相似三角形预备定理证明学习资料

相似三角形预备定理证明学习资料
相似三角形预备定理证明学习资料

课题:相似三角形的判定(预备定理)

教学目标:1.掌握预备定理以及用相似三角形的定义判断两三角形相似;

2.在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验分析解决问题的方法;

3.通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心与原动力。

教学重点:预备定理的证明与应用。

教学难点:预备定理的证明。

教学方法:启发+探究+讲授

教学手段:常规教学用具,计算机及课件

组织学生思考:

(1)△ADE与△ABC满足“对应角相等”吗?为什么?

(2)△ADE与△ABC满足对应边成比例吗?

由“DE//BC”的条件可得到怎样的比例式?(3)本题的关键归结为“只要证明什么”?(4)根据以前的推论,如何把DE移到BC 上去,即应添怎样的辅助线?(EF//AB)

教师板演证明过程

由此得到预备定理:

定理平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似。2:过E作EF//AB

找关键字词,记忆定

层层递进,

突破难点,

提高学生的

分析推理思

维能力。

通过分析定

理,促进理

解。

定理应用与巩固例题选讲:

例如图,D为△ABC的A B边上的一点,过

点D作DE//AC,交BC于E,已知BE:EC=2:

1,AC=6CM,求DE的长以及

DA

BD

的值。

E

B C

A

D

在学生思考后,得出:

(1)平行线既可得相似三角形,又可得线段

成比例;

(2)这种判断两三角形相似的方法比起定义

方便多了,但是局限性很大:

我们能否将这个问题转化为预备定理图形加

以说明呢?

练习:

1、如图,DG//EH//FI//BC,请找出图中所有

的相似三角形,并说明理由。

口述思路:根据平行

线得相似三角形,进

而根据相似比求DE;

根据平行线得线段成

比例求

DA

BD

在教师启发下进行解

题反思

通过对例题

的分析,设

置与平行线

有关的截三

角形两边成

比例定理以

及预备定

理,注意所

得的比的差

别,落实好

重点。

2019年中考几何相似三角形怎么证明

2019年中考几何相似三角形怎么证明 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 初中几何相似三角形怎么证明?很多同学一接触证明题就不会,教育网针对这个问题,给大家具体解答一下。 数学:相似三角形怎么证明 相似三角形定理 :平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似 相似三角形判定定理1:两角对应相等,两三角形相似 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 判定定理2:两边对应成比例且夹角相等,两三角形相似 判定定理3:三边对应成比例,两三角形相似

相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 性质定理2:相似三角形周长的比等于相似比 性质定理3:相似三角形面积的比等于相似比的平方 证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DE F”,那么就说明这两个三角形的对应顶点写在了对应的位置上。 方法一 平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角

形相似。 方法二 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。 方法三 如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似 方法四 如果两个三角形的三组对应边成比例,那么这两个三角形相似 方法五 对应角相等,对应边成比例的两个三角形叫做相似三角形 三个基本型 Z型A型反A型 方法六 两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。一定相似的三角形 1.两个全等的三角形

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相似三角形证明的方法与技巧

相似三角形的判定和应用 一、判定相似三角形的基本思路: 1.找准对应关系:两个三角形的三个对应顶点、三个对应角、三条对应边不能随便写,一般说来,相等的角所对的边是对应边,对应边所对的角是对应角。 2.记住五个判定定理:判定相似三角形依据是五个定理,即预备定理、判定定理一、判定定理二、判定定理三、直角三角形相似的判定定理。 二、相似形的应用: 1.证比例式; 2.证等积式; 3.证直线平行; 4.证直线垂直; 5.证面积相等; 三、经典例题: 例1.如图,在ΔABC 中,D 是BC 的中点,E 是AC 延长线上任意一点,连接DE 与AB 交于F ,与过A 平行于BC 的直线交于G 。 求证: CE AE BF AF = . 变式1:如图,在ΔABC 中,A ∠与B ∠互余,CD ⊥AB ,DE//BC ,交AC 于点E ,求证: AD:AC=CE:BD. 例2:如图:已知梯形ABCD 中,AD//BC ,?=∠90ABC ,且BD ⊥CD 于D 。 求证:①DCB ABD ??~ ;②BC AD BD ?=2

例3.如图,在ΔABC 中,?=∠90BAC ,M 是BC 的中点,DM ⊥BC 交BA 的延长线于D ,交AC 于E 。 求证:ME MD MA ?=2 例4.已知:在ΔABC 中,AD 是BAC ∠的平分线,点E 在AD 上,点F 在AD 的延长线 上,且 AC AB DF ED = 求证:BE//FC 。 例5.如图,在正方形ABCD 中,E ,F 分别为AB 、AC 上一点,切BE=BF ,BP ⊥CE ,垂足为P 。 求证:PD ⊥PF.

相似三角形预备定理证明

课题:相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验 分析解决 问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点: 预备定理的证明与应用。 教学难点: 预备定理的证明。 教学方法: 启发+探究+讲授 教学手段: 常规教学用具,计算机及课件 教学过程: 教学过程 教师活动 学生活动 设计意图 出示情境问题: 1、 什么叫相似三角形?什么叫相似比? 2、 如图,矩形草坪长20m 宽10m 沿草坪四 周有1m 宽的小路。小路的内外边缘所围成的 矩形相似吗? □—''~:—:—A ?—'—>:—?—A 3、 如图两个三角形相似吗?若相似,你是若 何判 断的,相似比是多少?若不相似,也请说 明。 4、 思考:如图:在AA BC 与厶DEF 中,/ A= / D, Z B=Z E ,请问 AA BC 与△ DEF 是否相似? 明确指出: 本节课将研究如何用相似三角形的定义判断 两三角形相似。 板书课题:相似三角形的判定 创 设 情 境 复习相似形 的有关概 思考回答问题: 念,明确否 1、2 口答 定两图形相 3题可能的方法: 似,指出一 ⑴直觉(引导有理有 个不满足的 据); 条件即可, ⑵度量角与边,再计 而冃疋两图 算(指引这种方法简 形相似,则 单易于操作,但有时 需要所有对 会对结果的精确程度 应角相等, 质疑) 对边成比 ⑶根据格点特性计算 例。 (积极鼓励) 而随后的思 考,是为了 给学生点引 一下,预备 定理为什么 叫预备定 理,后继学

初中数学相似三角形六大证明技巧(推荐)

相似三角形6大证明技巧 相似三角形证明方法 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型.

“旋转相似”与“一线三等角” 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =?

通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算 【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证: DC CF AE AD =. A B C F D E 【例2】 如图,ABC △中,90BAC ∠=?,M 为BC 的中点,DM BC ⊥交CA 的延长线于 D ,交AB 于 E .求证:2AM MD ME =? C B A E D M 【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E , 交AD 于F .求证: BF AB BE BC =. D B A C F E 技巧一:三点定型 比例式的证明方法

相似三角形的比例关系及相似三角形证明的变式

相似三角形的比例关系及相似三角形证明的变式 【知识疏理】 一, 相似三角形边长比,和周长比以及面积比的关系! 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------。 二, 相似三角形证明的变式 1,相似三角形当中常以乘积的形式出现,如: 例1、 已知:如图1,BE 、DC 交于点A ,∠E=∠C 。求证:DA ·AC=BA ·AE 图2 题目比较简单,学生独立完成,启发学生总结:①本题找对应角的特殊方法是对顶角相等;②要想证明乘积式或比例式,应先证明三角形相似。 2,对特殊图形的认识 例2、已知:如图3,Rt △ABC 中,∠ABC=90o,BD ⊥AC 于点D 。 图3 (1) 图中有几个直角三角形?它们相似吗?为什么? (2) 用语言叙述第(1)题的结论。 (3) 写出相似三角形对应边成比例的表达式。 总结: (1) 有一对锐角相等的两个直角三角形相似; (2) 本题找对应角的方法是公共角及同角的余角相等; A B C A'B'C'图(4)图1 B A C

双垂直图形中的BD 2=AD ·CD ,AB 2=AD ·AC ,BC 2=CD ·CA ,BC ·AB=AC ·BD 等结论很重要,它们在计算、证明中应用很普遍,但需先证明两个三角形相似得到结论,再加以应用。在此基础上,将双垂直图形转化 为“公边共角”,讨论、探究, A B C 得到结论:由公边共角的两个相似三角形中,公边是两个三角形中落在一条直线上的两边的比例中项,即若△ABD ∽△ACB ,则AB 2=AD ·AC 。 【课堂检测】 一选择题 1、一个三角形的三边长为5,5,6,与它相似的三角形最长边为10,则后一个三角形的面积为( ) A 、3100 B 、20 C 、54 D 、25 108 2、如图,梯形ABCD 中,AB ∥CD ,如果S △ODC :S △BDC =1:3,那么S △ODC :S △ABC 的值是( ) A 、 51 B 、61 C 、71 D 、9 1 D C A D O P A B B C (第2题图) (第4题图) 3、已知一个梯形被一条对角线分成两个相似三角形,如果两腰的比是1:4,则两底的比是( ) A 、1:2 B 、1:4 C 、1:8 D 、1:16 4、已知,梯形ABCD 中,AD ∥BC ,∠ABC=900,对角线AC ⊥BD ,垂足为P ,已知AD :BC=3:4,则BD :AC 的值是 ( ) A、3:2 B、2:3 C、3:3 D、3:4 5、如图,已知:∠BAO=∠CAE=∠DCB ,则下列关系式中正确的是( ) A 、AE BC AD A B = B 、AD B C AE AC = C 、AE BC DE AB = D 、AD AB AE AC =

相似三角形预备定理证明学习资料

精品文档 课题: 相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验分析解决问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点:预备定理的证明与应用。 教学难点:预备定理的证明。 教学方法:启发+探究+讲授 教学手段:常规教学用具,计算机及课件 教学过程: 教学过程 教师活动学生活动设计意图 出示情境问题: 1、什么叫相似三角形?什么叫相似比? 2、如图,矩形草坪长20m,宽10m,沿草坪四周有 1m宽的小路。小路的内外边缘所围成的矩形相似吗? C 创设情境3、如图两个三角形相似吗?若相似,你是若何判断的, 相似比是多少?若不相似,也请说 4、思考:如图:在△ ABC 与厶DEF中,/ A= / D,/ B= / E,请问△ ABC 与厶DEF 是否相 似? 复习相似形 的有关概 思考回答问题:念,明确否 1、2 口答定两图形相 3题可能的方法:似,指出一 ⑴直觉(引导有理有个不满足的 据);条件即可, ⑵度量角与边,再计而冃疋两图 算(指引这种方法简形相似,则 单易于操作,但有时需要所有对 会对结果的精确程度应角相等, 质疑)对边成比 ⑶根据格点特性计算例。 (积极鼓励) 而随后的思 考,是为了给 学生点引一 下,预备定理 为什么叫预备 定理,后继学

D 明确指出: 本节课将研究如何用相似三角形的定义判断两三 角形相似。 板书课题:相似三角形的判定 出示特殊题组: 1、如图,在等边三角形厶ABC中,DE//BC,并交于 点D、E,那么△ ADE与厶ABC相似吗?为什么? 口答1题; 发现证明预备疋理2、如图,在Rt△ ABC 中,/ BAC=90 ° , DE//BC,并交于点D、E,那么△ ADE与厶ABC相 似吗?为什么? AD (提示:可设D k) AB 若将特殊三角形的条件去掉,变成一般的三角 形呢? 3、如图,在△ ABC中,DE//BC,并交于点D、E, 那么△ ADE 与厶ABC 相似吗?为什么? 通过计算回答;并认识 到关键是计算: DE BC 在教师的启发下思考讨 论,体会线段转移的来 龙去脉。 预案: 1 : 过D 作 DF//AC 习中的有关 判定定理都 要转化为预 备定理即以 证明,从而感 受预备定理 的学习价值。 题组中的1、 2题,让学生 从简单推理与 计算推理两个 方面认识理解 这种图形。尤 其是计算推理 中所涉及的设 未知数的方 法,应用非常 广泛。而题三 需要深入思 考,更反衬出 题3分析方法 的重要性。 通过题3的 启发引导,

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 相似三角形6大证明技巧 相似三角形证明方法之反A型与反X型 1 . 2 . 3 . 4 . 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似三边成比例的两个三角形相似.(SSS 两边成比例且夹角相等的两个三角形相似.(SAS) 两角分别相等的两个三角形相似.(AA) 斜边和一条直角边成比例的两个直角三角形相似(HL) 5. 模型一:反A型: 如图,已知△ ABC, / ADE = / C,若连CD、BE,进而能证明△ ACD ABE(SAS) 试一试写出具体证明过程 模型二:反X型: 如图,已知角/ BAO= / CDO,若连AD, BC,进而能证明△ AOD BOC. 试一试写出具体证明过程D B 应用练习: 1.已知△ ABC 中,/ AEF= / ACB,求证:(1) AE AB AF AC (2)/ BEO= / CFO , / EBO= / FCO ( 3)/ OEF= / OBC,/ OFE= / OCB 2.已知在MBC中,/ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如 图2)于点P. ⑴当点P在线段AB上时,求证:MPQ S /△ABC ; ⑵当/△^QB为等腰三角形时,求AP的长。 模型三:射影定理 相似三角形证明方法之射影定理与类射影 如图已知^ ABC,/ ACB=90° , CH 丄AB 于H,求证:A C2AH AB , BC2 BH BA ,, 2 HC HA HB ,试一试写出具体证明过程

模型四:类射影 BD AB 如图,已知AB 2 AC AD ,求证:亍 乔,试一试写出具体证明过程 BC AC 应用练习: J 45 1.如图,在 △ ABC 中,AD 丄BC 于D ,DE 丄AB 于E ,DF 丄AC 于F 。求证:— AP AS 2.如图,在 △ ABC 中,AD BC 于 D , DE AB 于 E , DF / AEF= / C 模型五:一线三等角 如图,已知/ B=/ C= / EDF ,则△ BDECFD (AA ),试 一试写出具体证明过程 应用练习: 1.如图,△ ABC 和/ DEF 两个全等的等腰直角三角形, / BACK EDF=90, △ DEF 的顶点E 与^ABC 的斜边BC 的中点重合.将△ DEF 绕点E 旋转,旋转过程中, 线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q . (1) 如图①,当点Q 在线段AC 上,且AP=AQ 时,求证:△ BPE^ZCQE (2) (2)如图②,当点Q 在线段CA 的延长线上时,求证: 并求当BP=a CQ=9a/2时,P 、Q 两点间的距离(用含 2.^ABC 中,AB=AC , D 为BC 的中点,以 D 为顶点作/ (1) 如图(1)当射线DN 经过点A 时,DM 交AC 边于点E ,不添加辅 助线,写出图中所有与/△ADE 相似的三角形. (2) 如图(2),将/ MDN 绕点D 沿逆时针方向旋转,DM ,DN 分别交 线段AC , AB 于E ,F 点(点E 与点A 不重合),不添加辅助线,写出图 中所有的相似三角 形,并证明你的结论. (3) 在图(2 )中,若 AB=AC=10,BC=12,当 Z\DEF 的面积等于 /ABC 的面积的4时,求线段EF 的长. 3.如图,点仔在线段《上,点D 、F 在M 同侧,"=? =妙,他丄砒, AD = SC (1)求证:胆"D+CA (2 )若37, CE",点P 为线段丄&上的动点,连接DP ,作M3尸,交 直线占E 相似三角形证明方法之一线三等角 △ BP0A CEQ a 的代数式表示) AC 于F ,连EF ,求证:

完整word相似三角形六大证明技巧提高类技巧训练

第2讲 相似三角形6大证明技巧 模型二:反X 型: 如图,已知角/ BAO= / CDO ,若连 AD , BC ,进而能证明△ AODBOC. 试一试写出具体证明过程 应用练习: 1.已知△ ABC 中,/ AEF= / ACB ,求证:(1) AE AB AF AC (2)/ BEO= / CFO , / EBO= / FCO ( 3)/ OEF= / OBC ,/ OFE= / OCB 1. 2. 3. 4. 模块一 相似三角形证明方法之 反A 型与反X 型 回顾相似三角形的判定方法总结: 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似 三边成比例的两个三角形相似 .(SSS 两边成比例且夹角相等的两个三角形相似 .(SAS) 两角分别相等的两个三角形相似 .(AA) 斜边和一条直角边成比例的两个直角三角形相似 (HL) 5. 模型一:反A 型: 如图,已知△ ABC , / ADE = / C ,若连 CD 、BE ,进而能证明△ ACDABE(SAS) 试一试写出具体证明过程 D B

2.已知在 MBC 中,/ABC=90°,AB=3,BC=4.点Q 是线段AC 上的一个动 点,过 点Q 作AC 的垂线交线段AB (如图1)或线段AB 的延长线(如 图2)于点P. ⑴当点P 在线段AB 上时,求证: MPQ S M BC ; (2)当/△^QB 为等腰三角形时,求 AP 的长。 模型三:射影定理 如图已知^ ABC ,/ ACB=90°,CH 丄 AB 于 H ,求证:AC 2 A H A B ,B C 2 BH BA ,, HC 2 模型四:类射影 BD 如图,已知AB 2 AC AD ,求证:- AB ,试一试写出具体证明过程 模块一 相似三角形证明方法之 射影定理与类射影 HA HB ,试一试写出具体证明过程 ^2

相似三角形六大证明技巧

相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5.斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A ”型与“反X ”型. 示意图 结论 E D C B A 反A 型: 如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE · AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) O D C B A 反X 型: 如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC . 示意图 结论 A B C D 类射影: 如图,已知△ABC ,∠ABD =∠C ,则△ABD ∽△ACB (AA ),∴2AB =AD · AC. C A B H 射影定理 如图,已知∠ACB =90°,CH ⊥AB 于H ,则222,,AC AH AB BC BH BA HC HA HB =?=?=? 示意图 结论 相似三角形6大证明技巧 相似三角形证明方法

A B C D E 旋转相似: 如图,已知△ABC ∽△ADE ,则 AB AD AC AE =,∠BAC =∠DAE ,∴∠BAD =∠CAE , ∴△BAD ∽△CAE (SAS ) C B A E D 一线三等角: 如图,已知∠A =∠C =∠DBE ,则△DAB ∽△BCE (AA ) 反A 型与反X 型 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO ,∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB O F E C B A 类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =? 通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 比例式的证明方法

相似三角形六大证明技巧(提高类技巧训练)

回顾相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 模型一:反A 型: 如图,已知△ABC ,∠ADE =∠C ,若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) 试一试写出具体证明过程 模型二:反X 型: 如图,已知角∠BAO =∠CDO ,若连AD ,BC ,进而能证明△AOD ∽△BOC . 试一试写出具体证明过程 应用练习: 1. 已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ?=?(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB 相似三角形6大证明技巧 相似三角形证明方法之反A 型与反X 型 O F E C B A E D C B A O D C B A

2.已知在 △ABC 中 ,∠ABC =90°,AB =3,BC =4. 点 Q 是线段 AC 上的一个动点 , 过点 Q 作 AC 的垂线交线段 AB ( 如图 1) 或线段 AB 的延长线 ( 如图 2) 于点 P . (1)当点 P 在线段 AB 上时 , 求证: △APQ ∽ △ABC ; (2)当 △PQB 为等腰三角形时,求 AP 的长。 模型三:射影定理 如图已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,,2 H C H AH B =?,试一试写出具体证明过程 模型四:类射影 如图,已知2AB AC AD =?,求证:BD AB BC AC =,试一试写出具体证明过程 相似三角形证明方法之射影定理与类射影 C A B H A B C D

相似三角形证明技巧(整理)

相似三角形解题方法、技巧、步骤、辅助线解析 一、相似三角形 (1)三角形相似的条件: ① ;② ;③ . 二、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 三、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似 找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似 找夹角相等 两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例 三边对应成比例,两三角形相似 找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理2 找顶角对应相等 判定定理1 找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3 e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3 四、“三点定形法”,即由有关线段的三个不同的端点来确定三角形的方法。具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。 有些学生在寻找条件遇到困难时,往往放弃了基本规律而去乱碰乱撞,乱添辅助线,这样反而使问题复杂化,效果并不好,应当运用基本规律去解决问题。 例1、已知:如图,ΔABC 中,CE ⊥AB,BF ⊥AC. 求证: BA AC AF AE (判断“横定”还是“竖定”? ) a)已知一对等 b)己知两边对应成比c)己知一个直 d)有等腰关

相似三角形预备定理证明学习资料

课题:相似三角形的判定(预备定理) 教学目标:1.掌握预备定理以及用相似三角形的定义判断两三角形相似; 2.在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验分析解决问题的方法; 3.通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心与原动力。 教学重点:预备定理的证明与应用。 教学难点:预备定理的证明。 教学方法:启发+探究+讲授 教学手段:常规教学用具,计算机及课件

组织学生思考: (1)△ADE与△ABC满足“对应角相等”吗?为什么? (2)△ADE与△ABC满足对应边成比例吗? 由“DE//BC”的条件可得到怎样的比例式?(3)本题的关键归结为“只要证明什么”?(4)根据以前的推论,如何把DE移到BC 上去,即应添怎样的辅助线?(EF//AB) 教师板演证明过程 由此得到预备定理: 定理平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似。2:过E作EF//AB 找关键字词,记忆定 理 层层递进, 突破难点, 提高学生的 分析推理思 维能力。 通过分析定 理,促进理 解。 定理应用与巩固例题选讲: 例如图,D为△ABC的A B边上的一点,过 点D作DE//AC,交BC于E,已知BE:EC=2: 1,AC=6CM,求DE的长以及 DA BD 的值。 E B C A D 在学生思考后,得出: (1)平行线既可得相似三角形,又可得线段 成比例; (2)这种判断两三角形相似的方法比起定义 方便多了,但是局限性很大: 我们能否将这个问题转化为预备定理图形加 以说明呢? 练习: 1、如图,DG//EH//FI//BC,请找出图中所有 的相似三角形,并说明理由。 口述思路:根据平行 线得相似三角形,进 而根据相似比求DE; 根据平行线得线段成 比例求 DA BD 在教师启发下进行解 题反思 通过对例题 的分析,设 置与平行线 有关的截三 角形两边成 比例定理以 及预备定 理,注意所 得的比的差 别,落实好 重点。

第四讲:相似三角形证明的方法与技巧

第五讲:相似三角形证明的方法与技巧 A 字形,斜A 形,8字形(X 型),蝴蝶形,双垂直型, 旋转形 双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直 角边在斜边上的射影和斜边的比例中项 ⑴△ACD ∽△CDB →AD:CD=CD:BD →CD2=AD ?BD ⑵△ACD ∽△ABC →AC:AB=AD:AC →AC2=AD ?AB ⑶△CDB ∽△ABC →BC:AC=BD:BC →BC2=BD ?AB 结论:⑵÷⑶得AC2:BC2=AD:BD ;结论:面积法得AB ?CD=AC ?BC →比例式 证明等积式(比例式)策略 1、直接法:找同一三角形两条边,变化:等号同侧两边同一三角形 三点定形法 2、间接法: ⑴3种代换 ①等线段代换; ②等比代换; ③等积代换; ⑵创造条件 ①添加平行线——创造“A ”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换;两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若d c b a ,,,是四条线段,欲证d c b a =,可先证得f e b a =(f e ,是两条线段)然后证 d c f e =,这里把 f e 叫做中间比。 方法一:遇等积,化比例,同侧三点找相似 1.∠ABC=∠ADE .求证:AB ·AE=AC ·AD 2.△ABC 中,AB=AC ,△DEF 是等边三角形,求证:BD?CN=BM?CE . 3.等边三角形ABC 中,P 为BC 上任一点,AP 的垂直平分线交AB 、AC 于M 、N 两点。 求证:BP ?PC=BM ?CN E A B D E A B B A D E C

相似三角形证明方法

相似三角形证明方法 方法一:直接寻求相似三角形 只要根据题目给定的条件寻找出线段成比例,或者角相等利用判定定理直接找出来. 例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则 ∽ ∽ 。 例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线, 求证:△ABC ∽△BCD 方法二:利用中间线段代换 当要证明的结论中的一条线段与其他线段之间的关系难以确定时我们可以利用等线段代换,从而容易找到相应的关系。 例1、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF ?AC=BC ?FE 例2:已知:如图,在△ABC 中,∠BAC=900,M 是 BC 的中 点,DM ⊥BC 于点E ,交BA 的延长线于点D 。 求证:(1)MA 2=MD ?ME ;(2)MD ME AD AE =22 命题 1 如图,如果∠1=∠2,那么△ABD ∽△ACB , A B C D E F G 12 3 4A B C D A B C D E M 12 A B C D E F K

AB2=AD?AC。 命题2 如图,如果AB2=AD?AC,那么△ABD∽△ACB,∠1=∠2。 A B C D 1 例3:如图△ABC中,AD为中线,CF为任一直线,CF交AD于E,交AB于F,求证:AE:ED=2AF:FB。 方法三: 证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证 AB BC BE BF =,横向观察,比例式中的分子的两条线段是AB和BC,三个字母找到一幕中BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法 欲证 AB DE BC EF =,纵向观察,比例式左边的比AB和BC中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE和EF中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法 由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比. 比例中项式的证明,通常涉及到与公共边有关的相似问题。这类问题的典型模型是射影

《相似三角形的判定预备定理 》

18.5.1相似三角形的判定——预备定理 【教学目标】 知识技能:掌握用相似三角形的定义和预备定理判断两个三角形相似 过程方法:在探索相似三角形判定定理过程中,体现解决问题的方法 情感态度:在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质. 【教学重点】预备定理的证明与应用 【教学难点】预备定理的证明 【教学过程】 一.复习引入 活动1 回顾相似三角形的定义,定义既是判定也是性质;平行线分线段成比例 出示问题:如图,DE//BC, △ADE 与△ABC 有什么关系?说明理由. 学生猜想:相似。能得到△ADE ∽△ABC 吗? 教师活动:教师出示并提出问题,组织学生思考. (1)△ADE 与△ABC 满足“对应角相等”吗?为什么? (2)△ADE 与△ABC 满足对应边成比例吗?由“DE ∥BC ”的条件可得到哪些线段的比相等? (3)根据以前学习的知识如何把DE 移到BC 上去?(作辅助线DF ∥AC ) 学生活动:学生小组讨论:要证△ADE ∽△ABC 只需证∠A=∠A ,∠B=∠2,∠C=∠3←——由平行得 =AD AE DE AB AC BC ?=?? 由DE ∥BC 得相似定义 只需证出:DE AD BC AB =或DE AE BC AC = 由于DE 、BC 不在同一直线上,故可以通过做辅助线平移DE ,将DE 、BC 放在同一直线上 证明: 过D 点作DF ∥AC 交BC 于F ∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是□ ∴DE=CF ∵DF ∥AC ∴CF AD BC BD = ∴DE AD BC BD = ∵DE ∥BC ∴=AD AE BD AC ∵DE ∥BC ∴∠A=∠A ,∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC BC DE AC AE AB AD ==∴21F E B C A D

相似三角形的判定的预备定理

27.2.1相似三角形的判定(第一课时)学案 学习目标:1理解相似三角形的概念,表示方法及性质, 2 掌握平行线分线段成比例定理及推论和相似三角形判定定理的 “预备定理” 3 会用行线分线段成比例定理及推论和相似三角形的判定定理的 “预备定理”进行有关判断及计算 学习重点:会用行线分线段成比例定理及推论和相似三角形的判定定理的“预备定理”进行有关判断及计算 学习难点:相似三角形的判定定理的“预备定理”推导过程 学习过程: 活动一,自学相似三角形的概念和性质 1仔细研读数学书29页第一段回答下列问题(见学案) ⑴相似三角形的概念: ⑵相似三角形的性质: 3.如图在△ABC 与△DEF 中, ①∵ ∠ =∠ , ∠ =∠ , ∠ =∠ ∴△ABC~△ ②∵△ABC~△DEF ∴∠ =∠ , ∠ =∠ , ∠ =∠ ③若△ABC~△DEF ,若A=30°∠B=30°则∠F= ° ④若△ABC~△DEF ,相似比为1:2,则△DEF 和△ABC 的相似比为 。若BC=2,则EF= ⑤若△ABC~△DEF ,相似比等于1,则△ABC △DEF 活动二探究平行线分线段成比例定理及推论 ①如图,任意画两条直线l 1、l 2,再画三条与l1、l2相交的平行线l3、l4 、l5.分别度量l3、l4 、l5 在l1上截得的两条线段AB,BC 和在l2上截得的两条线段DE,EF 的长度, 计算 ②任意平移l5,再度量AB,BC ,DE,EF 的长度. 再计算 ③归纳: ④平行线分线段成比例定理推论 两个基本图形 EF DE BC AB 与,DF DE AC AB 与,DF EF AC BC 与

相似三角形的判定定理

24.4(1)相似三角形的判定 教学目标 1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用 “∽”符号;能准确写出相似三角形的对应角与对应边的比例式; 2、掌握相似三角形判定的预备定理及相似三角形的判定定理1; 3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长. 4、了解判定定理1的证题方法与思路,应用判定定理l. 一、复习 1.什么叫做全等三角形?它在形状上、大小上有何特征? 2.两个全等三角形的对应边和对应角有什么关系? 3、复习平行线分线段成比例定理(文字表述及基本图形) 本节学习相似三角形的定义及相关判定定理. 二、学习新课 相似三角形的概念: 我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形. 相似三角形的概念作为相似三角形的判定方法之一. [说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例. 相似比的概念 :相似三角形对应边的比k ,叫做相似比(或相似系数). [说明]①两个相似三角形的相似比具有顺序性. ②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形. 注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上. 类似地,如果两个边数相等的多边形的对应角相等、对应边成比例,那么这两个多边形叫做相似多边形.相似多边形的对应边的比,叫做相似比. 如图,111,ABC A B C ??是相似三角形,则111,ABC A B C ??相似可记作ABC ?∽111A B C ?.由于 111 2 AB A B =,则ABC ?与111A B C ?的相似比111 2 AB k A B = =,则111A B C ?与ABC ?的相似比,112A B k AB == . C 1 B 1 A 1 C B A

6相似三角形证明技巧

相似三角形证明技巧 姓名:____________ 一、相似、全等的关系 全等和相似是平面几何中研究直线形性质的两个重要方面,全等形是相似比为1的特殊相似形,相似形则是全等形的推广.因而学习相似形要随时与全等形作比较、明确它们之间的联系与区别;相似形的讨论又是以全等形的有关定理为基础. 二、相似三角形 (1)三角形相似的条件: ① ;② ;③ . 三、两个三角形相似的六种图形: 只要能在复杂图形中辨认出上述基本图形,并能根据问题需要舔加适当的辅助线,构造出基本图形,从而使问题得以解决. 四、三角形相似的证题思路:判定两个三角形相似思路: 1)先找两对内角对应相等(对平行线型找平行线),因为这个条件最简单; 2)再而先找一对内角对应相等,且看夹角的两边是否对应成比例; 3)若无对应角相等,则只考虑三组对应边是否成比例; 找另一角 两角对应相等,两三角形相似 找夹边对应成比例 两边对应成比例且夹角相等,两三角形相似 找夹角相等 两边对应成比例且夹角相等,两三角形相似 找第三边也对应成比例 三边对应成比例,两三角形相似 找一个直角 斜边、直角边对应成比例,两个直角三角形相似 找另一角 两角对应相等,两三角形相似 找两边对应成比例 判定定理1或判定定理4 找顶角对应相等 判定定理1 找底角对应相等 判定定理1 找底和腰对应成比例 判定定理3 e)相似形的传递性 若△1∽△2,△2∽△3,则△1∽△3 五、确定证明的切入点。几何证明题的证明方法主要有三个方面。第一,从“已知”入手,通过推理论证,得出“求证”;第二,从“求证”入手,通过分析,不断寻求“证据”的支撑,一直追溯回到“已知”;第三,从“已知”及“求证”两方面入手,通过分析找到中间“桥梁”,使之成为清晰的思维过程。 六、证明题常用方法归纳: (一)、总体思路:“等积”变“比例”,“比例”找“相似” (二)、证比例式和等积式的方法: 对线段比例式或等积式的证明:常用“三点定形法”、等线段替换法、中间比过渡法、面积法等.若比例式或等积式所涉及的线段在同一直线上时,应将线段比“转移”(必要时需添辅助线),使其分别构成两个相似三角形来证明. a)已知一对等角 b)己知两边对应成比例 c)己知一个直角 d)有等腰关系

相似三角形预备定理

相似形 本章教学目标 本章的主要内容分为“比例线段”和“相似三角形”,“比例线段”主要介绍线段的比和成比例线段的概念及判定成比例线段的一些定理,“相似三角形”主要研究相似三角形的判定与性质. 通过本章的学习,理解比和比例,线段的比和成比例线段、相似三角形等概念,掌握比例基本性质、合比性质和等比性质,较熟练运用上述性质进行比例和变形,灵活应用平行线分比例线段定理,相似三角形判定定理及性质定理,进行计算和简单的证明. 相似三角形的知识在实际中应用广泛.本章较多地运用了类比的方法、矛盾转化的方法,这些方法对培养我们探求知识,提高分析和解决问题能力起着极其重大的作用. 核心知识 一、知识结构 二、主要内容 1.比例线段及其性质 (1)比例线段:在四条线段中,如果其两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例

线段. (2)比例的性质 ①比例基本性质:=ad=bc ②合比性质:== ③等比性质:==…0…==(b+d+…+n≠0) 2.平行线分比例线段 定理:三条平行线截两条直线,所得的对应线段成比例. 推论;平行于三角形一边的直线截其它两边(或两边的延长线),所得的线段成比例. 3.三角形一边的平行线判定定理 如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4.三角形相似预备定理 平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形和原三角形的三边对应成比例. 5.相似三角形的判定

(1)平行法:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. (2)定义法,对应边成比例,对应角相等的三角形叫相似三角形(有了判定定理后,就不用定义判定了). (3)判定定理1.两角对应相等,两三角形相似 (4)判定定理2.两边对应成比例、夹角相等、两三角形相似 (5)判定定理3.三边对应成比例、两三角形相似 (6)直角三角形判定: ①以上方法均可 ②如果一个直角三角形的一条直角边与斜边与另外一个直角三角形的直角边和斜边对应成比例,那么这两个直角形相似 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 6.相似三角形的性质 (1)相似三角形对应角相等,对应边成比例 (2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比. (3)相似三角形的周长比等于相似比 (4)相似三角形的面积比等于相似比的平方 三、本节常用的解题方法 1.运用中间量变量解题 对于比较复杂的比例关系,有时不能由一对相似三角形直接得出,这时可采用一种中间代替方法,即要

相关文档
最新文档