串联型稳压直流电源课程设计实验报告
串联稳压电源实验报告

串联稳压电源实验报告串联稳压电源实验报告引言:稳压电源是电子实验中常用的电源装置,其作用是提供稳定的直流电压供给电路中的元器件。
本实验旨在通过串联稳压电源的搭建和调试,探究其原理和性能。
一、实验目的本实验的目的是搭建一个串联稳压电源,了解其工作原理和特性,并通过实验验证其稳定性和可靠性。
二、实验材料1. 电压表和电流表:用于测量电源的输出电压和输出电流。
2. 电阻:用于串联稳压电路中的负载。
3. 高功率电阻:用于稳压电路中的功率放大器。
4. 二极管:用于稳压电路中的整流器。
5. 电容:用于稳压电路中的滤波器。
6. 变压器:用于提供输入电压。
三、实验步骤1. 搭建稳压电源电路:根据实验原理,按照电路图搭建稳压电源电路。
2. 调试电路:将电路连接好后,逐步调试电路,确保各元器件连接正确。
3. 测量输出电压:将电压表连接到电路的输出端,调节电路参数,测量输出电压的稳定性和精度。
4. 测量输出电流:将电流表连接到电路的输出端,测量输出电流的稳定性和精度。
5. 测试负载能力:通过改变负载电阻的大小,观察电路对不同负载的响应能力。
6. 测试过载保护:通过增大输入电压,观察电路的过载保护功能。
四、实验结果与分析通过测量和观察,我们得到了如下实验结果:1. 输出电压稳定性:在不同负载下,输出电压变化幅度较小,稳定性较好。
2. 输出电流稳定性:在不同负载下,输出电流变化幅度较小,稳定性较好。
3. 负载能力:电路对不同负载的响应能力较强,能够稳定输出所需电流。
4. 过载保护:在输入电压过大的情况下,电路能够自动断开,保护电路和负载。
根据实验结果分析,我们可以得出以下结论:1. 串联稳压电源能够提供稳定的直流电压,并具有较好的稳定性和可靠性。
2. 电路中的功率放大器、整流器和滤波器等元器件起到了关键作用,确保了输出电压和电流的稳定性。
3. 通过合理调节电路参数,可以适应不同的负载需求。
4. 过载保护功能能够有效保护电路和负载,提高了电路的安全性和可靠性。
串联型直流稳压电源设计报告

串联型直流稳压电源设计姓 名 学 号 院、系、部 班 号 完成时间※※※※※※※※※ ※※※※※※※※※※※※※※※2013级模拟电子技术课程设计摘要此系统采用分立元件组成串联型直流稳压电源。
主要经过变压、整流、滤波、稳压、限流等各部分组成。
其中变压部分由变压器实现得到二次侧电压;整流部分由单相桥式整流电路实现;滤波通过电容具有维持两端电压不变的特性而得到平滑的电压波形,故将一个大电容与负载并联;由于电网电压的波动整流电路的输出电压会随二次侧电压变化而变化,因此需要加入稳压电路得到更加稳定的直流电压。
限流电路元件主要是串接在调整管发射极回路中的检测电阻和保护三极管构成。
关键词:直流稳压变压目录第1章设计任务与要求 (1)第2章设计内容 (1)2.1 电路原理 (1)第3章单元电路设计及主要元器件参数计算 (2)3.1 输入电压的确定 (2)3.2 电源变压器 (2)3.3 整流电路 (2)3.4 滤波部分 (3)第4章仿真与调试 (3)4.1 实验电路图 (3)4.2 滤波电路仿真结果 (4)4.3 仿真结果输出 (5)4.4 仿真结果分析 (5)第5章结论与心得 (5)参考文献 (6)第1章设计任务与要求(1)掌握运用分立元件设计串联型直流稳压电路;(2)用选择变压器、整流二极管、滤波电容及三极管来设计直流稳压电源。
(3)输出电压Uod=5V,最大输出电流mA=I500max(4)电网电压波动±10%,稳压系数05S。
<.0rr(5)内阻Ω<1.0(6)工作温度︒25C~40(7)有过流保护电路,当负载电流超过I5.1时过流保护电路工作L第2章设计内容2.1 电路原理直流稳压电源的工作流程如下:图2-1流程图图2-2流程图结合上面两个图,我们得出直流稳压电源的工作原理:电路接入幅值为220V、频率为50Hz的交变电压u1,通过电源变压器,将220V的电压幅值调整为合适的电路工作压值u 2。
模拟电子技术课程设计报告-串联型直流稳压电源

模拟电子技术课程设计报告-串联型直流稳压电源一、项目背景串联型直流稳压电源是一种电路结构简单、制作方便、运行可靠的常用电源。
它由控制部分和模拟部分所组成,其中的控制部分又由电压控制部分和电流控制部分组成。
由于控制原理比较复杂,模拟部分又由传统的电路技术组成,所以通常由多种元件,如电容、电阻、二极管、三极管等组成,给高质量、稳定的直流输出电压。
串联型直流稳压电源在很多领域都有广泛应用,如信号处理系统中,可以使用此电源为高灵敏度的模拟信号模块提供外部电源;在医疗仪器、工控系统中,这款串联型直流稳压电源的性能出色,能够满足具有特殊要求的电源需求;在电子化设备、数据中心等设备中,也可以使用此款电源准确地提供电源供应。
二、项目任务设计一款串联型直流稳压电源,其最大输出电流能够达到5A,最大输出电压可以调节到24V,其适用于家庭和工业应用场合。
三、项目实施1、首先进行输出电压的控制,采用一极管作为电压控制集成电路,这种集成电路可以调节输出电压的范围,也可以控制电压的波动范围。
2、接下来就是避免超流的功能实现。
为此,可以采用一极管和电阻组成的电流控制电路,其中一极管作为放大器,另一个电阻作为负反馈器件,可以准确地检测出电路中的过流状态并产生抑制信号,从而避免出现过流现象。
3、接着就是模拟部分的组成,采用电感、可变电容器、电阻和电容组成滤波电路,其中,电感具有较高的稳定性,可变电容器可根据需求调节信号的频率;电阻和电容则用来改善输出的稳定性。
4、最后对所有组成部分进行组合,并进行了多项电路参数的测试,确保电源的可靠性、性能稳定。
四、测试结果详细测试结果如下:(1)电源输出电压稳定性:在输出电压为24V时,标准偏差低于1V。
(3)杂散电流:输出电流小于2A时,杂散电流小于30mA。
(4)电源功耗:在输出电压24V的情况下,电源功耗小于15W。
五、结论本项目设计的串联型直流稳压电源,其输出电流可达到5A、输出电压可调节至24V,可以满足家庭和工业应用场合的需求。
模电课程设计报告---串联型直流稳压电源

综合设计性实验报告课程名称模拟电子技术课程设计实验名称串联型直流稳压电源一、题目名称:串联型直流稳压电源要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。
指标:1、输出电压6V、9V两档,正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、纹波电压峰值▲Vop-p≤5mv;二、方案设计及电路框图1、方案比较方案一:如图1,先对输入电压进行降压,然后用单相桥式二极管对其进行整流,整流后利用电容的充放电效应,用电解电容对其进行滤波,将脉动的直流电压变为更加平滑的直流电压,稳压部分的单元电路由稳压管和三极管组成(如图2),以稳压管D1电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R L两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由可知将减小(升高)导致基极电流和发射极电流的减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。
负电源部分与正电源相对称,原理一样。
图1 方案一的稳压部分电路方案二:经有中间抽头的变压器输出后,整流部分同方案一一样采用四个二极管组成的单相桥式整流电路,整流后的脉动直流接滤波电路,滤波电路由两个电容组成,先用一个较大阻值的电解电容对其进行低频滤波,再用一个较低阻值的陶瓷电容对其进行高频滤波,从而使得滤波后的电压更平滑,波动更小。
滤波后的电路接接稳压电路,稳压部分的电路如图3所示,方案二的稳压部分由调整管,比较放大电路,基准电压电路,采样电路组成。
当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。
图2 方案二稳压部分单元电路对以上两个方案进行比较,可以发现第一个方案为线性稳压电源,具备基本的稳压效果,但是只是基本的调整管电路,输出电压不可调,而且输出电流不大,而第二个方案使用了运放和调整管作为稳压电路,输出电压可调,功率也较高,可以输出较大的电流。
串联稳压电源实验报告

串联稳压电源实验报告实验目的,通过实验掌握串联稳压电源的基本原理和使用方法,了解其在电路中的应用。
实验仪器,串联稳压电源、直流电压表、直流电流表、电阻器、导线等。
实验原理,串联稳压电源是一种能够提供稳定输出电压的电源,通过串联稳压电源可以为电路提供稳定的电压,避免由于电压波动而对电路产生影响。
串联稳压电源的基本原理是通过电子元件的控制,使输出电压保持在设定值附近,即使输入电压发生变化,输出电压也能保持稳定。
实验步骤:1. 连接电路,首先将串联稳压电源与直流电压表、直流电流表、电阻器等元件按照电路图连接好。
2. 调节输出电压,将串联稳压电源的输出电压调节旋钮调至所需的输出电压值,观察直流电压表的读数,确保输出电压稳定在设定值附近。
3. 测量电流,通过直流电流表测量电路中的电流值,观察电流表的读数,确保电流稳定在设定值附近。
4. 观察稳压效果,在电路中加入一个电阻器,观察串联稳压电源对电路中电压的稳定作用,通过调节串联稳压电源的输出电压,观察电路中的电压变化情况。
实验结果,经过实验,我们成功掌握了串联稳压电源的基本原理和使用方法,了解了其在电路中的应用。
通过调节串联稳压电源的输出电压,我们观察到电路中的电压保持稳定,即使输入电压发生变化,输出电压也能保持稳定。
同时,通过测量电流值,我们也验证了串联稳压电源对电路中电流的稳定作用。
实验总结,通过本次实验,我们深入了解了串联稳压电源的工作原理,掌握了其在电路中的应用方法。
串联稳压电源在电子电路中具有重要的作用,能够保护电路不受电压波动的影响,确保电路正常工作。
掌握串联稳压电源的使用方法对于电子工程师来说是非常重要的,希望通过本次实验能够加深大家对串联稳压电源的理解,为日后的学习和工作打下坚实的基础。
实验存在的问题,在实验过程中,我们发现串联稳压电源对电路中的电压和电流能够起到稳定作用,但在实际应用中还需要考虑到电路的功率、效率等因素,需要进一步深入研究和实践。
本科课程设计报告串联型直流稳压电路

本科课程设计报告--串联型直流稳压电路本科课程设计报告课程名称:模拟电子线路实验项目:串联型直流稳压电路实验地点:电机馆电子工艺实验室专业班级:电信1102班学号: 201100 学生姓名:同组人:指导教师:2013年 5 月 28 日一、摘要本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电。
具体过程为电网供电电压交流220V、50Hz,采用电源变压器将电网电压降低获得所需要交流电压,降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。
脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。
滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。
最终实现设计目的。
二、课程设计名称及要求(一)设计题目串联型直流稳压电源(二)设计目的通过本课题设计,学习电子系统设计的一般方法,要求学会选择变压器、整流二极管、滤波电容及三极管来设计直流稳压电源;掌握稳压电源的主要性能参数;掌握Multisim仿真软件的应用;掌握常用元器件的识别和测试;熟悉常用仪表,了解电路测试的基本方法。
(三)设计要求稳压电路要加有放大环节以改善稳定性;输出电压在一定范围内连续可调;要加有保护电路(四)技术指标输入交流电压:220V/50Hz输出直流电压:=9~15 V输出电流:稳压系数:三、设计原理稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成如图所示:电源变压整流电路滤波电路稳压电路+ + + + +设计稳压电源,就是根据给定的技术指标,确定整流滤波电路和稳压电路两部分的电路方案和元器件参数,保证电源能正常工作。
四、设计思路(一)选电路初选电路,不是越复杂越好,应该选用既满足指标要求,有比较简单的电路。
(二)调整环节:是由工作在放大区的调整管构成的。
因为输出电压的稳定,要通过调整管的调节作用来实现,输出的最大电流要由调整管的最大允许电流来决定。
串联型直流稳压电源实验报告

模电课程设计实验报告学校:XX 专业:XXXX课题:串联型直流稳压电源指导老师: XXX设计学生: XXXXXXXXXX 学号:XXXXXXX XXXX惠州学院HUIZHOU UNIVERSITY2011/7/4目录一、课题--------------------------------------------------3二、课题技术指标--------------------------------------------------3三、设计要求--------------------------------------------------3四、元件器件清单--------------------------------------------------3五、设计方案--------------------------------------------------3六、直流稳压电源的元器件--------------------------------------------------4七、设计计算--------------------------------------------------6八、焊接实图--------------------------------------------------8九、心得体会--------------------------------------------------9一、课题:串联型直流稳压电源二、课题技术指标1、输出电压:8~15V可调2、输出电流:I O=1A3、输入电压:交流220V +/- 10%4、保护电流:I Om =1.2A5、稳压系数:S r = 0.05%/V6、输出电阻:R O < 0.5 Ω7、交流分量(波纹电压):<10mV三、设计要求1、分析电路组成及工作原理;2、单元电路设计计算;3、采用分立元件电路;4、画出完整电路图;5、调试方法;6、小结与讨论。
模电课程设计串联型直流稳压电源的设计报告

串联型直流稳压电源的设计报告一、设计题目串联型直流稳压电源的设计二、设计任务和要求任务:设计用晶体管和集成运算放大器组成的串联型直流稳压电源。
要求:1、输出电压6V、9V两档,同时具备正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、在最大输出电流的时候纹波电压峰值▲V op-p≤5mv三、理论电路和程序设计1、整体框架图直流稳压电源由变压器、整流、滤波、稳压四部分电路组成。
2程序设计方案一::先对输入电压进行降压,然后用单相半波整流单路整流,用电感滤波电路滤波,稳压电路采用的是基本调整稳压电路方案二:先对输入电压进行降压,然后用单相桥式整流电路整流,用电容滤波电路滤波。
稳压电路采用的是具有放大环节的串联型稳压电路方案比较(1)、单相半波整流电路简单易行,所用二极管数量少,但输出电压地底,脉动大,效率低,单相桥式整流电路与半波整流电路相比,对二极管的参数要求的相同的,但有输出电压高,变压器利用率高,脉动小等特点单相半波整流电路桥式整流电路(2)、电容滤波器和电感滤波器相比,导通角小,但其脉动系数大,更适用与小电流负载,结合本设计的具体要求,本次设计采用电容滤波器进行滤波(3)、基本调整稳压电路的输出电路不可调,且输出电压稳定性较差,和基本调整稳压电路相比具有放大环节的串联型稳压电路引入了深度电压负反馈来稳定输出电压,还可以通过采样电路来调整输出电压,符合本设计的要求综合考虑,采用方案二使用的电路为单相桥式整流电路整流,电容滤波电路滤波,具有放大环节的串联型稳压电路稳压3、元器件选择(1)变压器的选择为了使调整管工作在放大区,电路必须满足U1>=U0+Uces,在本设计中,U0最大为9V调整管饱和压降取Uces为3V所以U1的最小值为9+3=12V,一般选取U1=(2~3)倍U0即U1在12V~27V之间.综合考虑,取U1=20V,可以选择220V-20V的变压器,具体软件提供的变压器型号为TS_POWER_10_1(2)整流二极管的选择单相桥式整流电路中二极管的选择:I>(2~3)*0.5=(1.~1.5)A取1AU>1.1*1.414*20=31V所以取额定电流为1A,额定电压为100V的二极管(3)滤波电容的选择:由R=U/I得电路的负载约为15欧,由滤波电容的计算公式:R L C=(3~5)T/2得C=2000~3300uF取C=2500uF(仿真实验中,为了达到实验效果采用的是4000uF )(4)限流电阻R的选择:Rmax=(Uimin-Uz)/Izmin+Ilmax=(20-4.3)*1000/(10+500)=30ΩRmin=(Uimin-Uz)/Izmax+Ilmin=(20-4.3)*1000/(500+150)=24Ω所以取R=25欧姆(5)调整管T参数的选择:应满足I cm>Il=500mA;U>1.1*9-6=3.9V; P>I*U=1.95W(6)稳压管的选择:稳压管采用1N749A 标准稳定电压4.3V额定电流105MA动态电阻22Ω消耗功率0.4W(7)采样电路电阻参数的选择:令Uomin=(R1+R2+R3)Uz/R2+R3=6V令Uomax=(R1+R2+R3)Uz/R3=9V取Uz=4.3V,当R1=100ΩR2= 2000ΩR3=2000Ω时,得输出电压4.4V<=U0<=9.1V四、测试和仿真1、电路连接:按设计好的原件型号及电路图连接好仿真电路如下仿真电路图2、仿真实验:调节可变电阻的阻值,依次得到仿真数据如下图所示(1)输出电压为6.048V(2)输出电压为9.08V (3)输出电压为-9.102V(4)输出电压为-5.911V(5)当滑动变阻器滑到最小时,输出电压最大,即输出电流最大时纹波电压峰值约为4mv<5mv(6)正负最大电压输出时,输出电流分别为460mA和434mA五、总结本次设计预计正输出电压为4.4V~9.1V实际仿真输出电压为5.016V~9.081V,负输出电压为-9.1V~-4.4V实际仿真输出电压为-9.985V~-5.051V,能达到输出正负6V、9V的要求并且在最大输出电流的时候纹波电压峰值▲V op-p≤5mv,最大输出电流小于500mA,所以本次设计的符合要求的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
串联型直流稳压电源的设计报告一. 题目: 串联型直流稳压电源的设计。
二. 要求:设计并制作用晶体管和集成运算放大器组成的串联型直流稳压电源。
指标:1、输出电压6V、9V两档,同时具备正负极性输出;2、输出电流:额定电流为150mA,最大电流为500mA;3、在最大输出电流的时候纹波电压峰值▲Vop-p≤5mv;三. 电路原理分析与方案设计采用变压器、二极管、集成运放,电阻、稳压管、三极管等元件器件。
220V的交流电经变压器变压后变成电压值较少的交流,再经过桥式整流电路和滤波电路形成直流,稳压部分采用串流型稳压电路。
比例运算电路的输入电压为稳定电压,且比例系数可调,所以其输出电压也可以调节;同时,为了扩大输出电流,集成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。
1.方案比较:方案一.用晶体管和集成运放组成基本串联型直流稳压电源方案二.用晶体管和集成运放组成的具有保护换届的串联型直流稳压电源.方案三:用晶体管和集成运放组成的实用串联型直流稳压电压可行性分析:上面三种方案中,方案一最简单,但功能也最少,没有保护电路和比较放大电路,因而不够实用,故抛弃方案一。
方案三功能最强大,但是由于实验室条件和经济成本的限制,我们也抛弃方案三,因为它牺牲了成本来换取方便。
所以从简单、合理、可靠、经济从简单而且便于购买的前提出发,我选择方案二未我们最终的设计方案。
2.结合设计的要求,电路框图如下3.单元电路设计与元器件选择 (1)变压器的选择直流电的输入为220V 的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对电流电压处理。
电源变压器的作用是将电网220V 的交流电压变换成整流滤波电路所需要的交流电压Ui 。
变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。
本次课程设计的要求是输出正负9伏和正负6负的双电压电源,输出电压较低,而一般的调整管的饱和管压降在2-3伏左右,由Omin Imax CE U U U -=,CE U 为饱和管压降,而Im ax U =9V 为输出最大电压,Om in U 为最小的输入电压,以饱和管压降CEU =3伏计算,为了使调整管工作在放大区,输入电压最小不能小于12V ,为保险起见,可以选择220V-15V 的变压器,再由P=UI 可知,变压器的功率应该为0.5A ×9V=4.5w ,所以变压器的功率绝对不能低于 4.5w ,并且串联稳压电源工作时产生的热量较大,效率不高,所以变压器功率需要选择相对大些的变压器。
结合市场上常见的变压器的型号,可以选择常见的变压范围为双15V ,额定功率20W 的变压器。
(2)整流滤波电路:桥式整流电路将交流电压变换成脉动的直流电压。
再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压。
1.桥式整流器的选择为了将正弦波电压转换为单一方向的脉动电压,还需要通过整流电路。
查阅资料可知单相整流电路有半波整流电路、单相桥式整流电路(全波整流电路)。
单相桥式整流电路和半波整流电路相比,在相同的变压器副边电压下,对二极管的参数要求一样,并且还具有输出电压高,变压器利用率高、脉动系数小等优点。
所以在电路中采用单相桥式整流电桥式整流器是利用二极管的单向导通性进行整流的最常用的电路,常用来将交流电转变为直流电。
二极管的平均其中2U 为变压器次级交流电压的有效值。
我们可以求得)(AV o U =13.5v 。
对于全波整流来说,如果两个次级线圈输出电压有效值为2U ,则处于截止状态的二极管承受的最大反向电压将是222U ,即为34.2v ,考虑电网波动(通常波动为10%,为保险起见取30%的波动)我们可以得到 )(AV o U 应该大于19.3V ,最大反向电压应该大于48.8V 。
在输出电流最大为500mA 的情况下我们可以选择额定电流为1A ,反向耐压为1000V 的二极管的桥式整流器。
2.滤波电路的选择与器件的选择。
整流电路将交流电变为脉动直流电,但其中含有大量的直流和交流成分(称为纹波电压)。
这样的直流电压作为电镀、蓄电池充电的电源还是允许的,但作为大多数电子设备的电源,将会产生不良影响,甚至不能正常工作。
在整流电路之后,需要加接,尽量减小输出电压中交流分量,使之接近于理想的直流电压。
滤波电路作用是尽可能减小脉动的直流电压中的交流成分,保留其直流成分,使输出电压纹波系数降低,波形变得比较平滑。
常用的滤波电路有无源滤波和有源滤波两大类。
若滤波电路元件仅由无源元件(电阻、电容、电感)组成,则称为无源滤波电路。
无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L 型、LC 滤波、LCπ型滤波和RCπ型滤波等)。
若滤波电路不仅由无源元件,还由有源元件(双极型管、单极型管、集成运放)组成,则称为有源滤波电路。
无源滤波电路的结构简单,易于设计,通常用在功率电路中,所以这里采用无源滤波电路,电容滤波器和电感滤波器相比,导通角小,但其脉动系数大,适用与小电流负载,同时还可吸收电子电路工作过程中产生的电流波动和经由交流电源串入的干扰,使得电子电路的工作性能更加稳定,结合本设计的具体要求,本次设计采用电容滤波器进行滤波。
滤波电容容量大因此一般采用电解电容,在接线时要注意电解电容的正、负极。
电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑,当滤波电容1C 偏小时,滤波器输出电压脉动系数大;而1C 偏大时,整流二极管导通角θ偏小,整流管峰值电流增大,不仅对整流二极管参数要求高,另一方面,整流电流波形与正弦电压波形偏离大,谐波失真严重,功率因数低。
所以电容的取值应当有一个范围,由前面的计算我们已经得出变压器的次级线圈电压为15V ,当输出电流为500mA 时,我们可以求得电路的负载为18欧,我们可以根据滤波电容的计算公式:C=(3~5)LR T2来求滤波电容的取值范围,其中在电路频率为50HZ 的情况下, T 为20ms 则电容的取值范围为1667-2750uF ,保险起见我们可以取标准值为2200uF 额定电压为25V 的铝电解电容。
另外,由于实际电阻或电路中可能存在寄生电感和寄生电容等因素,电路中极有可能产生高频信号,所以需要一个小的电容来滤去这些高频信号。
我们可以选择一个0.33uF 的电解电容来作为高频滤波电容。
滤波电路如上图。
(4)、稳压电路的设计从整流滤波后的电压是不稳定的电压,在电网电压或负载变化时,该电压都会产生变化,而且纹波电压又大。
所以,整流滤波后,还须经过稳压电路,才能使输出电压在一定的范围内稳定不变,串联型稳压电路以稳压管稳压电路为基础,利用晶体管的电流放大作用,增大负载电流,在电路中引入深度的电压负反馈使输出电压稳定;并且通过改变反馈网络参数使输出电压可调。
稳压电路组要由四部分构成:调整管,保护电路,基准稳压电路,比较放大电路,采样电路。
当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A 的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。
由于输出电流较大,达到500mA ,为防止电流过大烧坏调整管,需要选择功率中等或者较大的三极管,调整管的击穿电流必须大于500mA ,又由于三极管CE 间的承受的最大管压降应该大于15-6=9V ,考虑到30%的电网波动,我们的调整管所能承受的最大管压降应该大于13V ,最小功率应该达到)(min 01L U U 1.1I P -≥=6.5W 。
我们可以选择适合这些参数,并且在市场上容易买到的中功率三极管TIP41,它的最大功率为60W,最大电流超过6A ,所能承受的最大管压降为100V ,远远满足调整管的条件。
负极的调整管则选择与之相对应的中功率PNP 型三极管TIP42。
在集成稳压器电路内部含有各种保护电路,使集成稳压器在出现不正常情况时不至于损坏。
因为串联型稳压电路的调整管是其核心器件,它流过的电路近似等于负载电流,且电网电压波动或输出电压调节时管压降将产生相应的变化,所以这些保护电路都与调整管紧密相关。
过流保护电路能够在稳压管输出电流超过额定值时,限制调整管发射极电流在某一数值或使之迅速减少,从而保护调整管不会因电流过大而烧坏, TIP41也足够在作为保护电路中的三极管使用。
输出的最大电流为500mA,根据公式:I Omsx ≈I Emax ≈U BE2/R所以保护电路中的采样电阻选用1欧姆的,负极的保护电路则选择与之相对应的中功率PNP 型三极管TIP42和1欧姆电阻。
基准电路由4.7V 的稳压管和4.7K 欧姆的保护电阻组成。
由于输出电压要求为6伏和9伏,如果采样电路使用固定值的电阻,由于各种因素(如本身阻值的误差等)很容易造成误差,为了使输出电压准确值高,所以采样电阻最好应该做成可调的,固采样电路由一个电阻和一个可调电阻组成,根据公式:D U Dmax R RU ∆=求出。
其中D R 为运放正反相输入端的电阻,R ∆为输出端正极(负极)与共地端之间的电阻 ,D U 为稳压管的稳压值。
固可以取220欧姆、和0.5k 欧姆的固定电阻置于中间的滑阻两旁避免当使D R 为0.所以根据此公式可求的电路的输出电压为4.7-15.381V ,可以输出6V 和9V 的电压。
为了方便输出6V 和9V 两档的电压,用单刀双掷开关接两个电位器,用开关来控制6V 和9V 两个档位。
运放选用工作电压在15V 左右前对电压稳定性要求不是很高的常见的741运算放大器,由于741的工作电压为正负12V 至正负22V ,范围较大,可以用其作为运放,因为整流滤波后的电压波动不是很大,所以运放的工作电源可以利用整流后的电压来对其进行供电。
正负端的稳压电路为了使输出电压更稳定,输出纹波更小,可以对输出端进行再次滤波,可在输出端接一个100nf 的电解电容和一个103的陶瓷电容,这样电源不容易受到负载的干扰。
使得电源的性质更好,电压更稳定,输出纹波更小。
四、画出系统的电路总图TIP41三极管TIP42三极管型号:TIP41C 型号:TIP42C封装:TO-220 封装:TO-220极性:NPN 极性:PNP 主要参数:100V,6A,65W,3MHZ,HFE=15-75 主要参数:100V,6A,65W,3MHZ,HFE=15-75对管:TIP42 对管:TIP41HA17741单运算放大器封装:DIP8特有属性[ 输入失调电压 ] : 9.0 mV[ 输入失调电流 ] : 200 nA[ 输入偏置电流 ] : 1100 nA[ 共模输入电压范围 ] : -12 V ~ 12 V[ 共模抑制比 ] : 70 dB[ 大信号电压增益 ] : 86 dB[ 输出峰-峰电压 ] : -10 V ~ 10 V[ 电压转换速率 ] : 1.0 V/us[ 电源电压 ] : 18 V[ 功耗 ] : 100 mW桥式整流器是由多只整流二极管作桥式连接,外用绝缘塑料封装而成。