等腰三角形.2等腰三角形课件
等腰三角形的性质课件

STEP 03
平行线法
若两条平行线被第三条直 线所截,截得的对应线段 相等,则该三角形为等腰 三角形。
若三角形中线两侧的线段 相等,则该三角形为等腰 三角形。
角的证明方法
中垂线定理
等腰三角形顶角的平分线、底边 上的中线、底边上的高互相重合
。
角平分线定理
等腰三角形顶角的平分线、底边上 的中垂线、底边上的高互相重合。
等腰三角形的特点
等腰三角形的两条相等边 称为“腰”,另一边称为 “底”。
等腰三角形的两腰之间的 角是相等的,这个角称为 “顶角”。
等腰三角形的底角也是相 等的,这是它与一般三角 形不同的地方。
等腰三角形的定义
等腰三角形的定义是:有两边长度相 等的三角形,这两边称为腰,另一边 称为底。
此外,等腰三角形的两腰之间的角是 相等的,这个角称为顶角。底角也是 相等的,这是它与一般三角形不同的 地方。
Part
02
等腰三角形的性质
边的性质
两边相等
等腰三角形有两条边长度 相等。
两边的夹角相等
等腰三角形两边的夹角相 等。
三边关系
等腰三角形的三边满足两 边之和大于第三边,两边 之差小于第三边。
角的性质
两个底角相等
等腰三角形的两个底角相等。
顶角与底角的度数关系
等腰三角形的顶角与底角的度数之和为180度。
Part
04
等腰三角形的应用
在几何学中的应用
证明定理
等腰三角形是几何学中重要的基本图 形之一,它的性质定理和判定定理在 证明各种几何定理和解决几何问题中 有着广泛的应用。
计算角度
证明相等
等腰三角形的两边相等,可以利用这 个性质来证明两个三角形全等,从而 解决一些几何问题。
人教版八年级数学上册《等腰三角形》课件(共28张PPT)

轴对称图形
两个底角相等,简称“等边对等角”
顶角平分线、底边上的中线、和底边上
的高互相重合,简称“三线合一”
2. 能根据等腰三角形的概念与性质求等腰三 角形的周长或知道一角求其它两角或证线段、 角相等。
当堂检测
(1)如图,△ABC 中, AB =AC, ∠A =36°,
则∠B =
;
(2)如图,△ABC 中, AB =AC, ∠A =3 ∠B,
A
重合的线段
重合的角
AB=AC BD=CD AD=AD
∠B = ∠C.
∠BAD = ∠CAD
B
∠ADB =∠ADC =90°
D
C
等腰三角形的性质
性质 1 等腰三角形的两个底角相等 (简写成等边对等角)
性质 2 等腰三角形的顶角平分线、底 边上的中线、底边上的高互相重合 (简写成三线合一)
几何语言:
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
▪7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
B
C
D
已知:△ABC中,AB=AC 求证:∠B=C
如何证明两个三角形全等?
作BC边上的高AD 作BC边上的中线AD 作顶角的平分线 AD
归纳总结
A等腰三角形常见辅助线A NhomakorabeaA
┌
B
D
CB
D
CB
D
C
如图,作△ABC 的中线AD
初中数学课件等腰三角形的性质(几何)ppt课件

利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。
等腰三角形的判定课件2

A
等腰三角形有哪些性质?
性质1:已知△ABC中,AB=AC, B D C 则___∠_B__=__∠_C___ (简称:等边对等角)
性质2:已知△ABC中,AB=AC,AD⊥BC于D, 则BD=__C_D____,∠BAD=__∠_C_A_D___ (简称:等腰三角形“三线合一”)
分别计算∠1,∠2的度数,并说明图中有哪些等
腰三角形。
A
∠1=72° ∠2=36° △ABC △ABD △BCD
2
B
D
1
C
同步体验:
3、求证:有两条高相等的三角形是等腰三角 形。
练一练
1、如图,把一张矩形的纸沿对角线折叠, 重合的部分是一个等腰三角形吗?为什么?
E A G 3C
B 12
D
练一练:
猜想:
• 如果在△ABC中 ,∠B=∠C,那么AB=AC 吗?
探究: 如图,位于在海上A、B两处的两艘救 生船接到O处的遇险报警,当时测得 ∠A=∠B。如果这两艘救生船以同样的速 度同时出发,能不能大约同时赶到出事地 点(不考虑风浪因素)?
O
A
B
等腰三角形的性质与判定有区别吗?
性质是:等边 判定是:等角
等角 等边
例题2
求证:如果三角形一个外角的平分线平行于三角形的一边, 那么这个三角形是等腰三角形。
已知:∠CAE是△ABC的外角, ∠_1_=∠_2__,_A_D_∥ _B_C_ 求证:_A_B__=_A_C__
证明:∵AD∥BC ∴∠1=∠B (两直线平行,同位角相等) ∠2=∠C ( 两直线平行,内错角相等 )A
又∵∠1=∠2
∴∠B=∠C
∴AB=AC ( 等角对等边 ) B
等腰三角形ppt课件

02
等腰三角形的判定
定义与判定方法
定义:有两边长度相等的三角形称为等 腰三角形。
3. 角平分线法:若一个三角形一个角的 平分线等于其对应边的高线,则该三角 形为等腰三角形。
2. 中线法:若一个三角形中线等于其一 半长度,则该三角形为等腰三角形。
判定方法
1. 定义法:根据等腰三角形的定义,只 需判断一个三角形有两边长度相等即可 。
等腰三角形性质定理的推广与拓展主要涉及以下几个方面:一是推广到更复杂的几何图形中,如平行四边形、菱 形等;二是拓展到三角函数中,用于研究三角函数的对称性和周期性等问题;三是拓展到物理学中,用于研究力 矩平衡等问题。
04
等腰三角形的实际应用
建筑中的等腰三角形
总结词
建筑美学与等腰三角形的完美结合
详细描述
性质定理的应用举例
总结词
等腰三角形性质定理的应用场景及实例
详细描述
等腰三角形性质定理的应用场景广泛,例如在几何、三角函数、建筑等领域都有 应用。以几何为例,通过等腰三角形的性质定理可以证明一些重要的几何定理, 如勾股定理、余弦定理等。
性质定理的推广与拓展
总结词
等腰三角形性质定理的推广及拓展方向
详细描述
等腰三角形在实际VS
详细描述
等腰三角形在实际问题中有着广泛的应用 ,它是解决问题的重要工具。例如,在物 理学中,等腰三角形可以用来解决力臂平 衡的问题;在生物学中,可以用来解释 DNA分子的结构;在经济学中,可以用 来分析股票市场的波动等。
05
等腰三角形的相关练习题及 解析
边角关系在判定中的应用
等边对等角
在等腰三角形中,相等的两边所对的角也相等。
三角形内角和定理
《等腰三角形的性质》优秀课件pptx

定义及特点定义有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
特点等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平分线;两腰相等,两底角相等。
与等边三角形关系区别等边三角形的三边都相等,三个角都是60度;而等腰三角形只有两边相等,两底角相等,顶角可以是任意角度(小于180度)。
联系等边三角形可以看作是特殊的等腰三角形,即当等腰三角形的顶角为60度时,它就变成了等边三角形。
03在建筑设计中,等腰三角形常被用于构建具有对称美的结构,如尖顶房屋、桥梁的支撑结构等。
建筑学在机械设计和制造中,等腰三角形的稳定性被广泛应用,如三脚架、起重机的支撑结构等。
工程学在解决一些实际问题时,等腰三角形可以作为数学模型,帮助我们理解和解决问题,如测量高度、计算角度等。
数学建模实际应用举例01等腰三角形定义有两边相等的三角形称为等腰三角形。
02两边相等定理内容等腰三角形的两个底角相等。
03定理证明方法通过构造中线或高,利用全等三角形或相似三角形的性质进行证明。
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”。
两角相等定理内容定理证明方法推论通过构造角平分线或中线,利用全等三角形或相似三角形的性质进行证明。
在等腰三角形中,若有一个角是60°,则这个三角形是等边三角形。
030201等腰三角形是轴对称图形,对称轴是底边的垂直平分线。
对称性在等腰三角形中,若两条边相等,则对应的两个角也相等。
对称性推论1在等腰三角形中,若一个角是另一个角的两倍,则这个三角形是直角三角形,且直角在顶角处。
对称性推论2在等腰三角形中,若底边两端点到对称轴的距离相等,则这两个点是底边的两个三等分点。
对称性推论3对称性及其推论两条边相等根据等腰三角形的定义,若一个三角形有两条边长度相等,则该三角形为等腰三角形。
两个角相等等腰三角形的两个底角相等,因此若一个三角形有两个角相等,则可根据此性质判定该三角形为等腰三角形。
2.2 等腰三角形 课件(共24张PPT) 浙教版 八年级上册

活动二:认识等腰三角形
A DE
求证:等腰三角形两腰上的中线相等.
已知:如图,在△ABC中,AB=AC, CD,BE分别是腰AB,AC上的中线.
求证:BE=CD
B
C
活动二:认识等腰三角形
证明:∵CD,BE分别是AB,AC上的中线,
A
∴AD=
1 2
AB
,AE=
1 2
AC,
DE
∵AB = AC, ∴AD = AE.
又∵ ∠A = ∠A,
B
C
∴△ABE ≌△ACD(SAS),
∴BE =CD.
活动二:认识等腰三角形
已知线段a,b (如图),
a
用直尺和圆规作等腰三角形ABC.
b
使AB=AC= b,BC= a .
A
如图所示,
bb
△ABC即为所求作的三角形。
B a CE
活动三:找出等腰三角形
C3 C1 C4
如图,在格点中找一点C,
∴△ADE是以直线AP为对称轴的轴对称图形,
C ∴点D和点E关于AP对称.
活动二:认识等腰三角形
A
如图,在△ABC中,AB=AC,
AP是△ABC的角平分线。
点D、E分别是AB,AC上的点,
D
E
且AD=AE.
(3)DE与BC平行吗?请说明理由。 BP C
活动二:认识等腰三角形
A D BP
解:(3)DE平行于BC,理由如下:
P3 P5
C
课堂小结
轴对称图形
特殊:等边三角形
概念 有两条边相等的三角形叫做等腰三角形。
等腰三角形
对称轴:1条或3条
找等腰三角形
位置分类 上
1等腰三角形(第2课时)PPT课件(华师大版)

(1)求证:△ABE≌△CAF;
(2)求∠BDF的度数.
A
D
解:(1)证明:∵△ABC为等边三角形,
∴∠BAE=∠C=60°,AB=CA,
E
在△ABE和△CAF中,
= ( 已证 ),
∠ = ∠ ( 已证 ),
= (已知) ,
B
F
C
∴△ABE≌△CAF (SAS).
讲授新课
求证: AB=AC=BC.
A
证明:∵AB=AC , ∠A= 60 °.
。
1
∴∠B=∠C= (180 -∠A)= 60°.
2
∴∠A= ∠ B=∠C.
∴AB=AC=BC.
动动手
若AB=AC , ∠B= 60°,求证
AB=AC=BC.
B
C
讲授新课
等边三角形性质归纳:
等腰三角形
等边三角形
边
两条边相等
三条边都相等
明你的结论.
证明:∵∠ACE=∠FCM=60°,
∴∠ECF=60°.
N
∵△ACN≌△MCB,
∴∠CAE=∠CMB.
M
∵AC=MC,
A
∴△ACE≌△MCF(ASA),
F
E
C
B
∴CE=CF.
∴△CEF是等边三角形.
想一想:本题你还能得到哪些结论?
当堂检测
1.在△ABC中, 已知∠A=50°,∠B=65°,判断△ABC是什么三角形,
证明:∵△ABC为等边三角形,且
A
AD=BE=CF,
F
∴AF=BD=CE,∠A=∠B=∠C=60°,
∴△ADF≌△BED≌△CFE(SAS),
D