步进电机的运行特性.
步进电动机ppt课件

式中C为常数,与控制绕组、控制电流、磁阻等有关。步进电机某 相绕组通电时矩角特性如图所示。
矩角特性上静转矩的最大值Tsm称为最大静转矩。
7
2、多相通电时 a) 三相步进电动机 A→AB→B→BC→C→CA→A顺序通电
TA=Tmaxsinθse TB=Tmaxsin(θse-120°)
TAB= TA+ TB= 2Tmaxcos60°=Tmax
8
b)五相步进电动机 1、供电方式; (C=1):五相单五拍 A→B→C→D→E→A
五相双五拍 AB→BC→CD→DE→EA→AB 五相三五拍 ABC→BCD→CDE→DEA→EAB→ABC (C=2): 五相单双十拍 A→AB→B→BC→C→CD→D→DE→E→EA→A 五相三双十拍 AB→ABC→BC→BCD→CD→CDE→DE→DEA→EA→EAB→AB
二、步进运行状态(单脉冲运行状态) 当接入控制绕组的脉冲频率较低,电机转子完成一步之后,下 一个脉冲才到来,电机呈现出一转一停的状态,故称之为步进 运行状态。 1、步进运行状态过程负载 TL=0(即空载)
12
A相通电时,-π<θ<π为静稳定区,当A相绕组断电转到B相绕组通电 时,新的稳定平衡点为b,对应于它的静稳定区为-π+θb<θ<π+θb (图中θb=2/3π),在换接的瞬间,转子的位置只要停留在此区域内, 就能趋向新的稳定平衡点b,所以区域(-π+θb,π+θb)称为动稳定 区,显而易见,相数增加或极数增加,步距角愈小,动稳定区愈接 近静稳定区,即静、动稳定区重叠愈多,步进电机的稳定性愈好。
A相通电时,有
Ua
ra ia
d(Laia ) dt
一文搞懂步进电机特性原理及驱动器设计

一文搞懂步进电机特性原理及驱动器设计1、步进电机的概念步进电机是将电脉冲信号,转变为角位移或线位移的开环控制电机,又称为脉冲电机。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响。
当步进驱动器接收到一个脉冲信号时,它就可以驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”。
步进电机的旋转是以固定的角度一步一步运行的,可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的,同时可以通过控制脉冲频率,来控制电机转动的速度和加速度,从而达到调速的目的。
步进电机多用于数字式计算机的外部设备,以及打印机、绘图机和磁盘等装置。
2、步进电机的特点步进电机工作时的位置和速度信号不反馈给控制系统,如果电机工作时的位置和速度信号反馈给控制系统,那么它就属于伺服电机。
相对于伺服电机,步进电机的控制相对简单,但不适用于精度要求较高的场合。
步进电机的优点和缺点都非常的突出,优点集中于控制简单、精度高,缺点是噪声、震动和效率,它没有累积误差,结构简单,使用维修方便,制造成本低。
步进电机带动负载惯量的能力大,适用于中小型机床和速度精度要求不高的地方,缺点是效率较低、发热大,有时会“失步”。
优缺点如下所示。
优点:1. 电机操作易于通过脉冲信号输入到电机进行控制;2. 不需要反馈电路以返回旋转轴的位置和速度信息(开环控制);3. 由于没有接触电刷而实现了更大的可靠性。
缺点:1. 需要脉冲信号输出电路;2. 当控制不适当的时候,可能会出现同步丢失;3. 由于在旋转轴停止后仍然存在电流而产生热量。
3、步进电机的分类在相同电流且相同转矩输出的条件下,单极型步进电机比双极型步进电机多一倍的线圈,成本更高,控制电路的结构也不一样,目前市场上流行的大多是双极型步进电机。
步进电机在构造上通常主要按照转子特点和定子绕组进行分类,下面将详细介绍这两种类型的分类。
按照转子分类,有三种主要类型:反应式(VR型)、永磁式(PM型)、混合式(HB型)。
步进电机基础知识

什么是步进电机?步进电机:也称脉冲电机,是一种将电脉冲转化为角位移的执行机构。
步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。
可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。
基本原理通常电机的转子为永磁体,当电流流过定子绕组时,定子绕组产生一矢量磁场。
该磁场会带动转子旋转一角度,使得转子的一对磁场方向与定子的磁场方向一致。
当定子的矢量磁场旋转一个角度。
转子也随着该磁场转一个角度。
每输入一个电脉冲,电动机转动一个角度前进一步。
它输出的角位移与输入的脉冲数成正比、转速与脉冲频率成正比。
改变绕组通电的顺序,电机就会反转。
所以可用控制脉冲数量、频率及电动机各相绕组的通电顺序来控制步进电机的转动。
电机开环控制一种控制电机、不使用反馈回路、就能进行速度控制及定位控制,即所谓的电机开环控制。
步进电机开环控制原理定子一相绕组流过直流电流,最近该相的转子齿被定子相吸引,电磁转矩大于负载转矩从而使转子运动。
电机基本分类按电压种类分:AC(交流)驱动、DC(直流)驱动。
按旋转速度与电源频率关系分:同步电机、异步电机。
步进电机概要1.步进电机的地位步进电机属于:DC驱动的同步电机,但无法直接用DC或AC电源来驱动,需要配备驱动器。
2.步进电机驱动电路的功能驱动电路任务:按顺序指令切换DC电源的电流流入步进电机的各相线圈。
驱动电路将电机定子与DC电源连接在一起工作。
驱动器(驱动电路)由决定换向顺序的控制电路(或称为逻辑电路)与控制电机输出功率的换相电路(或称为功率电路(Power stage))组成。
步进电机

原理:步进电机是利用电磁铁原理,将脉冲信号
转换成线位移或角位移的电机。每来一个 电脉冲,电机转动一个角度,带动机械移 动一小段距离。 特点:(1)来一个脉冲,转一个步距角。
(2)控制脉冲频率,可控制电机转速。
(3)改变脉冲顺序,改变方向。
优点
(1)直接实现数字控制;
(2)控制性能好; (3)无接触式; (4)抗干扰能力强; (5)误差不长期积累;
1.3.3 单步运行特性
1.单步运行时的矩角特性和稳定区 以三相单三步运行方式为例,设电机空载时,A相通电 时的矩角特性如图4中的曲线A所示,转子处于稳定平衡点 OA。如加一脉冲,A相断电,B相通电,则矩角特性变为曲 线B。 M
A
A
B
B
OB OA
A
B
θ
b
θ定区
步进电动机的步距角θ b由转子齿数、定子相数和通电 方式所决定,即
360 b mCZ k
式中m为相数。C为状态系数,采用单、双拍通电方式时 C=2,采用单拍或双拍通电方式时C=1。ZK为转子齿数。
若步进电动机所加的通电脉冲频率为f,则其转速为
60 f n mCZ k
1.3 静态运行特性
步进电动机不改变通电状态下的运行特性称
M B M max sin(e 120)
MB 与MA 相距120°电度角。这是一条与A相特性完全相同, 但相位上相差120°(电度角)的特性。当A、B同时通电时,合 成矩角特性应为二者之叠加,即
M AB M A M B M max sin(e 60)
可见MAB是一条幅值与单相通电时相同,相移60°电度角(θt/6) 的正弦曲线,如图3中曲线MAB所示。
1.3.4 连续运行特性
步进电机的参数及特性解读

1.步距误差
是指空载时实测的步距角与理论的步距角之差。
它反映了步进电动机角位移的精度。
国产步进电动机的步距误差一般在±10′~±30′范围内,精度较高的步进电动机可达±2′~±5′。
2.最大静转矩
是指步进电动机在某相始终通电而处于静止不动状态时,所能承受的最大外加转矩,亦即所能输出的最大电磁转矩。
它反映了步进电动机的制动能力和低速步进运行时的负载能力。
3.启动矩频特性
是指步进电动机在有外加负载转矩时,不失步地正常启动所能接受的最大阶跃输入脉冲频率(又称启动频率)与负载转矩的对应关系。
4.启动惯频特性
是指步进电动机带动纯惯性负载启动时,启动频率与转动惯量之间的关系。
5.运行矩频特性
是指步进电动机运行时,输出转矩与输入脉冲频率的关系。
选用步进电动机时,应使实际应用的运行频率与负载转矩所对应的运行工作点位于运行矩频特性之下,才能保证步进电动机不失步地正常运行。
6.步进运行和低频振荡
当输入脉冲频率很低时,脉冲周期如大于步进电动机的过渡过程时间,步进电动机就会处于一步一停的运行状态,这种运行状态称为步进运行。
步进电动机都有一较低的固有频率,当步进运行频率或低速运行频率与该固有频率相等或接近时,就会产生共振,使步进电动机振荡不前,这种现象称为低频振荡。
避免低频振荡的现象发生采用的方法:
一种是使运行频率避开固有频率,二是前一方法不允许时,可通过调节步进电动机上的阻尼器来改变固有频率。
7.最大相电压和最大相电流
分别是指步进电动机每相绕组所允许施加的最大电源电压和流过的最大电流。
步进电机的基本特性-静态、动态、暂态转矩特性

步进电机的基本特性:静态、动态、暂态转矩特性步进电机的基本特性包括电机静态特性、连续运动特性(动态特性)、电机启动特性和电机制动特性(暂态特性)。
下面分别作介绍:静态转矩特性步进电机的线圈通直流电时,带负载转子的电磁转矩(与负载转矩平衡而产生的恢复电磁转矩称为静态转矩或静止转矩)与转子功率角的关系称为角度-静止转矩特性,这就是电机的静态特性。
如下图所示:因为转子为永磁体,产生的气隙磁密为正弦分布,所以理论上静止转矩曲线为正弦波。
此角度-静止转矩特性为步进电机产生电磁转矩能力的重要指标,最大转矩越大越好,转矩波形越接近正弦越好。
实际上磁极下存在齿槽转矩,使合成转矩发生畸变,如两相电机的齿槽转矩为静止转矩角度周期的4倍谐波,加在正弦的静止转矩上,则上图所示的转矩为:TL=TMsin[(θL/θM)π/2]其中TL与TM各表示负载转矩和最大静止转矩(或称把持转矩),相对应的功率角为θL和θM,此位移角的变化决定了步进电机位置精度。
根据上式得到:θL=(2θM/π)arcsin(TL/TM)PM型永磁步进电机和HB混合式步进电机的步距角θs在前面的课程中讲过即:θs=180°/PNr,角度改为机械角度(弧度),则变成下式:θs=π/(2Nr)上式Nr为转子齿数或极对数,所以两相电机θM=θs。
负载转矩为电磁转矩的负载(如弹簧力或重物的提升力等),电机如要正反向运动,会产生2θL的角度偏差,要提高位置精度,θL就要小,因此,依据式θL=(2θM/π)arcsin(TL/TM),应选择最大静止转矩Tm大、步距角θs小的步进电机,即高分辨率电机。
根据式θs=π/(2Nr)可知,要使θs越小,Nr越大越好。
另外,高分辨率的步进电机的转子结构大致分为PM型、R型、HB型三种,其中HB型分辨率最好。
由于PM型定子磁极为爪级结构的关系,定子磁极数的增加受到机械加工的限制。
HB型转子表面无齿,N极与S极在转子表面交替磁化,因此极数即为极对数Nr,同样的,转子磁极Nr的增加也受到充磁机械的限制。
步进电机工作原理特点及应用

步进电机工作原理,特点及应用-步进电机工作原理,特点及应用一、前言步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。
在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。
这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。
使得在速度、位置等控制领域用步进电机来控制变的非常的简单。
虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。
它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。
因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。
目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。
仅仅处于一种盲目的仿制阶段。
这就给户在产品选型、使用中造成许多麻烦。
签于上述情况,我们决定以广泛的感应子式步进电机为例。
叙述其基本工作原理。
望能对广大用户在选型、使用、及整机改进时有所帮助。
二、感应子式步进电机工作原理(一)反应式步进电机原理由于反应式步进电机工作原理比较简单。
下面先叙述三相反应式步进电机原理。
1、结构:电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。
0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图:2、旋转:如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。
由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。
而方向由导电顺序决定。
不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。
3.2步进电动机的运行特性与使用(精)

3:单步运行特性
单步运行:加一个控制脉冲改变一次通电状态,这个工作状态 称为单步运行。
运行区域:包括静稳定区和动稳定区(见P102 图3.18) 单步运行特性:转子空间转角随时间做减幅振荡衰减运动(见 P103 图3.19)
4:连续脉冲运行特性
(1)极低频条件下运行 T>tb 控制脉冲周期T大于转子单步运行振荡衰减时间tb,当第二个 脉冲到来之前,第一个脉冲使得转子运行已经结束。电机处 于欠阻尼状态,产生振荡,不会失步和越步。见图3.20
(3)脉冲频率f>4f0条件下运行
转子的运行特点:在第一个脉冲作用下,转子产生的振荡还 没达到最大振幅,第二个脉冲已经到来,改变通电状态。见 图3.22。电机往往会超出稳定区而失步。
5:脉冲信号的频率对电机运行的影响
当脉冲信号频率很低时,控制脉冲以 矩形波输入,电流波形比较接近于理 想的矩形波; 随着脉冲信号频率增高,由于电动机 绕组中的电感有阻止电流变化的作用, 因此电流波形发生畸变,频率越高, 畸变越严重。如图所示, 如果脉冲频率过高,电流还来不及 上升到稳定值I 就开始下降,于是, 电流的幅值降低(由I下降到I’),因而 产生的转矩减小,致使带负载的能力 下降。故频率过高会使步进电动机启 动不了或运行时失步而停下。因此, 对脉冲信号频率是有限制的。
2:使用步进电动机时应注意的几个问题 (1)驱动电源的优劣对步进电动机控制系统的运行影响极大, 使用时要特别注意,需根据运行要求,尽量采用先进的驱动电 源,以满足步进电动机的运行性能。 (2)若所带负载转动惯量较大,则应在低频下启动,然后再 上升到工作频率,停车时也应从工作频率下降到适当频率再停 车。 (3)在工作过程中,应尽量避免由于负载突变而引起误差。 (4)若在工作中发生失步现象,首先,应检查负载是否过大, 电源电压是否正常,再检查驱动电源输出波形是否正常,在处 理问题时不应随意变换组件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dWm 1 2 dL 1 Zr 2 d 2 T= = I = (WI ) = (WI ) d q sin ( Zr ) d 2 d 2 d 4
(
)
= Tmax sin ( Zr ) = Tmax sin q
Z r (WI ) ( d q ) = 4
2
Tmax
转子振荡过程:
以上分析时认为,切换控制绕组时,转子单调地趋向新的平 衡位置,但实际上要经过一个衰减的振荡过程。
为减小振荡幅度和时间,可 增加阻尼:
•机械阻尼:增加电机转子的 干摩擦阻力或增加粘性阻力。 缺点:增大了惯性,快速性 能变坏,体积增大。 •电气阻尼:多相激磁阻尼、 延迟断开阻尼。优点:方法 简单,效果好。
J d 2 qe qe = 0 2 Z rTmax dt
解为:
qe = qe 0 cos 0t
Z rTmax 0 = J
1 Z rTmax f0 = 2p J
2. 连续脉冲运行
极低频--连续步进运行
脉冲频率很低时的低频共振 频率介于极低频与高频 之间,此时脉冲间隔较长,电 动机起动和运行一般不会有问 题。但是,如果等于或接近于 步进电动机的振荡频率时,电 动机就会出现低频共振。 A相通电,OA—d—OB—e— OB—d,此时第二个脉冲到来, 通电绕组由B相换为C相,工 作点由d移到f,由于转矩为负, 转子返向转动向O’C移动。
定子
转子
q=0, T=0;
q>0, T<0 ;
q<0, T>0;
q=p, T=0
当只有一相绕组通电时,储存在电机气 隙中的磁场能量为
1 Wm = LI 2 2
dWm T= d
q = Zr
磁导变化曲线
1 1 = ( d q ) ( d q )cos q 2 2
W L= = W 2 I
Tmax = K
Z r (WI ) 2 ( d q ) 4
最大静转矩特性
(6) 矩角特性族
A T B C A
OA
OB
OC
2p qse = 3
q
三拍时的矩角特性族
六拍时的矩角特性族
二、动态特性
1. 单脉冲运行
T
C
-p a o0 o1
p
b
qse
qr
静态稳定区
q
当加上一个控制脉冲信 号,矩角特性将转移到 矩角特性族中的下一条 矩角特性曲线,转子将 转到新的稳定平衡位置 o1。在改变通电状态时, 只有当转子起始位置位 于ab之间才能使它向o1 点运动。因此称区间ab 为电动机空载时的动态 稳定区。
由此可知,步进电动机能带的最大负载转矩要比最大静转矩 Tmax小。只有当负载转矩小于起动转矩(最大负载转矩)Tst,才 能保证电动机进行正常的步进运动。 若矩角特性为幅值相等的正弦波时,可得:
p q se q p = Tmax cos se = Tmax cos 2 2 mC 当C=1时,m 最小为3;m越大,起动转矩越大;C越大,起 动转矩越大。 Tst = Tmax sin
起动频率和起动特性 fst 是指一定负载转矩下能够不失步地起动的脉冲最高频率, 它的大小与电动机本身参数、负载转矩及转动惯量的大小, 以及电源条件等因素有关。它是步进电动机的一项重要技术 指标。
fst=f(TL) fst=f(J)
起动矩频特性 起动惯频特性
连续运行频率与运行矩频特性 步进电动机带一定负载正常起动后,连续缓慢地升高脉 冲频率,直到不丢步运行的最高频率,称为运行频率。
当负载转矩为零,且不计阻尼作用时,用外力使转子偏离稳 定平衡位置一个小角度,然后释放,则转子将在电磁转矩作 用下向稳定位置运动,形成一个自由振荡,其运动方程为:
d J =T dt
d 2q J 2 = Tmax sin qe dt
qe = Z r q
J d 2 qe sin qe = 0 sin qe qe 2 Z rTmax dt
最大负载转矩(又称起动转矩):
T
o"0
Tst TL1
-p o'0 o0 o'1 o1
-p
T o"1 TL2 Tst
p q
o0
o1
p q
TL1<Tst
TL2>Tst
因新的矩角特性曲线上对应点的电磁 转矩大于负载转矩,使转子加速并向 q增大的方向运动,最终到达新的稳 定平衡点o’1.
新矩角特性上对应点的转矩小于 负载转矩,转子不能到达新的稳 定平衡点o”1,而是向q减小的方 向运动,因此不能作步进运动。
低频共振现象
脉冲频率很高时的连续运行 当控制脉冲的频率很高时, 脉冲间隔的时间很短,电机转 子尚未到达第一次振荡的幅值, 甚至还没有到达新的稳定平衡 位置,下一个脉冲就到来。此 时电机的运行已由步进变成了 连续平滑的转动,转速也比较 稳定。 当频率太高时,也会产生 失步,甚至还会产生高频振荡。
连续运行状态
动态稳定区
动态稳定区:(-p+qse)<q<(p+qse) a点与o0点之间的夹角qr称为稳定裕度(或裕量角)。裕量角越 大,电动机运行越稳定。
2p p q r = p q se = p Zr = (mC 2) mZ r C mC
由上式可见,C=1时,反应式步进电动机的相数最少为3。 电动机的相数越多,步距角越小,相应的稳定裕度越大, 运行的稳定性也越好。
* 反应式步进电动机运行特性 一、静态特性
静态运行是指通电状态不变,电机处于稳定状 态时的特性。
静转矩 静特性 矩角特性
静态稳定区
需要清楚的几个名称: (1)初始稳定平衡位置:指步进电动机在空载情况下,控制
绕组中通以直流电流时,转子的最后稳定位置; (2)失调角q:指步进电动机转子偏离初始平衡位置的电角度。 在反应式步进电动机中,转子一个齿距所对应的度数为2p电 弧度或360o电角度; (3)矩角特性:在失调角的关系,即T=f(q)
步进电动机的矩角特性
(4)静态稳态区:在空载时,稳定平衡位 置对应于q=0处,而q=180度则为不 稳定平衡位置。在静态情况下,如受 外力矩的作用使转子偏离稳定平衡位 置,但没有超出相邻的不稳定平衡点, 则当外力矩除去以后,电动机转子在 静态转矩作用下仍能回到原来的稳定 平衡点,所以二个不稳定平衡点之间 的区域构成静态稳定区。 (5)最大静转矩:Tmax=f(I)