信号的三种调制方式
常见的调制方式

1. 常见的调制方式调制方式用途常规双边带调幅AM 广播抑制载波双边带调幅DSB 立体声广播线性调制单边带调幅SSB 载波通信、无线电台、数传连残留边带调幅VSB 电视广播、数传、传真续频率调制FM 微波中继、卫星通信、广播载非线性调制相位调制PM 中间调制方式波幅度键控ASK 数据传输调频率键控FSK 数据传输制数字调制相位键控PSK 、DPSK 、QPSK 等数据传输、数字微波、空间通信其他高效数字调制QAM 、MSK 等数字微波、空间通信脉幅调制PAM 中间调制方式、遥测脉冲模拟调制脉宽调制PDM (PWM )中间调制方式脉脉位调制PPM 遥测、光纤传输冲脉码调制PCM 市话、卫星、空间通信调增量调制DM 军用、民用电话制脉冲数字调制差分脉码调制DPCM 电视电话、图像编码其他语言编码方式ADPCM 、APC 、中低数字电话LPC2. 模拟调制系统c2.1 幅度调制(线性调制)的原理幅度调制: 用载波信号去控制高频载波的振幅, 使其按照调制信号的规律而变化的过程。
调制信号 v tV cos t载波信号 v c tV c cos c t调幅波( AM )信号S AM tV cK a v t cos c t V c 1 K cos t cos c tV c cos c t1 KV2 cos c t 1 KV 2cos c t比例系数 -- K a,调幅指数 -- K频域表达式S AMcK a V V c1MM22.2 抑制载波双边带( DSB )调制DSB 信号S DSB tv t V c cos c t1V V c 2cos ct1KV 2V c cos c频域表达式 1 S DSBM2 cMc2.3 单边带( SSB )调制SSB 信号,上边带v SSB 上 t1V V c 2cos ct频域表达式 1 S SSB 上Mc2 1下边带 v SSB 下 tV V c cos ct2频域表达式 1 S SSB 下M c2SSB 信 号上 下 边 带 合 起 来c c cc2v SSB 合 t1 V V c2 cos c cos t 1 V V c 2sin csin t通过相移法可得 SSB 信号2.4 相干解调与包络检波2.4.1 相干解调相干解调也称同步检波。
ASK、FSK、PSK、QAM数字调制技术

ASK、FSK、PSK、QAM数字调制技术1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以来的事情。
随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。
现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。
而这些系统都使用到了数字调制技术,本文就数字信号的调制方法作一些详细的介绍。
一数字调制数字信号的载波调制是信道编码的一部分,我们之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。
由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。
模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。
由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。
在对传输信道的各个元素进行最充分的利用时可以组合成各种不同的调制方式,并且可以清晰的描述与表达其数学模型。
所以常用的数字调制技术有2ASK、4ASK、8ASK、BPSK、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。
更有将幅度与相位联合调制的QAM技术,目前数字微波中广泛使用的256QAM的频带利用率可达8bit/s/Hz,八倍于2ASK或BPSK。
此外,还有可减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。
近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。
总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。
信号调制解调

由上式可见,除了由于载波分量而在处形成两个冲激函数之外,这个频谱与抑制载波的AM的频谱相同。
2。幅度调制在中、短波广播和通信中使用甚多。幅度调制的不足是抗干扰能力差,因为各种工业干扰和天电干扰都会以调幅的形式叠加在载波上,成为干扰和杂波
四.解调的原理
解调是从携带消息的已调信号中恢复消息的过程。在各种信息传输或处理系统中,发送端用所欲传送的消息对载波进行调制,产生携带这一消息的信号。接收端必须恢复所传送的消息才能加以利用,这就是解调。解调是调制的逆过程。调制方式不同,解调方法也不一样。与调制的分类相对应,解调可分为正弦波解调(有时也称为连续波解调)和脉冲波解调。正弦波解调还可再分为幅度解调、频率解调和相位解调,此外还有一些变种如单边带信号解调、残留边带信号解调等。同样,脉冲波解调也可分为脉冲幅度解调、脉冲相位解调、脉冲宽度解调和脉冲编码解调等。对于多重调制需要配以多重解调。
过程:
输入信号经过乘法器与cos0t相乘,得到已调信号fS(t)=m(t)cos0t,其频谱为FS(j)=½{F[j(-0)]+F[j(+0)]}
而h(t)为一带阻滤波器,仅保留有效的频带。
输出得到频谱为 的信号
由此可见,原始信号的频谱被搬移到了频率较高的载频附近,达到了调制的目的。
已调信号的频谱表明原信号的频谱中心位于上,且关于对称。它是一个带通信号。
解调过程除了用于通信、广播、雷达等系统外还广泛用于各种测量和控制设备。例如,在锁相环和自动频率控制电路中采用鉴相器或鉴频器来检测相位或频率的变化,产生控制电压,然后利用负反馈电路实现相位或频率的自动控制。
五.调制解调的应用
调制在无线电发信机中应用最广。图1为发信机的原理框图。高频振荡器负责产生载波信号,把要传送的信号与高频振荡信号一起送入调制器后,高频振荡被调制,经放大后由天线以电磁波的形式辐射出去。其中调制器有两个输入端和一个输出端。这两个输入分别为被调制信号和调制信号。一个输出就是合成的已调制的载波信号。例如,最简单的调制就是把两个输入信号分别加到晶体管的基极和发射极,集电极输出的便是已调信号。
编码调制原理

在通信原理中把通信信号按调制方式可分为调频、调相和调幅三种。
数字传输的常用调制方式主要分为:正交振幅调制(QAM):调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。
键控移相调制(QPSK):调制效率高,要求传送途径的信噪比低,适合卫星广播。
残留边带调制(VSB):抗多径传播效应好(即消除重影效果好),适合地面广播。
编码正交频分调制(COFDM):抗多径传播效应和同频干扰好,适合地面广播和同频网广播。
世广数字卫星广播系统的下行载波的调制技术采用TDM QPSK调制体制。
它比编码正交频分多路复用(COFDM)调制技术更适合卫星的大面积覆盖。
摘要:由于数字电视系统采用数字传输,而在传输系统中都使用到了数字调制技术,本文就对ASK、FSK、PSK、QAM等数字调制方法进行详细的介绍。
1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以来的事情。
随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。
现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。
而这些系统都使用到了数字调制技术,本文就数字信号的调制方法作一些详细的介绍。
一数字调制数字信号的载波调制是信道编码的一部分,我们之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。
由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。
模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。
由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。
信号调制的基本原理PPT

• (4-26) t
t
t
f (t)
(t )dt
0
0 c
f u (t)dt
ct f
0 u (t)dt
•
f (t ) f
t
0 u (t )dt
(4-27)
• 表示调频波瞬时相位与载波信号相位得偏
4、2 幅度调制原理及特性
• 4、2、1 普通调幅(AM )
• 1、 普通调幅信号得数学表达式
• 首先讨论调制信号为单频余弦波时得情况, 设调制信号为
• u (t) um cos t cos 2 Ft (4-2)
• 设载波信号为
•
uC (t) Ucm cosct cos 2 fct (4-3)
• 调频信号数学表达式
(4-31)
4、3、2 调频信号分析
• uFM Ucm cos(ct mf sin t) (4-32)
•
mf
k f Um
m
为调频波得最大相移,又称调
频指数。 m值f 可大于1
• 给出了调制信号、瞬时频偏、瞬时相偏、 对应得波形图
4、3、2 调频信号分析
图4-19 调频信号的波形图
• 4、2、3 单边带调幅信号(SSB)
• 由式(4-15)可得SSB调幅信号数学表达式为
• 取上边带时
•
(4-17)
• •
取下边带时
uSSB (t)
1 2
KmaU cm cos (c
)t
(4-18)
uSSB (t )
1 2
KmaU cmcos(c
)t
4、2、3 单边带调幅信号(SSB)
调制方式

使信号能量大部分集中在一定的带宽内,
因此提高了频带的利用率。根据这些要求,
人们在实践中创造了各式各样的调制方式,
我们称之为现代恒包络数字调制技术。
现代数字调制技术的发展方向是最小功率谱占有率的恒包络数字调制技术。
现代数字调制技术的关键在于相位变化的连续性。MSK是移频键控FSK的一种改进形式。
、正交幅度调制(QAM)、正交频分复用调制(OFDM)等等。
4、QAM--又称正交幅度调制法。在二进制ASK系统中,其频带利用率是1bit/s·Hz,
若利用正交载波调制技术传输ASK信号,可使频带利用率提高一倍。如果再把多进制与其它技术结合
起来,还可进一步提高频带利用率。能够完成这种任务的技术称为正交幅度调制(QAM)。
也能减小由于信道特性引起的码间干扰的影响等。
二进制2ASK与四进制MASK调制性能的比较:
在相同的输出功率和信道噪声条件下,MASK的解调性能随信噪比恶化的速度比OOK要迅速得多。
这说明MASK应用对SNR的要求比普通OOK要高。在相同的信道传输速率下M电平调制与二
电平调制具有相同的信号带宽。即在符号速率相同的情况下,二者具有相同的功率谱。
影响,以便在有限的带宽资源条件下获得更高的传输速率。这些技术的研究,
主要是围绕充分节省频谱和高效率的利用频带展开的。多进制调制,是提高频谱利用率的有效方法,
恒包络技术能适应信道的非线性,并且保持较小的频谱占用率。
从传统数字调制技术扩展的技术有最小移频键控(MSK)、高斯滤波最小移频键控(GMSK)
其相位通常是不连续的。所谓MSK方式,就是FSK信号的相位始终保持连续变化的一种特殊方式。
调制的定义

1 01 02 03调制 调制总体分为数字调制和模拟调制,正弦波调制和脉冲调制。
正弦波调制方法 幅度调制:是把调制信号加载在载波信号的幅值上,称为幅度调制 ,简称AM(Amplitude Modulation) 频率调制:是把调制信号装载在载波的频率上,称为频率调制,简称FM(Frequency Modulation) 相位调制:是把调制信号装载在载波的相位上,称为相位调制,简称PM(Phase Modulation)脉冲调制 脉冲宽度调制:脉冲宽度随调制信号的变化而改变的脉冲调制,简称PWM(pulse-width modulation) 脉冲幅度调制:按一定规律改变脉冲列的脉冲幅度,以调节输出量和波形的一种调制方式。
简称PAM (Pulse Amplitude Modulation) 脉冲持续时间调制:也称冲密度调制, 是一种使用二进制数0,1表示模拟信号的调制方式。
简称PDM (pulse duration modulation) 脉位调制:调制信号控制脉冲序列中各脉冲的相对位置(即相位),使各脉冲的相对位置随调制信号变化。
简称PPM(pulse position modulation)数字调制方法 数字量对载波进行调制时,根据被调制的参数不同,也有三种调制方式201023 ASK调制:被装载的参数为幅度时,称为幅移键控调制,简称ASK调制(Amplitude Shift Keying) FSK调制:被装载的参数为频率时称为频移键控调制,简称为FSK调制(Frequency Shift Keying) PSK调制:被装载的参数为相位时称为相移键控调制,简称为PSK调制(Phase Shift Keying)数字调制 优点:抗干扰能力强;易于加密,保密性强;便于计算机对数字信息进行处理;便于集成化,因此数字调制的应用越来越广泛。
缺点:需要较宽的频带,进行模/数转换时会带来量化误差,要求的技术和设备复杂模拟调制 优点:直观且容易实现,比如目前广泛应用的PWM,已经在变频调速技术方面取得了非常好的效果。
通信电子线路 复习题(含答案)

通信电子线路复习题(含答案)一、填空题1.无线电通信中,信号是以电磁波形式发射出去的。
它的调制方式有调幅、调频、调相。
2. 针对不同的调制方式有三种解调方式,分别是检波、鉴频、和鉴相。
3. 在无线电技术中,一个信号的表示方法有三种,分别是数学表达式、波形、频谱。
4. 调频电路有直接调频、间接调频两种方式5. 根据工作特点的不同,检波器有同步检波器和非同步检波器两种。
6.对于FM广播、TV、导航移动通信均属于超短波波段通信。
7. 晶体管选定后,接入系数和回路总电容不变时,单调谐回路放大器的增益和通频带成反比关系。
与单调谐回路相比,双调谐回路谐振放大器的优点是选择性好。
8. 谐振功率放大器通常工作在丙类,此类功率放大器的工作原理是:当输入信号为余弦波时,其集电极电流为脉冲波,由于集电极负载的滤波作用,输出的是与输入信号频率相同的正弦波。
9.检波有同步和非同步检波两种形式。
10.电话话音信号的频率范围为300~3400Hz,音频信号的频率范围为20~20KHz。
11.通信系统的组成为信息源、发送设备、传输信道、接收设备和收信装置。
12.调谐放大器主要由晶体管和调谐电路组成,其衡量指标为放大倍数和选频性能。
13. 角度调制是用音频信号控制载波的频率、相位。
14. 短波的波长较短,地面绕射能力弱,且底面吸收损耗较大,不宜地面传播。
15.实际谐振曲线偏离理想谐振曲线的程度,用矩形系数指标衡量。
16.和振幅调制相比,角度调制的主要优点是抗干扰能力强,因此它们在通信中获得了广泛的应用。
17.小信号调谐放大器的集电极负载为LC谐振回路。
18.小信号调谐放大器双调谐回路的带宽为单调谐回路带宽的1.4倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y ( x) c1 J ( x) c 2Y ( x)
齿轮故障特征
1.在各种齿轮故障诊断方法中,以振动检测为基础的齿 轮故 障诊断方法具有反映迅速、测量简便、实时性 强等优点。 2.齿轮发生断齿情况下其振动信号冲击能量达到最大, 均方值和峰值减小,表明齿轮传动接触减少,对经过磨合 期的齿轮,接触减少只可能是齿轮断齿或磨损厉害,但因 峭度和峰值指标增大,又表明齿轮存在较强的振动冲击, 而磨损厉害并不会出现较大的冲击振动信号,所以齿轮发 生的是 x] p( x)dx
4
式中x(t)为瞬时振幅,x杠为振幅均值,p(x)为概率密度, σ为标准差
1 K N
xi x i 1 t
N
4
式中xi为瞬时振幅,x杠为振幅均值,N为采样长度, σt为标准差。 峭度(Kurtosis)K是反映振动信号分布特性的数值 统计量,是4阶中心矩,峭度指标是无量纲参数, 由于它与轴承转速、尺寸、载荷等无关,对冲击信 号特别敏感,特别适用于表面损伤类故障、尤其是 早期故障的诊断。在轴承无故障运转时,由于各种 不确定因素的影响,振动信号的幅值分布接近正态 分布,峭度指标值K≈3;随着故障的出现和发展,振 动信号中大幅值的概率密度增加,信号幅值的分布 偏离正态分布,正态曲线出现偏斜或分散,峭度值 也随之增大。峭度指标的绝对值越大,说明轴承偏 离其正常状态,故障越严重,如当其K>8时,则很 可能出现了较大的故障。
4.均方根值由于对时间取平均值,因而适用于像磨损、表面裂 痕无规则振动之类的振幅值随时间缓慢变化的故障诊断。
X 1 N
x
1
N
i
2
5.齿轮偏心是指齿轮的中心与旋转轴的中心不重合,这种故障 往往是由于加工造成的。 (1)时域特征 当一对互相啮合的齿轮中有一个齿轮存在偏心时,其振动波 形由于偏心的影响被调制,产生调幅振动,图为齿轮有偏心 时的振动波形。
t x(t )dt t
X sin(t )
调制信号为
z (t ) Y sin Y sin[t m f sin t ] Y sin t cos[m f sin t ] Y cos t sin[m f sin t ]
式中 , mf
(2)频域特征 齿轮存在偏心时,其频谱结构将在两个方面有所反映:一是 以齿轮的旋转频率为特征的附加脉冲幅值增大;二是以齿轮 一转为周期的载荷波动,从而导致调幅现象,这时的调制频 率为齿轮的回转频率,比所调制的啮合频率要小得多。图为 具有偏心的齿轮的典型频谱的特征。
这类方程的解是无法用初等函数系统地表示。 由于贝塞尔微分方程是二阶常微分方程,需要由两个独立的 函数来表示其标准解函数。典型的是使用第一类贝塞尔函数 和第二类贝塞尔函数来表示标准解函数:
贝塞尔函数的具体形式随上述方程中任意实数或复数 α变化而变化(相应地,α被称为其对应贝塞尔函数 的阶数)。实际应用中最常见的情形为α是整数n, 对应解称为n 阶贝塞尔函数。
1 1 z (t ) x (t ) y (t ) YX cos[( )t ] YX cos[( )t ] 2 2
调幅后的信号中没有频率为Ω的载波信号,只有其附近的一对边频 (2),称为抑制调幅波。若调制信号包含较多的频率成分,调幅后 的信号由中心频率Ω附近的很多对边频组成。抑制调幅波中包含有调 制信号的幅值、相位信息,但必须采用同步解调,才能恢复原调制信 号。 3.调频:正弦波载波的频率按调制信号幅值变化规律而变化的调制过程称为 调频,瞬时频率可以定义为角位移Φ对时间的导数dΦ/dt,正弦波的 角位移可表示为Φ=Ωt+θ,dΦ/dt=Ω=常数,调频时瞬时频率为 dΦ/dt=Ω[1+x(t)],若假定调制信号x(t)=Xcos(ωt),则角位移为
X
称为调频指数。
为了研究调频波的频谱,利用贝塞尔函数将上 式展开得
z (t ) Y [ J 0 m f sin t J 1 m f sin( )t J 1 m f sin( )t J 2 m f sin( 2 )t J 2 m f sin( 2 )t J n m f sin( n )t J n m f ( n )
x ( t ) X sin( t )
调相波的表达式为
z (t ) Y sin Y sin( t X sin t )
与调频波相似
z (t ) Y sin Y sin[ t m f sin t ]
贝塞尔函数(Bessel functions),是数学上的一类特殊函 数的总称。通常单说的贝塞尔函数指第一类贝塞尔函数 (Bessel function of the first kind)。一般贝塞尔函数是 下列常微分方程(一般称为贝塞尔方程)的标准解函数 : y ( x)
调制信号
1.信号调制的目的是把要传输的模拟信号或数字信号 变换成适合信道传输的高频信号, 一般分为调幅 (AM)、调频(FM)、和调相(PM)。 2.调幅:使高频载波信号的振幅随调制信号的幅值变化。 调幅电路应用较广,基本原理就是对两路信号进行 乘法运算,设一路信号为y(t)=Ysin(Ωt)(例 y(t)=sin(100t)),其频率Ω较高,称为载波信号,另 一路信号为x(t)=Xsin(ωt+φ)(例x(t)=10sin(5t)), 其频率ω较低,成为调制信号,两路信号相乘得到
式中 J n m f
是 m f 的n阶贝塞尔函数。
上式表明,当调制信号仅为单一正弦波时调频波中也 含有无穷多的频率成分,调频比调幅所要求的带宽要 大得多,但因为调频信号所携带的信息包含在频率变 化中,一般干扰作用主要引起信号幅度变化,对于调 频波很容易通过限幅器消除干扰,所以调频能有效地 改善信噪比,高性能的磁带记录仪往往采用调频调相 技术。 4.载波信号的相位按照调制信号的幅值变化规律而变 化的调制过程称为调相,当调制信号为