矩形和菱形的性质与判定经典例题练习
初中数学正方形菱形矩形的判定例题

初中数学正方形菱形矩形的判定例题下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、介绍在初中数学学习中,正方形、菱形和矩形是常见的几何形状。
矩形菱形的性质与判定(附加答案)

矩形菱形的性质与判定(附加答案) 一.解答题(共30小题) 1.(2012•娄底)如图,在矩形ABCD 中,M 、N 分别是AD 、BC 的中点,P 、Q 分别是BM 、DN 的中点. (1)求证:△MBA ≌△NDC ;(2)四边形MPNQ 是什么样的特殊四边形?请说明理由.2.(2010•泰州)如图,四边形ABCD 是矩形,∠EDC=∠CAB ,∠DEC=90°. (1)求证:AC ∥DE ; (2)过点B 作BF ⊥AC 于点F ,连接EF ,试判别四边形BCEF 的形状,并说明理由.3.(2010•肇庆)如图所示,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1=∠2. (1)求证:四边形ABCD 是矩形; (2)若∠BOC=120°,AB=4cm ,求四边形ABCD 的面积.4.(2010•常州)如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形.求证:四边形ADCE 是矩形.5.(2008•南京)如图,在平行四边形ABCD 中,E ,F 为BC 上两点,且BE=CF ,AF=DE . 求证:(1)△ABF ≌△DCE ; (2)四边形ABCD 是矩形.6.(2010•崇左)如图,O 是矩形ABCD 的对角线的交点,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 上的点,且AE=BF=CG=DH . (1)求证:四边形EFGH 是矩形;(2)若E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,且DG ⊥AC ,OF=2cm ,求矩形ABCD 的面积.7.如图所示,BD ,BE 分别是∠ABC 与它的邻补角∠ABP 的平分线.AE ⊥BE ,AD ⊥BD ,E ,D 为垂足,求证:四边形AEBD 是矩形.8.如图,O 为△ABC 内一点,把AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连接形成四边形DEFG .(1)四边形DEFG 是什么四边形,请说明理由;(2)若四边形DEFG 是矩形,点0所在位置应满足什么条件?说明理由.9.如图,平行四边形ABCD 中,点E 、F 、G 、H 分别在AB 、BC 、CD 、AD 边上且AE=CG ,AH=CF .(1)求证:四边形EFGH 是平行四边形;(2)如果AB=AD ,且AH=AE ,求证:四边形EFGH 是矩形.10.如图,已知△ABC 中,AB=AC ,∠BAD=∠CAD ,F 为BA 延长线上的一点,AE 平分∠FAC ,DE ∥AB 交AE 于E .(1)求证:AE ∥BC(2)求证:四边形AECD 是矩形; (3)BC=6cm ,,求AB 的长.11.(2012•西藏)如图,四边形ABCD 是菱形,AE ⊥BC 交CB 的延长线于点E ,AF ⊥CD 交CD 的延长线于点F .求证:AE=AF .12.(2012•重庆)已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E ,∠1=∠2. (1)若CE=1,求BC 的长; (2)求证:AM=DF+ME .13.(2012•嘉兴)如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:BD=EC ; (2)若∠E=50°,求∠BAO 的大小.14.(2012•温州)如图,△ABC 中,∠B=90°,AB=6cm ,BC=8cm .将△ABC 沿射线BC 方向平移10cm ,得到△DEF ,A ,B ,C 的对应点分别是D ,E ,F ,连接AD .求证:四边形ACFD 是菱形.15.(2012•聊城)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.16.(2012•恩施州)如图,在△ABC中,AD⊥BC于D,点D,E,F分别是BC,AB,AC的中点.求证:四边形AEDF是菱形.17.(2011•宁波)如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.18.(2011•临沂)如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.19.(2011•济宁)如图,在平行四边形ABCD中,对角线AC、BD相交于O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.20.(2011•恩施州)如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.21.(2011•常州)已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.22.(2011•安顺)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.23.(2010•岳阳)如图,在Rt△ABC中,∠ABC=90°,∠BAC=60°,D为AC的中点,以BD为折痕,将△BCD折叠,使得C点到达C1点的位置,连接AC1.求证:四边形ABDC1是菱形.24.(2010•徐州)如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)若AB=AC,求证:四边形BFCE是菱形.25.(2010•温州)如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E、F.已知BE=BP.求证:(1)∠E=∠F;(2)▱ABCD是菱形.26.(2011•西宁)如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.(1)求证:四边形AODE是菱形;(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是_________.27.(2002•广西)如图所示,DE是▱ABCD的∠ADC的平分线,EF∥AD,交DC于F.(1)求证:四边形AEFD是菱形;(2)如果∠A=60°,AD=5,求菱形AEFD的面积.28.如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,求证:OE⊥DC.29.如图,平行四边形ABCD的对角线AC、BD相交于O,若AB=5,AC=8,BD=6.(1)求证:AC⊥BD.(2)求证:平行四边形ABCD是菱形.(3)四边形ABCD的面积.30.已知:如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC分别与AB、AC交于点G、F,连接CG.(1)求证:四边形BCGD是菱形;(2)若BC=1,求DF的长.参考答案与试题解析一.解答题(共30小题)1.证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC;(2)四边形MPNQ是菱形.理由如下:连接AN,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN 的中点,∴PM=NQ,∵DM=BN,DQ=BP,∠MDQ=∠NBP,∴△MQD≌△NPB.∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∴MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.2.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB ,∴∠EDC=∠ACD,∴AC∥DE;(2)解:四边形BCEF是平行四边形.理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF(AAS),∴CE=BF,DE=AF(全等三角形的对应边相等),∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形(两组对边分别相等的四边形是平行四边形).3.(1)证明:∵∠1=∠2,∴BO=CO,即2BO=2CO.∵四边形ABCD是平行四边形,∴AO=CO,BO=OD,∴AC=2CO,BD=2BO,∴AC=BD . ∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形;(2)解:在△BOC 中,∵∠BOC=120°, ∴∠1=∠2=(180°﹣120°)÷2=30°, ∴在Rt △ABC 中,AC=2AB=2×4=8(cm ), ∴BC=(cm ). ∴四边形ABCD 的面积=4.证明:∵四边形ABDE 是平行四边形, ∴AE ∥BC ,AB=DE ,AE=BD . ∵D 为BC 中点, ∴CD=BD . ∴CD ∥AE ,CD=AE . ∴四边形ADCE 是平行四边形. ∵AB=AC ,D 为BC 中点, ∴AD ⊥BC ,即∠ADC=90°, ∴平行四边形ADCE 是矩形.5.证明:(1)∵BE=CF ,BF=BE+EF ,CE=CF+EF , ∴BF=CE . ∵四边形ABCD 是平行四边形, ∴AB=DC . 在△ABF 和△DCE 中,∵AB=DC ,BF=CE ,AF=DE , ∴△ABF ≌△DCE .(2)∵△ABF ≌△DCE , ∴∠B=∠C . ∵四边形ABCD 是平行四边形, ∴AB ∥CD . ∴∠B+∠C=180°. ∴∠B=∠C=90°. ∴四边形ABCD 是矩形.6.(1)证明:∵四边形ABCD 是矩形, ∴OA=0B=OC=OD , ∵AE=BF=CG=DH , ∴AO ﹣AE=OB ﹣BF=CO ﹣CG=DO ﹣DH , 即:OE=OF=OG=OH , ∴四边形EFGH 是矩形;(2)解:∵G 是OC 的中点, ∴GO=GC , ∵DG ⊥AC , ∴∠DGO=∠DGC=90°, 又∵DG=DG , ∴△DGC ≌△DGO , ∴CD=OD , ∵F 是BO 中点,OF=2cm , ∴BO=4cm , ∵四边形ABCD 是矩形, ∴DO=BO=4cm , ∴DC=4cm ,DB=8cm , ∴CB==4, ∴矩形ABCD 的面积=4×4=16cm 2.7.证明:∵BD ,BE 分别是∠ABC ,∠ABP 的平分线, ∴∠ABD+∠ABE=(∠ABC+∠ABP )=90°.即∠EBD=90°. 又∵AE ⊥BE ,AD ⊥BD , ∴∠AEB=∠ADB=90°, ∴四边形AEBD 是矩形.8.解:(1)四边形DEFG 是平行四边形.理由如下: ∵D 、G 分别是AB 、AC 的中点,∴DG是△ABC的中位线;∴DG∥BC,且DG=BC;同理可证:EF∥BC,且EF=BC;∴DG∥EF,且DG=EF;故四边形DEFG是平行四边形;(2)O在BC边的高上且A和垂足除外.理由如下:连接OA;∵把AB、OB、OC、AC的中点D、E、F、G依次连接形成四边形DEFG.∴DE∥OA∥GF,EF∥BC,∵四边形DEFG是矩形,∴DE⊥EF,∴OA⊥EF,∴OA⊥BC,即O点在BC边的高上且A和垂足除外.9.证明:(1)在平行四边形ABCD中,∠A=∠C,(1分)又∵AE=CG,AH=CF,∴△AEH≌△CGF.(2分)∴EH=GF.(1分)在平行四边形ABCD中,AB=CD,AD=BC,∴AB﹣AE=CD﹣CG,AD﹣AH=BC﹣CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.(1分)∴GH=EF.(1分)∴四边形EFGH是平行四边形.(1分)(2)解法一:在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°﹣α.∵AE=AH,∴∠AHE=∠AEH=.(1分)∵AD=AB=CD,AH=AE=CG,∴AD﹣AH=CD﹣CG,即DH=DG.(1分)∴∠DHG=∠DGH=.(1分)∴∠EHG=180°﹣∠DHG﹣∠AHE=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)解法二:连接BD,AC.∵AH=AE,AD=AB,∴,∴HE∥BD,(1分)同理可证,GH∥AC,(1分)∵四边形ABCD是平行四边形且AB=AD,∴平行四边形ABCD是菱形,(1分)∴AC⊥BD,∴∠EHG=90°.(1分)又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.(1分)10.解:(1)∵AB=AC,∠BAD=∠CAD,∴AD⊥BC,∴∠ADB=90°,∵AE平分∠FAC,∴∠EAD=90°,∴AE∥BC;(2)∵DE∥AB,AE∥BC,∴四边形ABDE是平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形AECD是平行四边形,∵∠ADC=90°,∴四边形AECD是矩形;(3)∵BC=6cm,∴CD=3cm , ∵,∴AD=4, ∴AB=AC==5,∴AB 的长是5cm .11.证明:方法一:∵四边形ABCD 是菱形, ∴AB=AD ,∠ABC=∠ADC , ∴180°﹣∠ABC=180°﹣∠ADC , 即∠ABE=∠ADF , ∵AE ⊥BC ,AF ⊥CD , ∴∠AEB=∠AFD=90°, 在△ABE 和△ADF 中,,∴△ABE ≌△ADF (AAS ), ∴AE=AF .方法二:∵四边形ABCD 是菱形, ∴BC=CD , ∵AE ⊥BC ,AF ⊥CD , ∴菱形ABCD 的面积=BC •AE=CD •AF , ∴AE=AF . 12.(1)解:∵四边形ABCD 是菱形, ∴AB ∥CD , ∴∠1=∠ACD , ∵∠1=∠2, ∴∠ACD=∠2, ∴MC=MD , ∵ME ⊥CD , ∴CD=2CE , ∵CE=1, ∴CD=2, ∴BC=CD=2;(2)证明:如图,∵F 为边BC 的中点,∴BF=CF=BC ,∴CF=CE ,在菱形ABCD 中,AC 平分∠BCD , ∴∠ACB=∠ACD , 在△CEM 和△CFM 中, ∵,∴△CEM ≌△CFM (SAS ),∴ME=MF ,延长AB 交DF 的延长线于点G , ∵AB ∥CD , ∴∠G=∠2, ∵∠1=∠2, ∴∠1=∠G , ∴AM=MG , 在△CDF 和△BGF 中, ∵,∴△CDF ≌△BGF (AAS ), ∴GF=DF ,由图形可知,GM=GF+MF , ∴AM=DF+ME .13.(1)证明:∵菱形ABCD , ∴AB=CD ,AB ∥CD , 又∵BE=AB ,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.14.证明:由平移变换的性质得:CF=AD=10cm,DF=AC,∵∠B=90°,AB=6cm,BC=8cm,∴AC===10,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.15.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴OC=OD,∴四边形OCED是菱形.16.证明:∵点D,E,F分别是BC,AB,AC的中点,∴DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,又∵AD⊥BC,BD=CD,∴AB=AC,∴AE=AF,∴平行四边形AEDF是菱形.17.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF;(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴DE=BE,∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.18.证明:(1)∵AB=AC,∴∠B=∠BCA,∵AD平分∠FAC,∴∠FAD=∠DAC=∠FAC,∵∠B+∠BCA=∠FAC,∴∠B=∠FAC,∴∠B=∠FAD,∴AD∥BC,∴∠D=∠DCE,∵CD平分∠ACE,∴∠ACD=∠DCE,∴∠D=∠ACD,∴AC=AD;(2)∵∠B=60°,AB=AC,∴△ABC为等边三角形,∴AB=BC,∴∠ACB=60°,∠FAC=∠ACE=120°,∴∠BAD=∠BCD=120°,∴∠B=∠D=60°,∴四边形ABCD是平行四边形,∵AB=BC,∴平行四边形ABCD是菱形.19.证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∵∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB(AAS),∴DE=BF,又∵ED∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴▱BEDF是菱形20证明:∵AC=AD,AF是CD边上的中线,∴∠AFC=90°,∴∠ACF+∠CAF=90°,∵∠ACF+∠PCA=90°,∴∠PCA=∠CAF,∴PC∥AQ,同理:AP∥QC,∴四边形APCQ是平行四边形.∵AF∥CP,AE∥CQ,∴∠EPC=∠PAF=∠FQC,∵AB=AC,AE平分∠BAC,∴CE=BE=CB(等腰三角三线合一),∵AF是CD边上的中线,∴CF=CD,∵CB=DC,∴CE=CF,∵PC⊥CD,QC⊥BC,∴∠ECP+∠PCQ=∠QCF+∠PCQ=90°,∴∠PCE=∠QCF,∴△PEC≌△QFC(AAS),∴PC=QC,∴四边形APCQ是菱形..21.证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=AB,DE=AB (直角三角形斜边上的中线等于斜边的一半),∴BE=DE,∴∠EDB=∠EBD,∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD (ASA ),∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.(四边相等的四边形是菱形)22.(1)证明:由题意知∠FDC=∠DCA=90°,∴EF∥CA,∴∠FEA=∠CAE ,∵AF=CE=AE,∴∠F=∠FEA=∠CAE=∠ECA.在△AEC和△EAF中,∵∴△AEC≌△EAF(AAS),∴EF=CA,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.证明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.23.证明:∵∠ABC=90°,∠BAC=60°,∴∠C=30°∴BA=AC.又∵BD是斜边AC的中线,∴BD=AD=AC=CD.∴BD=AB=CD,∴∠C=∠DBC=30°,∵将△BCD沿BD折叠得△BC1D,∴△CBD≌△C1BD,∴CD=DC1,∴AB=BD=DC1,∴∠C1BA=∠BC1D=30°,∴BA∥DC1,DC1=AB,∴四边形ABDC1为平行四边形,又∵AB=BD,∴平行四边形ABDC1为菱形.24.证明:(1)∵CE∥BF,∴∠ECD=∠FBD,∠DEC=∠DFB;又∵D是BC的中点,即BD=DC,∴△BDF≌△EDC;(AAS)(2)∵AB=AC,∴△ABC是等腰三角形;又∵BD=DC,∴AD⊥BC(三线合一),由(1)知:△BDF≌△EDC,则DE=DF,DB=DC;∴四边形BFCE是菱形(对角线互相平分且互相垂直的四边形为菱形).25.证明:(1)在▱ABCD 中,BC∥AF ,∴∠1=∠F,∵BE=BP,∴∠E=∠1,∴∠E=∠F;(2)∵BD∥EF,∴∠2=∠E,∠3=∠F,∵∠E=∠F,∴∠2=∠3,∴AB=AD,∴▱ABCD是菱形.26.(1)证明:∵矩形ABCD,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OD,∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∴四边形AODE是菱形.(2)解:∵DE∥CA,AE∥BD,∴四边形AODE是平行四边形,∵菱形ABCD,∴AC⊥BD,∴∠AOD=90°,∴平行四边形AODE是矩形.故答案为:矩形.27.(1)证明:∵DF∥AE,EF∥AD,∴四边形DAEF是平行四边形.∵∠2=∠AED,∠1=∠2,∴∠AED=∠1.∴AD=AE.∴四边形AEFD是菱形.(2)解:∵∠A=60°,∴△AED为等边三角形.∴DE=5,连接AF 与DE相交于O,则EO=.∴OA==.∴AF=5.∴S菱形AEFD=AF•DE=.28.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵ABCD是矩形,∴OC=OD.∴四边形OCED是菱形,∴OE⊥CD.29.证明:(1)∵四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AC=8,BD=6,∴AO=4,BO=3,∵32+42=52,∴AO2+BO2=AB2,∴∠AOB=90°,(2)∵CA⊥BD,四边形ABCD是平行四边形,∴平行四边形ABCD是菱形;(3)四边形ABCD的面积为:AC•BD=×8×6=24.30.(1)证明:∵DF∥BC,∠ACB=90°,∴∠CFD=90°.∵CD⊥AB,∴∠AEC=90°.在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,∴Rt△AEC≌Rt△DFC.∴CE=CF.∴DE=AF.而∠AGF=∠DGE,∠AFG=∠DEG=90°,∴Rt△AFG≌Rt△DEG.∴GF=GE;(2)解:∵CD⊥AB,∠A=30°,∴CE=AC=CD,∴CE=ED .∴BC=BD=1.又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,∴∠ECB=∠A=30°,∠CEB=90°,∴BE=BC=BD=,在直角三角形ABC中,∠A=30°,则AB=2BC=2.则AE=AB﹣BE=,∵Rt△AEC≌Rt△DFC,∴DF=AE=.。
平行四边形矩形菱形经典例题(8套)

经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长.【【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:连接3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC A DCBA DC BD C AB EF∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又A F C E D F ==,,AFD CEB ∴△≌△(SAS).AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A BDE F C A DCB(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△DM AE ∴=AE EP =DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM ∴⊥AE EP ⊥ A D C B E B C E DA F P FDM EP ∴⊥∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。
矩形、菱形、正方形的判定及性质应用举例

ABCD EFO矩形、菱形、正方形的判定及性质应用举例矩形、菱形、正方形的判定和性质是初中数学中最重要的内容之一.在中考中所占的比例较大,常以填空题、选择题、计算题、证明题的形式出现. 现举几例供同学们参考. 一、矩形知识的应用例1(甘肃白银7市课改)如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,23AB BC ==,,则图中阴影部分的面积为 .分析:由四边形ABCD 是矩形,利用矩形的对角线互相平分且相等可知,矩形中OA=OB=OD=OC ,由三角形全等可求出阴影部分的面积.解:∵矩形ABCD 的对角线AC 和BD 相交于点O . ∴OA=OB=OD=OC ,AC=BD∵)(,SAS COF AOE COD AOB ∆≅∆∆≅∆ ∴COF AOE COD AOB S S S S ∆∆∆∆==, ∴阴影部分的面积33221=⨯⨯=点评:矩形是特殊的平行四边形,其特殊性表现在角上(四个角都是直角),两条对角线将矩形分成四个等腰三角形,从而可以计算阴影部分的面积.二、菱形知识的应用例2. (山东)如下图,菱形ABCD 中,E 是AB 的中点,且DE ⊥AB ,AB=a ,求:(1)∠ABC 的度数;(2)已知a AO 23=,求对角线AC 的长;(3)求菱形的面积.分析: 因为E 是AB 的中点,且DE ⊥AB 可得等腰三角形ABD 为等边三角形,这样菱形的4个内角都可求出,并且由特殊角的关系很容易求出AC 的长和菱形面积.解:(1)连结BD.在菱形ABCD 中,∵ DE ⊥AB ,E 是AB 的中点,∴ AB=AD=DB. ∴ △ABD 为等边三角形.∴ ∠ABD=60° .∴ ∠ABC=2∠ABD=120°.(2)在菱形ABCD 中 ,AC ⊥BD ,且AC 与BD 互相平分. 由(1)在Rt △ABO 中,a AO 23=a a AO AC 32322=⨯==∴ (3)由(1)知a AB BD ==,∴a a S ⋅⨯=⋅=321BD AC 21菱形 .232a = 点评:(1)本题首先证明△ABD 是等边三角形,从而求出∠ABD 的度数,再利用菱形的性质可求∠ABC.(2)求AC 的长可利用菱形的对角线互相垂直平分(3)菱形的面积可用21AC·BD 求出,也可利用AB·DE 求出. 本题应用了菱形的对角线互相垂直平分的性质,即可求出面积.三、正方形知识的应用例3(浙江台州)把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.分析:本题是将正方形ABCD 绕着点A ,按顺时针方向进行旋转,画出正方形AEFG .构造全等三角形.解:HG HB =. 证法1:连结AH ,∵四边形ABCD ,AEFG 都是正方形.∴90B G ∠=∠=°.由题意知AG AB =,又AH AH =.DCAB GHFEDC AB GHFERt Rt()∴△≌△,AGH ABH HL=∴.HG HB证法2:连结GB.,都是正方形,∵四边形ABCD AEFG∠=∠=∴°.ABC AGF90由题意知AB AG=.∴.∠=∠AGB ABG∴.∠=∠HGB HBG∴.=HG HB点评:本题主要考查正方形的性质及三角形全等的判定,要证HG=HB,转化为证Rt△AGH≌Rt△ABH或HBG∠即可.=HGB∠练习:1.如图,如果要使平行四边行ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是.2.如图,在梯形纸片ABCD中,AD//BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连结C′E.求证:四边形CDC′E是菱形.3.如图,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC 于点E,PF⊥CD于点F.(1) 求证:BP=DP;(2) 如图,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;(3) 试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.参考答案1.AB AD AC BD,等.=⊥2.证明:根据题意可知DE∆≅C∆CDE'则''',,=∠=∠=CD C D C DE CDE CE C E∵AD//BC ∴∠C′DE=∠CED∴∠CDE=∠CED ∴CD=CE∴CD=C′D=C′E=CE ∴四边形CDC′E为菱形3.(1) 解法一:在△ABP与△ADP中,利用全等可得BP=DP.解法二:利用正方形的轴对称性,可得BP=DP.(2) 不是总成立.当四边形PECF绕点C按逆时针方向旋转,点P旋转到BC 边上时,DP >DC>BP,此时BP=DP不成立.说明:未用举反例的方法说理的不得分.(3)连接BE、DF,则BE与DF始终相等.在图中,可证四边形PECF为正方形,在△BEC与△DFC中,可证△BEC≌△DFC .从而有BE=DF.。
矩形 菱形的性质及判定专项练习

矩形,菱形的性质及判定专项练习)在下列命题中,真命题是( 1. A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形面积为24cm, 那么这个菱形的周长为______________, 已知菱形的两条对角线长为2.10cm和A_______________. B那度角, 的长方形纸条叠放在一起3.将两张长10cm宽3cm, 使之成60M________________. 么重叠部分的面积的最大值为NO那么两条对角线长度之和为40, 80, 周长为4.一个菱形面积为__________. DC___________. 那么这个特殊四边形是得到一个菱形. 5.顺次连接一个特殊四边形的中点,:BE=1,BC,CE⊥BDOE:,6.如图,矩形ABCD的对角线相交于点OOF⊥AD BD 的长。
OF=4,求∠ADB的度数和3,EOBC F,若矩形的周长为36cm,求此矩形的面积。
是MBC的中点,且MA⊥MD如图所示,矩形7.ABCD中,,,如图,若AB=2重合,得折痕,再折叠使折叠矩形纸片8.ABCD,先折出折痕BDAD边与对角线BDDG 。
BC=1,求AG DCEBAG,,FEABCD如图,9.已知:平行四边形的四个内角的平分线分别相交于点G,EFGH,求证:四边形是矩形。
H页6 共页1 第,矩上一点,,且上一点,10.如图,在矩形中,是是cm2EF?CE,DE?CEABCD?EFEABADF与的长.形的周长为,求CF16cmABCDAE平移后的三角形,其平移的方(1),画出△AOB如图,在矩形ABCD中,对角线AC、BD相交于点O,11.外还有哪(2)观察平移后的图形,除了矩形ABCD向为射线AD的方向,平移的距离为线段AD的长。
一种特殊的平行四边形?并给出证明。
CEF°,求∠CD和上,且∠B=∠EAF=60°,∠BAE=15ABCD12.如图所示,已知菱形中,E、F分别在BC 的度数。
4.3~4.4矩形,菱形的性质及判定练习

4.3~4.4矩形,菱形的性质及判定练习1.菱形、矩形的有关概念矩形:有一个角是直角的平行四边形叫做矩形.菱形:有一组邻边相等的平行四边形叫做菱形.温馨提醒:(1)矩形、菱形具有平行四边形的一切性质;(2)依据矩形的性质,得出直角三角形具有的性质斜边上的中线等于斜边的一半;(3)矩形、菱形既是轴对称图形又是中心对称图形;3.菱形、矩形的判定矩形的判定方法:①有一个角是直角的平行四边形是矩形.②有三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.菱形的判定方法:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;温馨提示:(1)矩形的对角线是矩形比较常用的性质,当对角线的夹角中,有一个角为60度时,则构成一个等边三角形;在判定矩形时,要注意利用定义或对角线来判定时,必须先证明此四边形为平行四边形,然后再找一个角为直角或对角线相等。
很多同学容易忽视这个问题。
(2)在利用菱形的判定时,也要注意所要证明的四边形是不是平行四边形,而你用的判定定理需不需要证明它是平行四边形,有对角线时,通常考虑利用对角线互相垂直的平行四边形是菱形来证明,否则一般不利用此定理。
(3)两条对角线相等的四边形不一定是矩形,必须加上平行四边形这个条件;对角线相互垂直的四边形不一定是菱形,必须加上平行四边形这个条件。
5.面积、角度、线段等计算问题S 菱形=12l l ·l 2(l 1、l 2为菱形对角线长) 连对角线,矩形、菱形就可得到特殊三角形(如等腰三角形、直角三角形),因此,解矩形、菱形问题时,要注意特殊三角形性质的运用。
利用全等三角形解决问题。
跟踪训练:一、填空题:1.矩形的定义:____________________________的平行四边形叫做矩形。
2.矩形的性质:矩形是一个特殊的平行四边形,它具有四边形和平行四边形的所有性质;矩形的四个角______________; 矩形的对角线______________; 矩形是轴对称图形,它的对称轴是______________。
人教版八年级下册数学 18.2矩形、菱形的性质定理和判定定理及其证明 习题精选(含答案)

矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。
2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。
3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。
4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。
5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。
6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。
7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。
B.一组对边平行且有一个角是直角的四边形是矩形。
C.对角线互相垂直的平行四边开是矩形。
D.一个角是直角且对角线互相平分的四边形是矩形。
8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。
10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。
11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。
12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。
矩形和菱形的性质与判定经典例题试

矩形和菱形的性质与判定经典例题试————————————————————————————————作者:————————————————————————————————日期:第一课时——矩形的性质 矩形的性质:边角对角线对称性练一练: 1、矩形的两条对角线把矩形分成 个等腰三角形.2、矩形具有而平行四边形不具有的性质是( )A .对角线互相平分B .两组对边分别相等C .相邻两角互补D .对角线相等3.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( )A.21B.41C.51D.61 4.在矩形ABCD 的边AB 上有一点E ,且CE =DE ,若AB =2AD ,则∠ADE 等于( )A.45°B.30°C.60°D.75°【探究三】直角三角形斜边上的中线性质1、根据矩形对角线性质可得到直角三角形斜边上的中线性质:2、归纳我们已学过的直角三角形的性质:角:边:斜边上的中线:边与角:练一练:1、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( )A .5B .6C .7D .82、如果一个直角三角形斜边上的中线与斜边上的高所夹的锐角为34°,那么这个直角三角形的较小的内角是 度.精讲精练例1、如图,在矩形ABCD 中,AC 、BD 相较于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠的度数。
变式:已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.例2、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,求PE+PF 的值。
例3、如图,延长矩形的边CB 至E ,使CE=CA,F 是AE 的中点,求证:BF FD ⊥三、用中学习:1.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A.98B.196C.280D.2842.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16B.22C.26D.22或263.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.4.矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC 的周长少4 cm,则AB=_______,BC=_______.V的两条高,M、N分别是BC、DE的中点,MN与DE有5、如图,已知BD、CE是ABC怎样的位置关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时——矩形的性质 矩形的性质:边
角
对角线
对称性
练一练: 1、矩形的两条对角线把矩形分成 个等腰三角形.
2、矩形具有而平行四边形不具有的性质是( )
A .对角线互相平分
B .两组对边分别相等
C .相邻两角互补
D .对角线相等
3.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( )
A.21
B.41
C.51
D.6
1 4.在矩形ABCD 的边AB 上有一点E ,且CE =DE ,若AB =2AD ,则∠ADE 等于( )
A.45°
B.30°
C.60°
D.75°
【探究三】直角三角形斜边上的中线性质
1、根据矩形对角线性质可得到直角三角形斜边上的中线性质:
2、归纳我们已学过的直角三角形的性质:
角:
边:
斜边上的中线:
边与角:
练一练:1、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( )
A .5
B .6
C .7
D .8
2、如果一个直角三角形斜边上的中线与斜边上的高所夹的锐角为34°,那么这个直角三角形的较小的内角是 度.
精讲精练
例1、如图,在矩形ABCD 中,AC 、BD 相较于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠的度数。
变式:已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.
例2、如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,求PE+PF 的值。
例3、如图,延长矩形的边CB 至E ,使CE=CA,F 是AE 的中点,求证:BF FD ⊥
三、用中学习:
1.如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()
A.98
B.196
C.280
D.284
2.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()
A.16
B.22
C.26
D.22或26
3.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.
4.矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC 的周长少4 cm,则AB=_______,BC=_______.
5、如图,已知BD、CE是ABC的两条高,M、N分别是BC、DE的中点,MN与DE有怎样的位置关系。
请证明。
第二课时———矩形的判定
矩形的四种判定方法:
精讲精练
例1、已知:如图,ABCD的四个内角的平分线分别相交于点E、F、G、H。
求证:四边形EFGH是矩形。
例2、已知:在四边形ABCD 中,AB=CD,180,A D ∠+∠=︒AC 、BD 相较于点O ,AOB 是等边三角形。
求证:四边形ABCD 是矩形。
例3、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,顺次连结E 、F 、G 、H 所得的四边形EFGH 是矩形吗?说明理由.
三、用中学习
1.两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是( )
A.一般平行四边形
B.菱形
C.矩形
D.正方形
2.延长等腰△ABC 的腰BA 到D ,CA 到E ,分别使AD =AB ,AE =AC ,则四边形BCDE 是________,其判别根据是_______.
3、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为 。
4.在四边形ABCD 中,∠B =∠D =90°,且AB =CD ,四边形ABCD 是矩形吗?为什么?
5、已知:如图,ABC 中,AB=AC ,P 是BC 上一点,PE AB ⊥于E ,PF AC ⊥于F ,CG AB ⊥于G 。
求证:PE+PF=CG
拓展延伸
1、将一将矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA=6,OC=10.
(1)如图1,在OA 上取一点E ,将EOC 沿EC 折叠,使O 点落在AB 边上的D 点,求E 点的坐标;(2)如图2,将矩形变为矩形OA B C ''',在OA '、OC '边上选取适当的点E '、F ',将E OF ''沿E F ''折叠,使O 点落在A B ''边上的D '点,过D '作//D G A O ''交E F ''于T 点,交OC '于G 点,求证:TG A E ''=
2、如图,在平面直角坐标系xOy 中,把矩形COAB 绕点C 顺时针旋转α角,得到矩形CFED ,设FC 与AB 交于点H ,且A (0,4)、C (6,0)。
(1)当60α=︒时,CBD 的形状
是
(2)当AH=HC时,求直线FC的解析式。
第一课时:菱形的性质
一、知识回顾
菱形的定义:。
菱形是中心对称图形,是对称中心。
菱形的对边,对角,对角线。
菱形的四条边都。
菱形是轴对称图形,都是它的对称轴。
菱形的对角线,并且每一条对角线都。
菱形的面积=底×高= 。
二、练习题
1、一个菱形的两条对角线长分别为7cm和8cm,则这个菱形的面积为。
2、在菱形ABCD中,∠B=70°,对角线AC、BD相交于点O,则∠OCD= .
3、菱形的面积为24cm2,一条对角线的长为8cm,则另一条对角线的长为。
4、菱形的两条对角线长分别为18cm和24cm,则这个菱形的周长为。
5、菱形的周长为20cm,两邻角的比为2:1,则较短的对角线的长为。
6、若一个菱形的边长为2,则这个菱形两条对角线长的平方和为。
7、菱形的周长为20cm,那么一边上的中点到两条对角线长的交点的距离为。
8、菱形的一条对角线长与它的边相等,则它的一个锐角为。
9、如图已知菱形的两条对角线长分别为12cm和16cm,求菱形的高?
10如图,菱形ABCD中,∠B=60°,AB=2㎝,E、F分别是BC、CD的中点,连结AE、EF、AF,则△AEF的周长
第二课时:菱形的判定
一、知识回顾
菱形的判定方法:①、相等的平行四边形是菱形。
②都相等的四边形是菱形
③对角线的平行四边形是菱形。
二、练习题
1、下列命题正确的是。
A、有一个角是60°的平行四边形是菱形。
B、有一组邻边相等的四边形是菱形
C、有两边相等的平行四边形是菱形。
D、四边相等的四边形是菱形。
E、邻角相等的四边形是菱形。
F、对角线互相垂直的四边形是菱形。
G、对角线互相垂直平分的四边形是菱形。
H、对角线互相平分的四边形是菱形。
I、对角线互相平分且相等的四边形是菱形。
2、已知平行四边形ABCD的对角线AC、BD相交于点O,分别添加下列条件:
⑴∠ABC=90°;⑵AC⊥BD; ⑶AB=BC; ⑷AC平分∠BAD;⑸AO=DO,使得四边形是菱形的条件的序号。
3、如图平行四边形ABCD中,AE、CF分别是∠BAD和∠BCD的平分线,根据现有的图形,请添加一个条件,使四边形AECF是菱形,则添加的一个条件是
(图中不能添加别的点和线)
4如图∆ABC为等腰三角形,把它沿底边BC翻折后,得到∆DBC,请你判断四边形ABDC的形状。
5如图在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿点D的直线折叠使点C落在AD上的点C′处,折痕DE交BC于点E,连接C′E。
⑴求证:四边形CDC′E是菱形。
⑵若BC=CD+AD,试判断四边形ABED的形状,并加以证明。
6、如图,菱形ABCD的对角线AC与BD相交于点O,点E、F分别为边AB、AD的中点,连接EF、OE、OF.求证:四边形AEOF是菱形.
7、如图,AD∥FE,点B、C在AD上∠1=∠2,BF=BC,
⑴求证:四边形BCEF是菱形
⑵若AB=BC=CD,求证:∆ACF≌∆BDE。