门电路自激多谐振荡器的原理和实险
多谐振荡器

图形பைடு நூலகம்号
X 电感性
fo 0
电容性
f 电容性
阻抗频率特性
当振荡信号的
频率和石英晶体的 固有频率fo相同时, 石英晶体呈现很低 的阻抗,信号很容 易通过它,而其他 频率信号经过石英 晶体时被衰减。
因此,石英晶体具有很好的选频特性。
将石英晶体串接在多谐振荡器中就可以组成石英 晶体振荡器,这时石英晶体多谐振荡器的振荡频率 取决于石英晶体的固有谐振频率fO,而与外接电阻、 电容无关。
变为低电平UOL,同时uO跳变为高电平UOH,所以的电
路输出翻转进入第二暂稳态。
由于电容C两端电压不能突变,所以uI也将跟随uO上跳。 而后,电容C通过逻辑门G1、G2的导通电路放电,则uI 逐渐下降,当uI下降到UTH时,迅速使uO1跳变为高电 平UOH,uO跳变为低电平UOL。 电路回到第一暂稳态,电源又经逻辑门G1、G2的导通 电路对电容C充电,又重复上述过程。
因此,电路便不停地在两个暂稳态之间反复振荡。
多谐振荡器波形图
为了改善电路性能, 一般取RP=10R,作为 一个补偿电阻,可减小 电源电压变化对振荡频 率的影响。
一个周期中,输出uO低电平 持续时间为电容C充电时间T1:
输出uO高电平持续时间为 电 容C放电时间T2: 则输出波形振荡周期:
2.石英晶体振荡器
R G1 1
C1
G2 1
C2
由CMOS反相器组成的 并联多谐振荡器 。
uO
R为反馈电阻,用以使门 G1工作在静态电压传输特性
的转折区。反馈系数取决于
电容C1、C2的比值,其中C1 还可对振荡频率进行微调。
G1输出端加反相器G2,用以 改善输出波形的前沿和后沿。
实验十二使用电路产生脉冲信号

实验十二使用门电路产生脉冲信号—自激多谐振荡器—一、实验目的1、掌握使用门电路构成脉冲信号产生电路的基本方法2、掌握影响输出脉冲波形参数的定时元件数值的计算方法3、学习石英晶体稳频原理和使用石英晶体构成振荡器的方法二、实验原理与非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。
电路的基本工作原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT时,门的输出状态即发生变化。
因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。
4、非对称型多谐振荡器如图12-1所示,非门3用于输出波形整形。
非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度t w1═RC tw2═1.2RC T═2.2RC调节 R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改变电位器R实现输出频率的细调。
图12-1 非对称型振荡器图12-2 对称型振荡器2、对称型多谐振荡器如图12-2所示,由于电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。
改变R和C的值,可以改变输出振荡频率。
非门3用于输出波形整形。
一般取R≤1KΩΩ,当R=1KΩ,C=100pf~100µf时,f=nHz~nMHz,脉冲宽度tw1=tw2=0.7RC,T=1.4RC3、带RC电路的环形振荡器电路如图12-3所示,非门4用于输出波形整形,R为限流电阻,一般取100Ω,电位器Rw 要求≤1KΩ,电路利用电容C的充放电过程,控制D点电压V D ,从而控制与非门的自动启闭,形成多谐振荡,电容C的充电时间tw1、放电时间tw2和总的振荡周期T分别为t w1≈0.94RC, tw2≈1.26RC, T ≈2.2RC调节R和C的大小可改变电路输出的振荡频率。
图12-3 带有RC电路的环形振荡器以上这些电路的状态转换都发生在与非门输入电平达到门的阈值电平VT的时刻。
在VT 附近电容器的充放电速度已经缓慢,而且VT本身也不够稳定,易受温度、电源电压变化等因素以及干扰的影响。
用门电路组成的多谐振荡器

从而使uO1迅速变成高电平,uO2迅速变成低电平, 电路进入第二暂稳态。此时,uO1通过R向电容C充 电。
2020/6/8
5
随着电容C的不断充电,uI不断上升,当uI≥UTH 时,电路又迅速跳变为第一暂稳态。如此周而复始,
电路不停地在两个暂稳态之间转换,电路将输出矩
形波。
CMOS反相器构成 多谐振荡器的工作波形
2020/6/8
振荡周期为
T=1.4RC
6
5.3.2 石英晶体振荡器
前面介绍的多谐振荡器的一个共同特点就是振 荡频率不稳定,容易受温度、电源电压波动和RC参 数误差的影响。
而在数字系统中,矩形脉冲信号常用作时钟信 号来控制和协调整个系统的工作。因此,控制信号 频率不稳定会直接影响到系统的工作,显然,前面 讨论的多谐振荡器是不能满足要求的,必须采用频 率稳定度很高的石英晶体多谐振荡器。
2020/6/8
3
5.3.1 对称式多谐振荡器
1.CMOS反相器构成的多谐振荡器
CMOS反相器构成的多谐振荡器
R的选择应使G1工作在电压传输特性的转折区。 此时,由于uO1即为uI2,G2也工作在电压传输特性 的转折区,若uI有正向扰动,必然引起下述正反馈过程:
2020/6/8
4
使uO1迅速变成低电平,而uO2迅速变成高电平, 电路进入第一暂稳态。此时,电容C通过R放电,然
结束
5.3 多谐振荡器
放映
5.3.1 用门电路组成的多谐振荡器 5.4.3 石英晶体多谐振荡器
2020/6/8
1
复习
单稳态触发器的工作特点? 主要参数? 主要应用?
多谐振荡器电路原理

多谐振荡器电路原理
当开关K闭合时,BG1获得正向的偏置电压,使BG1集电极和发射极之间产生电流,从而使BG2同时获得正向的偏置电压导通,发光二极管发光。
在这个过程中,开始向电容充电,左负右正。
当电容电压充到使BG1截止时,二极管停止发光,在这个过程中,电容开始放电,放电时的回路是电容-发光二极管-电源-电阻-电容。
因此,放电时间和电容的大小,还有电阻的大小有关系。
当电容,放电完毕,BG1又开始导通,发光二极管又开始发光。
因此,看到的就是,当开关K合上时,二极管发光,然后熄灭,在发光,熄灭。
如此重复。
由于,波形是方形的,可以看作是很多正弦波的叠加,因此,叫多谐振荡器。
这个简单的电路,能够利用一下,把直流电转换成交流电。
自激多谐振荡器电路

1、电路特点
(1)与双稳态电路或单稳态电路比较,它们都是由两级反相器交叉耦合而构成,但具体的耦合元件却不相同,因而,工作方式也不同。
双稳态电路两级反相器都是通过电阻器耦合因而具有两个稳态;单稳态电路一级是电容器耦合,一级是电阻器耦合,因而只有一个稳态。
自激多谐振荡器两级反相器则都是通过电容器耦合,因此它一个稳态都没有,故又称无稳态电路。
事实上自激多谐
3.装配要求和方法
工艺流程:准备~熟悉工艺要求~绘制装配草图~核对元件数量、规格、型号~元件检测~元器件预加工~万能电路板装配、焊接~总装加工~自检。
(1)万能电路板装配工艺要求
1)电阻器、二极管(发光二极管除外)均采用水平安装方式,元件底部距万能电路板5mm,色标法电阻的色环标志顺序方向一致。
2)电容器、三极管、发光二极管、7806采用垂直安装方式,高度要求为元件的底部离万能电路板8mm。
3)所有焊点均采用直脚焊,焊接完成后剪去多余引脚,留头在焊面以上。
多谐振荡器的工作原理

多谐振荡器的工作原理
多谐振荡器是一种产生多个频率的周期性信号的电路,其工作原理基于电路中的正反馈。
多谐振荡器通常由放大器、频率选择网络和反馈网络组成。
放大器的作用是放大输入信号的幅度。
频率选择网络则决定了振荡器输出的频率范围。
反馈网络的作用是将放大器的输出信号反馈给输入端,形成正反馈回路。
在反馈网络的作用下,输入信号被放大器放大后再次输入到放大器,不断循环。
在反馈网络中,其频率选择元件会选择和放大器输出信号具有特定相位关系的频率。
当反馈信号与输入信号的相位差满足一定条件时,反馈信号将增强输入信号,使得信号在电路中持续振荡。
多谐振荡器中频率选择网络的设计决定了振荡器的输出频率。
常见的频率选择网络包括LC电路、RC电路、晶体振荡器等。
这些网络能够选择特定频率的信号进行反馈,从而产生稳定的振荡信号。
总结来说,多谐振荡器通过正反馈回路中的放大器、频率选择网络和反馈网络,使得输入信号不断放大和反馈,从而产生多个频率的周期性信号。
第6章 多谐振荡器讲解

6.4.5 石英晶体多谐振荡器 常用晶振: 32768Hz=215Hz 4.194304MHz=223Hz
各种固有振荡频率fo的石英晶体已做成成品,可根 据所购晶体的fo选择电路的外接RF 和C,
fo一般都很高,应利用分频器将fo分频为所需频率。
6.4.5 压控振荡器
压控振荡器(Voltage Controlled Oscillator , 简称VCO ) 是一种频率可控的振荡器,它的振荡频率随输 入控制电压的变化而改变。
vO
I= 0V电容充电 NhomakorabeavI
vI
v O1
vO
vI
G1 D1 vI D2 TP vO1 TN R D3 充电 D4 TP
G2 VDD
t
TN
vO
VDD 0 t
C
2. 工作原理
vO1=vOL VDD+ΔV+
(2)进入第二暂稳态瞬间,vo=VDD, vI=VDD+VTH 电容放电
vI
vO
当 v I =VTH 时, 迅速使得vO1=VOH, vI=vO=VOL
图6.4.5
改进电路如图6.4.7(a)所示, 其中增加了RC积分环节, 加大了第二节的延迟时间
图6.4.7(a)
6.4.2 环形振荡器
但RC电路的充、放电的持 续时间很短,为了获取更 大的延迟,将C的接地端 改到G1的输出端,如图 6.4.7(b)所示
图6.4.7(a)
其中Rs为保护电阻
图6.4.7(b)
vI
G1 D1 TP
v O1
电路返回第一暂稳态
G2 VDD D3 TP 放电
vI VTH O vO VDD O
VDD+V+
多谐振荡器

用4011产生脉冲一、原理用门电路组成的多谐振荡器(包括由反相器、与非门和或非门)在各种电子电路中几乎都能见到,它们最主要的用途是用来作时钟脉冲发生器,用来驱动计数器或脉冲分配器,使电路的各组成部分能够按照所设定的工作程序有条不紊地工作。
用与非门和或非门组成的多谐振荡器如图所示。
图是对称式多谢振荡器的典型电路,它是由两个与非门、两个电阻与一个电容构成的。
为了产生自激振荡,电路不能有稳定状态,也就是说,在静态下(电路没有振荡时)它的状态必须是不稳定的,由反相器的电压传输特性,如果设法使U1、U2在电压传输特性的转折区或线性区,,则它们将工作在放大状态,即电压放大倍数Au>1,这时只要U1或U2有极小的变化,就会被正向反馈回路放大放大从而引起振荡。
相器静态时工作在放大状态,必须给它们设置适当的偏置电压,它的数值应介于高低电平之间。
这个电平可以通过在反相器的输入端与输出端之间接入接入反馈电阻得到。
电路接通电源后,假设由于某种原因(例如电源波动或外界干扰)使V11有微小的正跳变,则必然会引起如下的正反馈过程:V11升高使V01下降,从而使V12下降,使V02升高,V02又反馈到V11,使V11升高。
使V01迅速跳变为低电平、V02迅速跳变为高电平,电路进入第一个暂稳态,同时电容C1开始充电而C2开始放电。
由于C1同时由R1和R2充电,电压迅速上升到B与非门的阀值电压,引起下面的正反馈:V12上升使得V02下降,从而使得V11下降,使V01上升,V01上升又反馈回V12,使V12上升。
从而使V02迅速跳变为低电平,而V01跳变为高电平,电路进入第二个暂稳态,同时C2开始充电而C1开始放电,与上述C1充电而C2放电是对称的,当V11上升到阀值电压又将迅速返回第一个暂稳态。
因此,电路不断在第一稳态和第二稳态之间往复振荡,在输出端产生矩形脉冲。
二、电路图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
门电路自激多谐振荡器的原理和实险
一、原理
与非门作为一个开关倒相器件,可用以构成各种脉冲波形的产生电路。
电路的基本工作原理是利用电容器的充放电,当输入电压达到与非门的阈值电压VT时,门的输出状态即发生变化。
因此,电路输出的脉冲波形参数直接取决于电路中阻容元件的数值。
1、非对称型多谐振荡器
如图12-1所示,非门3用于输出波形整形。
非对称型多谐振荡器的输出波形是不对称的,当用TTL与非门组成时,输出脉冲宽度
tw1═RC tw2═1.2RC T═2.2RC
调节R和C值,可改变输出信号的振荡频率,通常用改变C实现输出频率的粗调,改变电位器R实现输出频率的细调。
2、对称型多谐振荡器
如图12-2所示,由于电路完全对称,电容器的充放电时间常数相同, 故输出为对称的方波。
改变R和C的值,可以改变输出振荡频率。
非门3用于输出波形整形。
一般取R≤1KΩΩ,当R=1KΩ,C=100pf~100µf时,f=nHz~nMHz,脉冲宽度tw1=tw2=0.7RC,T=1.4RC
3、带RC电路的环形振荡器
电路如图12-3所示,非门4用于输出波形整形,R为限流电阻,一般取100Ω,电位器Rw 要求≤1KΩ,电路利用电容C的充放电过程,控制D点电压VD,从而控制与非门的自动启闭,形成多谐振荡,电容C的充电时间tw1、放电时间tw2和总的振荡周期T分别为
tw1≈0.94RC,tw2≈1.26RC,T ≈2.2RC
调节R和C的大小可改变电路输出的振荡频率。
以上这些电路的状态转换都发生在与非门输入电平达到门的阈值电平VT的时刻。
在VT附近电容器的充放电速度已经缓慢,而且VT本身也不够稳定,易受温度、电源电压变化等因素以及干扰的影响。
因此,电路输出频率的稳定性较差。
4、石英晶体稳频的多谐振荡器
当要求多谐振荡器的工作频率稳定性很高时,上述几种多谐振荡器的精度已不能满足要求。
为此常用石英晶体作为信号频率的基准。
用石英晶体与门电路构成的多谐振荡器常用来为微型计算机等提供时钟信号。
图12-4所示为常用的晶体稳频多谐振荡器。
(a)、(b)为TTL器件组成的晶体振荡电路;
(c)、(d)为CMOS器件组成的晶体振荡电路,一般用于电子表中,其中晶体的f0=32768Hz。
图12-4(c)中,门1用于振荡,门2用于缓冲整形。
Rf是反馈电阻,通常在几十兆欧之间选取,一般选22MΩ。
R起稳定振荡作用,通常取十至几百千欧。
C1是频率微调电容器,C2用于温度特性校正。
二、实验目的
1、掌握使用门电路构成脉冲信号产生电路的基本方法
2、掌握影响输出脉冲波形参数的定时元件数值的计算方法
3、学习石英晶体稳频原理和使用石英晶体构成振荡器的方法
三、实验设备与器件
1、+5V直流电源
2、双踪示波器
3、数字频率计
4、74LS00(或CC4011)晶振32768Hz 电位器、电阻、电容若干。
四、实验内容
1、用与非门74LS00按图12-1构成多谐振荡器,其中R为10KΩ电位器,C为0.01µf。
(1)用示波器观察输出波形及电容C两端的电压波形,列表记录之。
(2)调节电位器观察输出波形的变化,测出上、下限频率。
(3)用一只100µf电容器跨接在74LS00 14脚与7脚的最近处,观察输
出波形的变化及电源上纹波信号的变化,记录之。
2、用74LS00按图12-2接线,取R=1KΩ,C=0.047µf,用示波器观察输出波形,记录之。
3、用74LS00按图12-3接线,其中定时电阻RW用一个510Ω与一个1KΩ的电位器串联,取R=100Ω,C=0.1uf。
(1)RW调到最大时,观察并记录A、B、D、E及v0各点电压的波形,测出
v0的周期T和负脉冲宽度(电容C的充电时间)并与理论计算值比较。
(2)改变RW值,观察输出信号v0波形的变化情况。
4、按图12-4(c)接线,晶振选用电子表晶振32768Hz,与非门选用CC4011,用示波器观察输出波形,用频率计测量输出信号频率,记录之。
本文来自: 电子电路图网() 详细出处参考:/article/jichu/200904/07-4.html。