6
-10.7
-13.6
-39.9
电压V o (dB)
3.6
-3.4
-19.2 -17.3 -16.4 -24.4 -31.3 -24.6 -28.4 -54.5
H (j ω)(dB)/V o-V i -2.8
-5 -7.2 -8.8 -10.5 -11.7 -12.7 -13.9 -14.8 -14.6 H (j ω) 0.716
0.550 0.432 0.359 0.299 0.257 0.232 0.200 0.180 0.151 仿真
H (j ω)
0.836
0.594
0.408
0.369
0.286
0.223
0.265
0.188
0.154
0.004
频率f(kHz)
5 10 15 20 25 30 35 40 45 50 实测
电压V i i (dB) 6.4 1.6 -12.0
-8.5
-6.0
-12.7
-18.6
-10.7
-13.6
-39.9
电压V o (dB)
3.6
-3.4
-19.2 -17.3 -16.4 -24.4 -31.3 -24.6 -28.4 -54.5
H (jω)(dB)/V o-V
-16.9 -10.9
-7.8 -6 -4.8 -3.8 -3.1 -2.7 -2.3 -1.3 H (jω) 0.16
0.30
2 0.427 0.519 0.60
3 0.661 0.72
4 0.750 0.776 0.794 仿真
H (jω) 0.14
8
0.287
0.416
0.516
0.599
0.669
0.747
0.766
0.801
0.987
RC高通网络
0.000
0.2000.4000.6000.8001.0001.2000
10
20
3040
50
60
频率f/kHz
H (j w )
实测仿真。

相关文档
最新文档