2019-2020年八年级 数学 参考答案
2019-2020年十堰市丹江口市八年级上册期末数学试题(有答案)-精选

湖北省十堰市丹江口市八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)下列图形是四种运动品牌的商标,其中是轴对称图形的是()A.B.C.D.2.(3分)如果分式的值为0,则的值是()A.1 B.0 C.﹣1 D.±13.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.4.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.m(﹣y)=m﹣my B.2+2+1=(+2)+1C.a2+1=a(a+) D.152﹣3=3(5﹣1)5.(3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a66.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°7.(3分)下列分式与分式相等的是()A.B.C.D.﹣8.(3分)如图,平行四边形ABCD中,BE平分∠ABC交AD于E点,已知AB=5,AD=6,则DE长为()A.1 B.1.5 C.2 D.2.59.(3分)关于的分式方程+3=无解,m的值为()A.7 B.﹣7 C.1 D.﹣110.(3分)如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC 于D,OH⊥BC于H,若∠BAC=60°,OH=3cm,OA长为()cm.A.6 B.5 C.4 D.3二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.12.(3分)计算:﹣= .13.(3分)若2+(m﹣3)+16是完全平方式,则m= .14.(3分)如图,△ACD与△BCE中,AC=BC,AD=BE,CD=CE,若∠ACE=80°,∠BCD=160°,AD与BE相交于P点,则∠ACB的度数为,∠APB的度数为.15.(3分)如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为.16.(3分)如图,两个正方形的边长分别为a 和b ,如果a ﹣b=﹣,ab=2,那么阴影部分的面积是 .三、解答题:共9小题,共72分.17.(8分)(1)计算:(﹣)﹣(+);(2)因式分解:2﹣3﹣18.18.(7分)先化简,再求值:(﹣)÷,其中=2. 19.(7分)如图,AD ∥BC ,AD=CB ,AE=CF ,求证:BE ∥DF .20.(6分)如图,已知A (﹣2,4),B (4,2),C (2,﹣1)(1)作△ABC 关于轴的对称图形△A 1B 1C 1,写出点C 关于轴的对称点C 1的坐标;(2)P 为轴上一点,请在图中画出使△PAB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).21.(7分)观察下列各式:①=2,②=3;③=4,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.22.(8分)(1)已知a﹣b=3,b+c=﹣5,求代数式ac﹣bc+a2﹣ab的值;(2)若a=(2+),b=(2﹣),求a2b+ab2的值.23.(8分)如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE ⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.24.(9分)为改善农村交通条件,促进农业发展,某镇决定对一段公路进行改造,经调查得知,单独完成这项工程乙工程队比甲工程队多一半时间;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求两工程队单独完成这项工程分别需多少天?(2)甲工程队施工一天,需付工程款1.8万元,乙工程队施工一天需付工程款1万元,若该工程计划在50天内完成,在不超过计划天数的前提下,怎样施工最省钱?25.(12分)如图①,已知A(,0)在负半轴上,B(0,y)在y正半轴上,且、y满足+y2﹣2my+m2=0,m>0.(1)判断△AOB的形状;(2)如图②过OA上一点作CD⊥AB于C点,E是BD的中点,连接CE、OE,试判断CE 与OE的数量关系与位置关系,并说明理由;(提示:可延长OE至F,使OE=EF,连接CF、DF、OC)(3)将(2)中的△ACD绕A旋转至D落在AB上(如图③),其它条件不变,(2)中结论是否成立?请证明你的结论.湖北省十堰市丹江口市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)下列图形是四种运动品牌的商标,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如果分式的值为0,则的值是()A.1 B.0 C.﹣1 D.±1【解答】解:由分式的值为0,得||﹣1=0且2+2≠0.解得=1,故选:A.3.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.【解答】解:A、被开方数含开得尽的因数,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.4.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.m(﹣y)=m﹣my B.2+2+1=(+2)+1C.a2+1=a(a+) D.152﹣3=3(5﹣1)【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.5.(3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a6【解答】解:A、原式不能合并,故A错误;B、原式=a2÷a=a,故B正确;C、原式=﹣a3•a2=﹣a5,故C错误;D、原式=8a6,故D错误.故选:B.6.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.7.(3分)下列分式与分式相等的是()A.B.C.D.﹣【解答】解:(A)已是最简分式,故A与不相等;(B)原式=,故B与相等;(C)已是最简分式,故C与不相等;(D)原式=﹣,故D与不相等;故选(B)8.(3分)如图,平行四边形ABCD中,BE平分∠ABC交AD于E点,已知AB=5,AD=6,则DE长为()A.1 B.1.5 C.2 D.2.5【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=5,∴DE=AD﹣AE=6﹣5=1;故选:A.9.(3分)关于的分式方程+3=无解,m的值为()A.7 B.﹣7 C.1 D.﹣1【解答】解:两边都乘以(﹣1),得7+3(﹣1)=m,m=3+4,分式方程的增根是=1,将=1代入,得m=3×1+4=7.故选:A.10.(3分)如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC 于D,OH⊥BC于H,若∠BAC=60°,OH=3cm,OA长为()cm.A.6 B.5 C.4 D.3【解答】解:作OE⊥AB交AB于E,∵OB平分∠ABC,OH⊥BC,∴OE=OH=3cm,∵∠ABC,∠ACB的角平分线交于点O,∴AO平分∠BAC,∵∠BAC=60°,∴∠BAO=30°,∴AO=2OE=6cm,故选A.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.12.(3分)计算:﹣= 3 .【解答】解:原式===3,故答案为:3;13.(3分)若2+(m﹣3)+16是完全平方式,则m= 11或﹣5 .【解答】解:∵2+(m﹣3)+16是完全平方式,∴m﹣3=±8,解得:m=11或m=﹣5,故答案为:11或﹣514.(3分)如图,△ACD与△BCE中,AC=BC,AD=BE,CD=CE,若∠ACE=80°,∠BCD=160°,AD与BE相交于P点,则∠ACB的度数为40°,∠APB的度数为40°.【解答】解:(1)在△ACD和△BCE中∴△ACD≌△BCE(SSS),∴∠ACD=∠BCE,∠A=∠B,∴∠BCA+∠ACE=∠ACE+∠ECD,∴∠ACB=∠ECD=(∠BCD﹣∠ACE)=×(160°﹣80°)=40°;(2)∵∠B+∠ACB=∠A+∠APB,∴∠APB=∠ACB=40°,∴∠BPD=180°﹣40°=140°,∴∠APB=180°﹣140°=40°,故答案为:40°,40°.15.(3分)如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为(6,6).【解答】解:如图,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCE在△ACE和△BCF中,,∴△ACE≌△BCF,∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),故答案为:(6,6);16.(3分)如图,两个正方形的边长分别为a和b,如果a﹣b=﹣,ab=2,那么阴影部分的面积是4﹣.【解答】解:∵a+b=17,ab=60,∴S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF=a2+b2﹣a2﹣(a+b)•b=a2+b2﹣a2﹣ab﹣b2=a2+b2﹣ab=(a2+b2﹣ab)=[(a﹣b)2+ab]=×[(﹣)2+2]=×[6﹣4+2+2]=4﹣.故答案为:4﹣.三、解答题:共9小题,共72分.17.(8分)(1)计算:(﹣)﹣(+);(2)因式分解:2﹣3﹣18.【解答】解:(1)原式=2﹣﹣2﹣=﹣3;(2)原式=(+3)(﹣6).18.(7分)先化简,再求值:(﹣)÷,其中=2.【解答】解:原式=•=当=2时,原式=.19.(7分)如图,AD∥BC,AD=CB,AE=CF,求证:BE∥DF.【解答】19.证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AF=AE+EF=CF+EF=CE,在△ADF 和△CBE 中,∴△ADF ≌△CBE ,∴∠AFD=∠CEB ,∴BE ∥DF .20.(6分)如图,已知A (﹣2,4),B (4,2),C (2,﹣1)(1)作△ABC 关于轴的对称图形△A 1B 1C 1,写出点C 关于轴的对称点C 1的坐标;(2)P 为轴上一点,请在图中画出使△PAB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).【解答】解:(1)如图1所示:∵点C 与点C 1关于轴对称,∴C 1(2,1).(2)如图2所示:根据图形可知点P 的坐标为(2,0).21.(7分)观察下列各式:①=2,②=3;③=4,…(1)请观察规律,并写出第④个等式: =5 ;(2)请用含n (n ≥1)的式子写出你猜想的规律:=(n+1) ; (3)请证明(2)中的结论.【解答】解:(1)=5;(2)=(n+1);(3)====(n+1).故答案为:(1)=5;(2))=(n+1).22.(8分)(1)已知a﹣b=3,b+c=﹣5,求代数式ac﹣bc+a2﹣ab的值;(2)若a=(2+),b=(2﹣),求a2b+ab2的值.【解答】解:(1)由a﹣b=3,b+c=﹣5,得a+c=﹣2,ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b),=(a﹣b)(c+a)=3×(﹣2)=﹣6;(2)由a=2+,b=2﹣得,ab=(2+)×(2﹣)=6,a+b=4a 2b+ab2=ab(a+b)=6×4=24.23.(8分)如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE ⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.【解答】(1)证明:∵BE⊥AD,∴∠AFE=∠AFB=90°,又∵AD平分∠BAC,∴∠EAF=∠BAF,又∵在△AEF和△ABF中∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°∴∠AEF=∠ABF,∴AE=AB,∴△ABE为等腰三角形;(2)解:连接DE,∵AE=AB,AD平分∠BAC,∴AD垂直平分BE,∴BD=ED,∴∠DEF=∠DBF,∵∠AEF=∠ABF,∴∠AED=∠ABD,又∵∠ABC=2∠C,∴∠AED=2∠C,又∵△CED中,∠AED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴CE=BD.∴BD=CE=AC﹣AE=AC﹣AB=11﹣6=5.24.(9分)为改善农村交通条件,促进农业发展,某镇决定对一段公路进行改造,经调查得知,单独完成这项工程乙工程队比甲工程队多一半时间;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求两工程队单独完成这项工程分别需多少天?(2)甲工程队施工一天,需付工程款1.8万元,乙工程队施工一天需付工程款1万元,若该工程计划在50天内完成,在不超过计划天数的前提下,怎样施工最省钱?【解答】解:(1)设甲、乙工程队单独完成这项工程分别需要天,1.5天,根据题意得:+20(+)=1,解得:=40,经检验,=40是原方程的解,乙工程队单独完成这项工程需要1.5=1.5×40=60(天).答:甲、乙两工程队单独完成这项工程分别需要40天和60天;(2)设两工程队合做完成这项工程所需的天数为y 天,根据题意得:(+)y=1, 解得:y=24.①甲单独完成需付工程款为40×1.8=72(万元).②乙单独完成超过计划天数,不符合题意,③甲、乙合作,甲做天,乙做50天,需付工程款1.8×+50×1=62(万元).答:在不超过计划天数的前提下,由甲、乙合作,甲做天,乙做50天最省钱.25.(12分)如图①,已知A (,0)在负半轴上,B (0,y )在y 正半轴上,且、y 满足+y 2﹣2my+m 2=0,m >0.(1)判断△AOB 的形状; (2)如图②过OA 上一点作CD ⊥AB 于C 点,E 是BD 的中点,连接CE 、OE ,试判断CE 与OE 的数量关系与位置关系,并说明理由;(提示:可延长OE 至F ,使OE=EF ,连接CF 、DF 、OC )(3)将(2)中的△ACD 绕A 旋转至D 落在AB 上(如图③),其它条件不变,(2)中结论是否成立?请证明你的结论.【解答】解:(1)△AOB是等腰直角三角形,理由如下:∵A(,0)在负半轴上,B(0,y)在y正半轴上,且、y满足+y2﹣2my+m2=0,m>0,∴+(y﹣m)2=0,<0,y>0,又∵+m≥0,y﹣m≥0,∴+m=0,y﹣m=0,∴=﹣m,y=m,∴OA=OB,又∵∠AOB=90°,∴△AOB是等腰直角三角形;(2)CE=OE,CE⊥OE.理由如下:延长OE至F,使OE=EF,连接CF、DF、OC,如图②所示:∵E是BD的中点,∴DE=BE,在△FDE和△OBE中,,∴△DEF≌△BEO(SAS),∴BO=DF,∠FDB=∠OBD,∴FD∥OB,∴FD⊥AO,∵∠BAO=45°,CD⊥AB∴∠CDA=45°=∠CAO=∠CDF,∴CA=CD,∵OA=OB,∴OA=FD,在△OCA和△FCD中,∴△OCA≌△FCD(SAS),∴OC=OF,∠OCA=∠FCD∴∠OCF=∠DCA=90°,∴∠COF=45°,又∵OE=EF,∴∠OCE=∠OCF=45°,∴∠COE=∠ECO=45°,∠CEO=90°,∴CE=OE,CE⊥OE;(3)(2)中的结论仍然成立.理由如下:延长OE至F,使OE=EF,连接CF、DF、OC,如图③所示:同(1)得:△DEF≌△BEO,∴BO=DF,∠FDB=∠OBD∴OA=FD,FD∥OB,∴FD⊥AO,∵∠BAO=45°,CD⊥AC,∠CDA=45°=∠CAD,∴∠CAO=∠DCA=90°=∠FDC,CA=CD,在△OCA和△FCD中,,∴△OCA≌△FCD(SAS),∴OC=OF,∠OCA=∠FCD,∴∠OCF=∠DCA=90°,∴∠COF=45°,又∵OE=EF,∴∠OCE=∠OCF=45°∴∠COE=∠ECO=45°,∠CEO=90°,∴CE=OE,CE⊥OE;。
浙教版2019-2020年八年级数学上学期: 第2章 特殊三角形(A卷)含解析版答案

第2章特殊三角形单元测试卷(A卷基础篇)【浙教版】学校:___________姓名:___________班级:___________考号:___________满分:120分考试时间:100分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,每小题3分,共30分)1.(3分)(2019春•商河县期末)下列图形中不是轴对称图形的是()A.B.C.D.2.(3分)(2014•盐城)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°3. (3分)(2019春•甘井子区期末)已知直角三角形的两条直角边长分别为1和4,则斜边长为()A.3 B.C.D.54.(3分)(2019春•长沙县期末)如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.B.﹣C.D.﹣5.(3分)(2019春•即墨区期末)等腰三角形的周长为11m,其中一边长为2cm,则该等腰三角形的腰长为()A.4.5cm B.2cm C.2cm或4.5cm D.5.5cm6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+27. (3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm28.(3分)(2019春•南岸区校级期中)如图,在△ABC中,AB=AC=BD,∠DAC=∠DCA,则∠DAC=()A.30°B.36°C.40°D.45°9.(3分)(2019春•兰山区期中)如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若S1,S2,S3,S4和S分别代表相应的正方形的面积,且S1=4,S2=9,S3=8,S4=10,则S等于()A.25 B.31 C.32 D.4010.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.C.D.第Ⅱ卷(非选择题)二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019春•郁南县期末)如图的直角三角形中未知边的长x=________.12.(4分)如图,在△ABC中,AB=AC,AD=BD=BC,那么∠A= 度.13.(4分)如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠,∠C=∠.14.(4分)(2019春•萧山区月考)已知△ABC为等腰三角形,它的一个外角为100°,则∠B的度数是.15.(4分)(2019春•南岗区校级月考)如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为.16.(4分)(2018秋•抚宁区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三.解答题(共7小题,共66分)17.(6分)(2018秋•北仑区期末)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.18.(8分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD是否垂直?为什么?19.(8分)(2019春•铜仁市期末)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.20.(10分)(2019春•海淀区校级月考)在△ABC中,AB=AC,M是边BC的中点,BD平分∠ABC,交AM于E,交AC于D,若∠AED=64°,求∠BAC的度数的大小21.(10分)(2019•南岸区校级模拟)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,22.(12分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.23.(12分)如图,等腰直角△ACB,∠ACB=90°,CA=CB.操作:如图1,过点A任作一条直线(不经过点C和点B)交BC所在直线于点D,过点B作BF⊥AD交AD 于点F,交AC所在直线于点E,连接DE.(1)猜想△CDE的形状;(2)请你利用图2、图3作与上述位置不同的直线,然后按上述方法操作.画出相应的图形;(3)在经历(2)之后,若你认为(1)中的结论是成立的,请你利用图2加以证明;若你认为不成立,请你利用其中一图说明理由.第2章特殊三角形单元测试卷(A卷基础篇)【浙教版】参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2019春•商河县期末)下列图形中不是轴对称图形的是()A.B.C.D.【思路点拨】根据轴对称图形的定义判断即可.【答案】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意;故选:A.【点睛】本题考查轴对称图形的定义,解题的关键是理解轴对称图形的性质,属于中考常考题型.2.(3分)(2014•盐城)若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【思路点拨】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【答案】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.【点睛】此题考查学生对等腰三角形的性质的理解和掌握,解答此题的关键是知道等腰三角形的两个底角相等.3. (3分)(2019春•甘井子区期末)已知直角三角形的两条直角边长分别为1和4,则斜边长为()A.3 B.C.D.5【思路点拨】根据在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方进行计算即可.【答案】解:斜边长为:=,故选:C.【点睛】此题主要考查了勾股定理,关键是掌握勾股定理内容.4.(3分)(2019春•长沙县期末)如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.B.﹣C.D.﹣【思路点拨】首先根据勾股定理计算出AC的长,进而得到AD的长,再根据A点表示0,可得D点表示的数.【答案】解:AC===,则AD=,∵A点表示0,∴D点表示的数为:﹣,故选:B.【点睛】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.5.(3分)(2019春•即墨区期末)等腰三角形的周长为11m,其中一边长为2cm,则该等腰三角形的腰长为()A.4.5cm B.2cm C.2cm或4.5cm D.5.5cm【思路点拨】根据等腰三角形的性质分为两种情况解答:当边长2cm为腰或者2cm底边时.【答案】解:分情况考虑:当2cm是腰时,则底边长是11﹣2×2=7cm,此时2cm,2cm,7cm不能组成三角形,应舍去;当2cm是底边时,腰长是(11﹣2)×=4.5cm,2cm,4.5cm,4.5cm能够组成三角形.此时腰长是4.5cm.故选:A.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.6.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A.B.2 C.3 D.+2【思路点拨】根据角平分线的性质即可求得CD的长,然后在直角△BDE中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.【答案】解:∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴CD=DE=1,又∵直角△BDE中,∠B=30°,∴BD=2DE=2,∴BC=CD+BD=1+2=3.故选:C.【点睛】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.7. (3分)已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【思路点拨】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【答案】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.【点睛】这里不要去分别求a,b的值,熟练运用完全平方公式的变形和勾股定理.8.(3分)(2019春•南岸区校级期中)如图,在△ABC中,AB=AC=BD,∠DAC=∠DCA,则∠DAC=()A.30°B.36°C.40°D.45°【思路点拨】设∠DAC=x°,根据∠DAC=∠DCA得到∠DAC=∠DCA=x°,然后利用等腰三角形的性质表示出相关的角的度数,利用三角形内角和定理求得x即可求得答案.【答案】解:设∠DAC=x°,∵∠DAC=∠DCA,∴∠DAC=∠DCA=x°,∴∠ADB=2x°,∵AB=AC=BD,∴∠B=∠C=x°,∠BAD=∠BDA=2x°,∴x+2x+2x=180,∴x=36°,故选:B.【点睛】考查了等腰三角形的性质,了解等腰三角形中等边对等角是解答本题的关键,难度不大.9.(3分)(2019春•兰山区期中)如图,其中所有三角形都是直角三角形,所有四边形都是正方形.若S1,S2,S3,S4和S分别代表相应的正方形的面积,且S1=4,S2=9,S3=8,S4=10,则S等于()A.25 B.31 C.32 D.40【思路点拨】如图,根据勾股定理分别求出AB2、AC2,进而得到BC2,即可解决问题.【答案】解:如图,由题意得:AB2=S1+S2=13,AC2=S3+S4=18,∴BC2=AB2+AC2=31,∴S=BC2=31.故选:B.【点睛】主要考查了正方形的性质、勾股定理等几何知识点及其应用问题;解题的关键是牢固掌握勾股定理等几何知识点.10.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.C.D.【思路点拨】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【答案】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.【点睛】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.二.填空题(共6小题,每小题4分,共24分)11.(4分)(2019春•郁南县期末)如图的直角三角形中未知边的长x=.【思路点拨】根据勾股定理计算即可.【答案】解:由勾股定理得,x==,故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.12.(4分)如图,在△ABC中,AB=AC,AD=BD=BC,那么∠A= 36 度.【思路点拨】设∠A=x,利用等腰三角形的性质和三角形内角和定理即可求解.【答案】解:设∠A=x.∵AD=BD,∴∠ABD=∠A=x;∵BD=BC,∴∠BCD=∠BDC=∠ABD+∠A=2x;∵AB=AC,∴∠ABC=∠BCD=2x,∴∠DBC=x;∵x+2x+2x=180°,∴x=36°,∴∠A=36°.故答案为:36.【点睛】本题考查等腰三角形的性质;利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.13.(4分)如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,则∠B=∠DAC,∠C=∠BAD.【思路点拨】先根据直角三角形两锐角互余得出∠B+∠C=90°,再由三角形的高的定义得出∠ADB=∠ADC=90°,那么根据直角三角形两锐角互余得出∠DAC+∠C=90°,∠B+∠BAD=90°,然后根据同角的余角相等即可得到∠B=∠DAC,∠C=∠BAD.【答案】解:∵在△ABC中,∠BAC=90°,∴∠B+∠C=90°,∵AD⊥BC于点D,∴∠ADB=∠ADC=90°,∴∠DAC+∠C=90°,∠B+∠BAD=90°,∴∠B=∠DAC,∠C=∠BAD.故答案为DAC,BAD.【点睛】本题考查了直角三角形的性质,余角的性质,三角形的高,掌握直角三角形中,两个锐角互余是解题的关键.14.(4分)(2019春•萧山区月考)已知△ABC为等腰三角形,它的一个外角为100°,则∠B的度数是20°或50°或80°.【思路点拨】没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【答案】解:∵一个外角为100°,∴与其相邻的内角为80°,如果80°为顶角,当∠B为顶角,∴∠B=80°,当∠B为底角,∴∠B=50°,如果80°为底角,当∠B为顶角,∴∠B=20°,当∠B为底角,∴∠B=80°,综上所述,∠B的度数是20°或50°或80°,故答案为:20°或50°或80°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.15.(4分)(2019春•南岗区校级月考)如图,在四边形ABCD中,∠B=90°,AB=2,BC=CD=1,AD=,则四边形的面积为1+.【思路点拨】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理得到△ACD为直角三角形,根据三角形的面积公式计算,得到答案.【答案】解:连接AC,在Rt△ABC中,AC==,AC2+CD2=5+1=6,AD2=6,则AC2+CD2=AD2,∴△ACD为直角三角形,∴四边形ABCD的面积=×1×2+×1×=1+,故答案为:1+.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.16.(4分)(2018秋•抚宁区期末)如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6 厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【思路点拨】首先求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.【答案】解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【点睛】本题考查了等腰三角形的性质、全等三角形的判定的应用;熟练掌握等腰三角形的性质,根据题意得出方程是解决问题的关键.三.解答题(共7小题,共66分)17.(6分)(2018秋•北仑区期末)如图是由5个边长为单位1的小正方形拼成,请你在图上添加一个小正方形,使添加后的图形是一个轴对称图形,要求画出三种.【思路点拨】根据轴对称图形的概念求解可得.【答案】解:如图所示:【点睛】本题主要考查作图﹣轴对称变换,解题的关键是掌握轴对称图形的概念.18.(8分)已知AB=AC,BD=DC,AE平分∠FAB,问:AE与AD是否垂直?为什么?【思路点拨】根据等腰三角形的性质可知,∠1=∠2,∠B=∠C,由三角形外角平分线的性质可知∠3=∠C,AE∥BC,由平行线的性质可知AE⊥AD.【答案】证明:∵AB=AC,CD=BD,∴∠1=∠2,∠B=∠C,AD⊥BC,又∵AE是△ABC的外角平分线,∴∠3=∠4=(∠B+∠C)=∠C,∴AE∥BC,∠DAE+∠ADB=180°,又∵AD⊥BC,∴∠DAE=∠ADC=90°.∴AE⊥AD.【点睛】本题考查的是角平分线、等腰三角形及平行线的性质;由已知证得AE∥BC,AD⊥BC是解答本题的关键.19.(8分)(2019春•铜仁市期末)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.【思路点拨】根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【答案】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=90°,∴∠B=90°.∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)【点睛】本题考查了直角三角形全等的判定及性质;主要利用了直角三角形全等的判定方法HL,也利用了等腰三角形的性质:等角对等边,做题时要综合利用这些知识.20.(10分)(2019春•海淀区校级月考)在△ABC中,AB=AC,M是边BC的中点,BD平分∠ABC,交AM于E,交AC于D,若∠AED=64°,求∠BAC的度数的大小【思路点拨】根据等腰三角形的性质得到∠ABM=90°,∠BAM=∠CAM,根据角平分线的定义得到∠ABC =2∠EBM=52°,于是得到结论.【答案】解:∵AB=AC,M是边BC的中点,∴∠AMB=90°,∠BAM=∠CAM,∵∠BEM=∠AED=64°,∴∠EBM=26°,∵BD平分∠ABC,∴∠ABC=2∠EBM=52°,∴∠BAM=90°﹣∠ABM=38°,∴∠BAC=2∠BAM=76°.【点睛】本题考查了等腰三角形的性质,角平分线定义,正确的识别图形是解题的关键.21.(10分)(2019•南岸区校级模拟)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,【思路点拨】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【答案】解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.22.(12分)如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.(1)求证:AD=BE;(2)求AD的长.【思路点拨】(1)根据等边三角形的三条边都相等可得AB=CA,每一个角都是60°可得,∠BAE=∠ACD=60°,然后利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CAD=∠ABE,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半求出BP=2PQ,再根据AD=BE=BP+PE代入数据进行计算即可得解.【答案】(1)证明:∵△ABC为等边三角形,∴AB=CA=BC,∠BAE=∠ACD=60°;在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴AD=BE;(2)解:∵△ABE≌△CAD,∴∠CAD=∠ABE,∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,∴∠PBQ=90°﹣60°=30°,∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6,又∵PE=1,∴AD=BE=BP+PE=6+1=7.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半,熟记性质并求出BP=2PQ是解题的关键.23.(12分)如图,等腰直角△ACB,∠ACB=90°,CA=CB.操作:如图1,过点A任作一条直线(不经过点C和点B)交BC所在直线于点D,过点B作BF⊥AD交AD 于点F,交AC所在直线于点E,连接DE.(1)猜想△CDE的形状;(2)请你利用图2、图3作与上述位置不同的直线,然后按上述方法操作.画出相应的图形;(3)在经历(2)之后,若你认为(1)中的结论是成立的,请你利用图2加以证明;若你认为不成立,请你利用其中一图说明理由.【思路点拨】(1)猜想△CDE是等腰直角三角形;(2)据要求画出图形;(3)只要证得△ACD≌△BEC,可得到CD=CE,即可得到结论;【答案】解:(1)由AC=BC,∠ACD=∠BCE,容易猜想到△ACD≌△BEC,那么CD=CE,则△CDE是等腰直角三角形;(2)据要求画出图形如下:(3)结论成立;证明:∵∠ACB=90°,AF⊥BE,∴∠FDB+∠FBD=90°,∠EBC+∠CEB=90°,∴∠FDB=∠CEB;又∵∠FDB=∠ADC,∴∠ADC=∠CEB;∵在三角形ACD和三角形BCE中,∴△ACD≌△BEC;∴CD=CE,∴△CDE是等腰直角三角形.即猜想△CDE是等腰直角三角形结论成立.【点睛】此题主要考查直角三角形全等的判定,要利用已知条件寻找缺少的条件判定三角形全等,解题关键在于证明两腰相等.。
宁波市镇海区2019-2020学年八年级上期末数学试卷(含答案)

浙江省宁波市八年级(上)期末测试数学试卷一、仔细选一选(本题有12个小题,每小题4分,共48分) 1.下列四组线段中,能组成三角形的是( )A .2cm ,3cm ,4cmB .3cm ,4cm ,7cmC .4cm ,6cm ,2cmD .7cm ,10cm ,2cm 2.下列图案是轴对称图形的是( )A .B .C .D .3.下列各式计算正确的是( ) A .B .C .D .4.若x >y ,则下列式子中错误的是( )A .x ﹣3>y ﹣3B .>C .x+3>y+3D .﹣3x >﹣3y5.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点的坐标为( ) A .(3,2) B .(2,﹣3) C .(﹣2,3) D .(﹣2,﹣3)6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+n 图象上的两点,则a 与b 的大小关系是( ) A .a ≤bB .a <bC .a ≥bD .a >b8.直角三角形的两条边长分别是5和12,则斜边上的中线长是( ) A .6B .6.5C .6或 6.5D .6或 2.59.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A.x<﹣1 B.x<3 C.x>﹣1 D.x>310.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为.14.命题“等腰三角形的两个底角相等”的逆命题是.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为 .16.如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为 .17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 个.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016= .三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.浙江省宁波市八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有12个小题,每小题4分,共48分)1.下列四组线段中,能组成三角形的是()A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm【考点】三角形三边关系.【分析】根据三角形的三边关系定理:如果a、b、c是三角形的三边,且同时满足a+b>c,b+c >a,a+c>b,则以a、b、c为边能组成三角形,根据判断即可.【解答】解:A、∵3+2>4,∴2,3,4能组成三角形,故本选项正确;C、∵4+3=7,∴3,4,7不能组成三角形,故本选项错误;D、∵2+4=6,∴2,4,6不能组成三角形,故本选项错误;B、∵7+2<10,∴1,2,3不能组成三角形,故本选项错误;故选A.2.下列图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D图形是轴对称图形,故选:D.3.下列各式计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加减运算对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=6,所以A选项的计算错误;B、5与5不能合并,所以B选项的计算错误;C、原式=8=8,所以C选项的计算正确;D、原式=2,所以D选项的计算错误.故选C.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【考点】一次函数图象上点的坐标特征.【分析】把点M和点N的坐标代入一次函数的解析式,求出a、b的值,比较即可.【解答】解:∵点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,∴a=﹣2+n,b=﹣4+n,∴a﹣b=(﹣2+n)﹣(﹣4+n)=2>0,∴a>b,故选:D.8.直角三角形的两条边长分别是5和12,则斜边上的中线长是()A.6 B.6.5 C.6或6.5 D.6或2.5【考点】勾股定理;直角三角形斜边上的中线.【分析】分①12是直角边时,利用勾股定理列式求出斜边,根据直角三角形斜边上的中线等于斜边的一半解答,②12是斜边,根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:①12是直角边时,斜边==13,第三边上的中线长=×13=6.5,②12是斜边时,第三边上的中线长=12=6,故选:C .9.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A .x <﹣1B .x <3C .x >﹣1D .x >3【考点】一次函数与一元一次不等式.【分析】观察函数图象,写出直线l 1在直线l 2上方所对应的自变量的范围即可. 【解答】解:不等式k 2x >k 1x+b 的解集为x <﹣1. 故选A .10.关于x 的不等式组有四个整数解,则a 的取值范围是( )A .﹣<a ≤﹣ B .﹣≤a <﹣ C .﹣≤a ≤﹣ D .﹣<a <﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x >8; 由(2)得x <2﹣4a ; 其解集为8<x <2﹣4a ,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a <﹣.故选B.11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤【考点】全等三角形的判定与性质;等边三角形的性质.【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③同②得:△ACP≌△BCQ,即可得出结论;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【解答】解:①∵△ABC和△CDE为等边三角形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确;②∠DCP=180°﹣2×60°=60°=∠ECQ,在△CDP和△CEQ中,,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,②正确;③同②得:△ACP≌△BCQ,∴AP=BQ,③正确;④∵DE>QE,且DP=QE,∴DE>DP,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三角形,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确;故选:B.12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.【考点】等边三角形的性质.【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【解答】解:过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为a≥2016 .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得a﹣2016≥0,解得a≥2016,故答案为:a≥2016.14.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB 的距离为 4 .【考点】角平分线的性质.【分析】直接根据角平分线的性质可得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,∴点D到AB的距离为4.故答案为:4.16.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.【考点】轴对称﹣最短路线问题;等边三角形的性质.【分析】作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E 即为所求的点.【解答】解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt △B′DG 中,B′D===.故BE+ED 的最小值为.故答案为:.17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 2 个.【考点】一元一次不等式组的应用.【分析】根据题意可以判断题目中各个结论是否正确,从而可以解答本题. 【解答】解:由题意可得, 《》=1,故①错误;当x=1.4时,《2x 》=《2×1.8》=3,2《x 》=2《1.4》=2,则《2x 》≠2《x 》,故②错误; 当m 为非负整数时,《m+2x 》=m+《2x 》,故③正确;若《2x ﹣1》=5,则4.5≤2x ﹣1<5.5,解得≤x <,故④正确;满足《x 》=x 的非负实数x 的值是x=0,故⑤错误; 由上可得,题目中正确的结论有2个, 故答案为:2.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016=.【考点】一次函数图象上点的坐标特征.【分析】根据图象上点的坐标性质得出点B 1、B 2、B 3、…、B n 、B n+1各点坐标,进而利用相似三角形的判定与性质得出S 1、S 2、S 3、…、S n ,进而得出答案.【解答】解:∵A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,∴B 1的横坐标为:1,纵坐标为:2, ∴B 1(1,2),同理可得:B 2的横坐标为:2,纵坐标为:4, 则B 2(2,4), B 3(3,6)… ∵A 1B 1∥A 2B 2,∴△A 1B 1P 1∽△A 2B 2P 1,∴=,∴△A 1B 1C 1与△A 2B 2C 2对应高的比为1:2,∴A 1B 1边上的高为:,∴S △A1B1P1=××2=,同理可得出:S △A2B2P2=,S △A3B3P3=,∴S n =,==,∴S2016故答案为:.三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.【考点】二次根式的混合运算;零指数幂.【分析】(1)利用完全平方公式和平方差公式计算;(2)先把各二次根式化简为最简二次根式,再利用二次根式的性质和零指数幂的意义化简,然后合并即可.【解答】解:(1)原式=12﹣12+18+4﹣3=31﹣12;(2)原式=2﹣+1+﹣1=.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【考点】作图—应用与设计作图;三角形三边关系.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB,且取AB=4;②以点A为圆心,3为半径画弧;以点B为圆心,2为半径画弧,两弧交于点C;③连接AC、BC.则△ABC即为满足条件的三角形.【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形三线合一的性质和已知条件易证△AEF≌△CEB;(2)由(1)可知AF=BC,BC=2CD,所以AF=2CD,问题得证.【解答】解:(1)证明:∵AD⊥BC,∴∠B+∠BAD=90°.∵CE⊥AB,∴∠B+∠BCE=90°.∴∠EAF=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB;(2)∵△AEF≌△CEB.∴AF=BC.∵AB=AC,AD⊥BC.∴CD=BD,BC=2CD∴AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.【考点】一次函数的应用.【分析】(1)根据已知信息和若经营者的购买资金不少于576万元且不多于600万元,列出不等式组,求解得出进车方案.(2)根据已知列出利润函数式,求最值,选择方案.(3)根据已知通过计算分析得出答案.【解答】解:(1)设A型汽车购进x辆,则B型汽车购进(16﹣x)辆.根据题意得:,解得:6≤x≤8.∵x为整数,∴x取6、7、8.∴有三种购进方案:根据题意得:W=(32﹣30)x+(45﹣42)(16﹣x)W=﹣x+48.∵k=﹣1<0,∴w随x的增大而减小,=﹣6+48=42(万元)∴当x=6时,w有最大值,W最大∴当购进A型车6辆,B型车10辆时,可获得最大利润,最大利润是42万元.(3)设电动汽车行驶的里程为a万公里.当32+0.65a=45时,解得:a=20<30.∴选购太阳能汽车比较合算.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.【考点】勾股定理;坐标与图形性质.【分析】(1)先由A、B两点的坐标求出AB=4,再根据等边三角形的定义得到AC=BC=AB=4,然后根据“m和点”的定义即可求出m=8;(2)设点C为点A,B的“5和点”.根据“m和点”的定义可知点C在坐标轴上,再分两种情况进行讨论:①如果点C在x轴上,设C点坐标为(x,0),根据AC+BC=5列出方程|x+2|+|x ﹣2|=5,解方程求出x的值,即可得到C点坐标;②如果点C在y轴上,设C点坐标为(0,y),根据AC+BC=5列出方程+=5,解方程求出y的值,即可得到C点坐标;(3)由AB=4,可知点A,B的“m和点”的个数情况分三种情况进行讨论:①当m<4时,根据两点之间线段最短可知A,B的“m和点”没有;②当m=4时,x轴上﹣2与2之间的任意一个数所对应的点都是A,B的“m和点”,所以有无数个;③当m>4时,A,B的“m和点”x轴上有2个,y轴上也有2个,一共有4个.【解答】解:(1)∵A(﹣2,0),B(2,0),∴AB=2﹣(﹣2)=4.∵△ABC为等边三角形,∴AC=BC=AB=4,∴AC+BC=4+4=8,即m=8;(2)设点C为点A,B的“5和点”.分两种情况:①如果点C在x轴上,设C点坐标为(x,0).∵AC+BC=5,∴|x+2|+|x﹣2|=5,当x≤﹣2时,﹣(x+2)﹣(x﹣2)=5,解得x=﹣2.5,所以C点坐标为(﹣2.5,0);当﹣2<x≤2时,(x+2)﹣(x﹣2)=5,x无解;当x>2时,(x+2)+(x﹣2)=5,解得x=2.5,所以C点坐标为(2.5,0);②如果点C在y轴上,设C点坐标为(0,y).∵AC+BC=5,∴+=5,∴=2.5,两边平方,得4+y2=6.25,解得y=±1.5.经经验,y=±1.5都是原方程的根,所以C点坐标为(0,1.5),(0,﹣1.5);综上所述,A,B的“5和点”有4个,坐标为(﹣2.5,0),(2.5,0),(0,1.5),(0,﹣1.5);(3)∵AB=4,∴点A,B的“m和点”的个数情况分三种情况:①当m<4时,A,B的“m和点”没有;②当m=4时,A ,B 的“m 和点”有无数个; ③当m >4时,A ,B 的“m 和点”有4个.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示. 方成思考后发现了如图1的部分正确信息:乙先出发1h ;甲出发0.5小时与乙相遇. 请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程S 甲,S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇?【考点】一次函数的应用.【分析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度、所以OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20,根据当20<y <30时,得到20<40t ﹣60<30,或20<﹣20t+80<30,解不等式组即可;(3)得到S 甲=60t ﹣60(),S 乙=20t (0≤t ≤4),画出函数图象即可;(4)确定丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2),根据S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇. 【解答】解:(1)直线BC 的函数解析式为y=kt+b ,把(1.5,0),()代入得:解得:,∴直线BC 的解析式为:y=40t ﹣60; 设直线CD 的函数解析式为y 1=k 1t+b 1,把(),(4,0)代入得:,解得:,∴直线CD 的函数解析式为:y=﹣20t+80.(2)设甲的速度为akm/h ,乙的速度为bkm/h ,根据题意得;,解得:,∴甲的速度为60km/h ,乙的速度为20km/h ,∴OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20, 当20<y <30时,即20<40t ﹣60<30,或20<﹣20t+80<30,解得:或.(3)根据题意得:S 甲=60t ﹣60()S 乙=20t (0≤t ≤4), 所画图象如图2所示:(4)当t=时,,丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2), 如图3,S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇.26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)把P (m ,3)的坐标代入直线l 1上的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线l 2的解析式得出C 的坐标,①根据题意得出AQ=9﹣t ,然后根据S=AQ•|y P |即可求得△APQ 的面积S 与t 的函数关系式;②通过解不等式﹣t+<3,即可求得t >7时,△APQ 的面积小于3;③分三种情况:当PQ=PA 时,则(t ﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2,当AQ=PA 时,则(t ﹣7﹣2)2=(2+1)2+(0﹣3)2,当PQ=AQ 时,则(t ﹣7+1)2+(0﹣3)2=(t ﹣7﹣2)2,即可求得.【解答】解;(1)∵点P (m ,3)为直线l 1上一点, ∴3=﹣m+2,解得m=﹣1, ∴点P 的坐标为(﹣1,3),把点P 的坐标代入y 2=x+b 得,3=×(﹣1)+b , 解得b=;(2)∵b=,∴直线l 2的解析式为y=x+, ∴C 点的坐标为(﹣7,0),①由直线l 1:y 1=﹣x+2可知A (2,0), ∴当Q 在A 、C 之间时,AQ=2+7﹣t=9﹣t ,∴S=AQ•|y P |=×(9﹣t )×3=﹣t ;当Q 在A 的右边时,AQ=t ﹣9,|=×(t﹣9)×3=t﹣;∴S=AQ•|yP即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=PA时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=PA时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.。
2019-2020初中数学八年级下册《二次根式》专项测试(含答案) (124)

B.4
C.8
5.(2 分)若 x<2,化简 (x-2) 2 3-x 的正确结果是( )
A.-1
B.1
C.2x-5
6.(2 分)若 |1 x |1 | x | ,则 (x 1)2 等于( )
A. x 1
B.1 x
7.(2 分) 若 x 3 ,则 x2 的值为( )
A.9
8.(2 分)下列各式计算:正确的是( )
12. 10 13.A 14.B
评卷人 得分
二、填空题
15. 4 3 16.1.61 至 1.71m. 17.2008 18. 2 7 19.60 20. a2 b2 , 1 , (a 1)2 1 , x2
3
21.任何实数
22.(1)× (2)√ (3)√ (4)×
评卷人 得分
三、解答题
23.甲
30.(6 分)物体自由下落时,下落距离 h(m)可用公式 h 5t2 来估计,其中 t(s)表示物体下落 所经过的时间,一个物体从 120 m 的塔顶自由下落,落到地面需多长时间 (精确到 0.1 s)?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.A 2.D 3.A 4.B 5.D 6.B 7.D 8.C 9.B 10.C 11.B
Mass Index)计算公式是 BMI
w h2
,而且男性的 BMI 指数正常范围是 24 至 27,如
果现有一位男生的体重是 70 公斤,身体脂肪水平属正常,那么你能否估计他的身高大约在
哪个范围内?(保留 3 个有效数字)
17.(3 分)当 x=2+ 3时,x2-4x+2009=
.
18.(3 分)在直角坐标系内,点 P(-2,2 6 )到原点的距离为= .
最新2019-2020年度人教版八年级数学上册《全等三角形》单元测试题及答案解析-精品试题

《第12章全等三角形》一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.《第12章全等三角形》参考答案与试题解析一、解答题1.如图,在△ABC中,AB=8,AC=5,AD是△ABC的中线,求AD的取值范围.【考点】全等三角形的判定与性质;三角形三边关系.【分析】延长AD到E,使AD=DE,连结BE,证明△ADC≌△EDB就可以得出BE=AC,根据三角形的三边关系就可以得出结论.【解答】解:延长AD到E,使AD=DE,连结BE.∵AD是△ABC的中线,∴BD=CD.在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=BE.∵AB﹣AE<AE<AB+BE,∴AB﹣AC<2AD<AB+AC.∵AB=8,AC=5,∴1.5<AD<6.5.【点评】本题考查了全等三角形的判定及性质的运用,三角形的中线的性质的运用,三角形三边关系的性质的运用,解答时证明三角形全等是关键.2.如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可延长ED至P,使DP=DE,连接FP,连接CP,将BE转化为PC,EF转化为FP,进而在△PCF中即可得出结论.【解答】答:BE+CF>FP=EF.证明:延长ED至P,使DP=DE,连接FP,CP,∵D是BC的中点,∴BD=CD,在△BDE和△CDP中,∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,(垂直平分线上的点到线段两端点距离相等)在△CFP中,CP+CF=BE+CF>FP=EF.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.3.如图,△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AC上截取AE=AB,连接DE,证明△ABD≌△AED,得到∠B=∠AED,再证明ED=EC 即可.【解答】证明:在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.【点评】本题考查了全等三角形的判定和性质;此题利用了全等三角形中常用辅助线﹣截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.4.已知∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,求证:∠AMB=∠DMC.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】先延长AD至F,使得CF⊥AC,得出∠ABM=∠DAC,再根据AB=AC,CF⊥AC,得出△ABM≌△CAF,从而证出∠BMA=∠F,AM=CF,再根据所给的条件得出△FCD≌△MCD,即可得出∠AMB=∠F=∠CMD.【解答】证明:如图,延长AD至F,使得CF⊥AC.∵AB⊥AC,AD⊥BM,∴∠ABM=∠DAC,在△ABM与△CAF中,,∴△ABM≌△CAF(ASA),∴∠BMA=∠F,AM=CF,在△FCD与△MCD中,,∴△FCD≌△MCD(SAS),∴∠F=∠CMD,∴∠AMB=∠DMC.【点评】此题考查了解等腰直角三角形;解题的关键是根据题意画出图形,再根据解等腰直角三角形的性质和全等三角形的判断与性质进行解答即可.5.如图,在正方形ABCD中,P、Q分别为BC、CD边上的点,且∠PAQ=45°,求证:PQ=PB+DQ.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】将△ADQ绕点A顺时针旋转90°得到△ABE,根据旋转的性质可得BE=DQ,AE=AQ,∠BAE=∠DAQ,然后求出∠EAP=∠PAQ=45°,再利用“边角边”证明△APE和△APQ全等,根据全等三角形对应边相等可得PQ=PE,再根据PE=PB+BE等量代换即可得证.【解答】证明:如图,将△ADQ绕点A顺时针旋转90°得到△ABE,由旋转的性质得,BE=DQ,AE=AQ,∠BAE=∠DAQ,∵∠PAQ=45°,∴∠EAP=∠PAQ=45°,在△APE和△APQ中,,∴△APE≌△APQ(SAS),∴PQ=PE,∵PE=PB+BE,∴PQ=PB+DQ.【点评】本题考查了正方形的性质,全等三角形的判定与性质,利用旋转作辅助线构造出全等三角形是解题的关键,也是本题的难点.6.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.【考点】等边三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AC到E,使CE=BM,连接DE,求证△BMD≌△CDE可得∠BDM=∠CDE,进而求证△MDN≌△EDN可得MN=NE=NC+CE=NC+BM,即可计算△AMN周长,即可解题.【解答】解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.【点评】本题考查了全等三角形的证明和全等三角形对应边、对应角相等的性质,等边三角形各边长相等、各内角为60°的性质,本题中求证MN=NE=NC+CE=NC+BM是解题的关键.7.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【考点】全等三角形的判定与性质.【专题】动点型.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,,解得;综上所述,存在或使得△ACP与△BPQ全等.【点评】此题考查全等三角形的判定与性质,注意分类讨论思想的渗透.8.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.9.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【考点】全等三角形的判定与性质;等腰直角三角形;平行四边形的性质.【专题】几何综合题.【分析】(1)如答图2,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP;(2)如答图3,作辅助线,构造全等三角形△BDF≌△PDA,可以证明BD=DP.【解答】题干引论:证明:如答图1,过点D作DF⊥MN,交AB于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(1)答:BD=DP成立.证明:如答图2,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.(2)答:BD=DP.证明:如答图3,过点D作DF⊥MN,交AB的延长线于点F,则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA)∴BD=DP.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、平行线的性质等知识点,作辅助线构造全等三角形是解题的关键.10.如图,已知∠AOB=120°,OM平分∠AOB,将等边三角形的一个顶点P放在射线OM上,两边分别与OA、OB(或其所在直线)交于点C、D.(1)如图①,当三角形绕点P旋转到PC⊥OA时,证明:PC=PD.(2)如图②,当三角形绕点P旋转到PC与OA不垂直时,线段PC和PD相等吗?请说明理由.(3)如图③,当三角形绕点P旋转到PC与OA所在直线相交的位置时,线段PC和PD相等吗?直接写出你的结论,不需证明.【考点】全等三角形的判定与性质;角平分线的性质;等边三角形的性质.【分析】(1)根据角平分线上的点到角的两边的距离相等直接回答;(2)过P作OA、OB的垂线,构造图①的图形,利用(1)的结论证明PC、PD所在的三角形全等;(3)仿(2)的证明可得PC=PD.【解答】解:(1)证明:∵OP平分∠AOB,PC⊥OA于C,OM平分∠AOB,∴∠CPO=∠OPD=30°,∠AOP=∠POB=60°,∴PD⊥OB于D,∴PC=PD.(角平分线上的点到角的两边的距离相等)(2)解:PC=PD.过P点作PQ⊥OA于Q,PN⊥OB于N.由(1)得PQ=PN.∵∠AOB=120°,∴∠QPN=360°﹣90°﹣90°﹣120°=60°.∴∠QPC=∠NPD=60°﹣∠CPN.∴△PQC≌△PND.(ASA)∴PC=PD.(3)解:PC=PD.【点评】此题考查全等三角形的判定和性质,由易到难层层递进,把握解题思路是关键.11.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从点D出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度,沿C→B→C做匀速移动,点G从点B出发沿BD向点D匀速移动,三个点同时出发,当有一个点到达终点时,其余两点也随之停止运动,假设移动时间为t秒.(1)试证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时移动时间和G点的移动距离.【考点】全等三角形的判定与性质.【分析】(1)由AD=BC=8,AB=CD,BD为公共边,所以可证得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)设G点的移动距离为y,分两种情况,一种F由C到B,一种F由B到C,再结合△DEG≌△BFG可得到DE=BF,DG=BG,或DE=BG,DG=BF可得到方程,解出时间t和y的值即可.【解答】(1)证明:在△ABD和△CDB中∴△ABD≌△CDB,∴∠ADB=∠CBD,∴AD∥BC;(2)解:设G点的移动距离为y,当△DEG与△BFG时有:∠EDG=∠FBG,∴DE=BF,DG=BG,或DE=BG,DG=BF,当F由C到B,即0<t≤时,则有,解得,或,解得(舍去),当F由B到C,即时,有,解得,或,解得,综上可知共有三次,移动的时间分别为2秒、4秒、5秒,移动的距离分别为6、6、5.【点评】本题主要考查三角形全等的判定和性质,第(2)题解题的关键是利用好三角形全等,从而得到方程解得.12.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG 为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE 的长度关系及所在直线的位置关系.(1)猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系;(2)将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度a,得到如图2、如图3情形.请你通过观察、测量等方法判断(1)中得到的结论是否仍然成立,并选取图2证明你的判断.【考点】正方形的性质;全等三角形的判定与性质.【专题】动点型;操作型.【分析】(1)根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;(2)结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论.【解答】解:(1)BG=DE,BG⊥DE;∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,BC=DC∠BCG=∠DCE CG=CE,∴△BCG≌△DCE(SAS),∴BG=DE;延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE,即BG⊥DE;(2)BG=DE,BG⊥DE仍然成立,在图(2)中证明如下∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS)∴BG=DE,∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°∴∠CDE+∠DHO=90°∴∠DOH=90°∴BG⊥DE.【点评】此题考查的知识点是正方形的性质,解答本题关键要充分利用正方形的特殊性质,利用三角形全等论证.二、作图题(共5小题,满分0分)13.如图,已知∠AOB=a外有一点P,画点P关于直线OA的对称点P′,再作点P′关于直线OB的对称点P″.(1)试猜想∠POP″与a的大小关系,并说出你的理由.(2)当P为∠AOB 内一点或∠AOB边上一点时,上述结论是否成立?【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形,再由HL定理得出△DOP′≌△DOP,△EOP″≌△EOP′根据全等三角形的性质即可得出结论;(2)根据题意画出图形,同(1)可得出结论.【解答】解:(1)猜想:∠POP″=2α.理由:如图1,在△DOP′与△DOP中∵,∴△DOP′≌△DOP.同理可得,△EOP″≌△EOP′∴∠POP″=2α;(2)成立.如图2,当点P在∠AOB内时,∵同(1)可得,△DOP′≌△DOP,EOP″≌△EOP′,∴∠POD=∠P′OD,∠EOP″=∠EOP′,∴∠POP″=∠P′OP″﹣∠POP′=3α﹣α=2α.如图3,当点P在∠AOB的边上时,∵同(1)可得△EOP″≌△EOP,∴∠POP″=2α.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.14.如图,铁路和公路都经过P地,曲线MN是一条河流,现欲在河上建一个货运码头Q,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头Q的位置.(注意:①保留作图痕迹;②在图中标出点Q)【考点】作图—应用与设计作图.【分析】根据角平分线的作法,作出铁路与公路所形成的角的平分线,角平分线与河流的交点即为所求.【解答】解:如图所示:,点Q即为所求.【点评】此题主要考查了作图与应用作图,关键是掌握角平分线上的点到角两边的距离相等.15.(1)如图(1),已知∠AOB和线段CD,求作一点P,使PC=PD,并且点P到∠AOB的两边距离相等(尺规作图,不写作法,保留作图痕迹,写出结论);(2)如图(2)在道路L上键一个水坝站P,使向A′B两村送水所用水管PA+PB最短,水坝站P应建何处?【考点】轴对称-最短路线问题;角平分线的性质;线段垂直平分线的性质.【分析】(1)作∠AOB的平分线和线段CD的中垂线,两者的交点就是P;(2)作出A关于m的对称点A',连接A'B于直线m的交点就是P.【解答】解:如图所示:【点评】本题考查了基本作图,理解角平分线的性质、以及线段的中垂线的性质是关键.16.已知,P为∠AOB内一点,PO=24cm,∠AOB=30°,试在OA、OB上分别找出两点C、D,使△PCD周长最小,并求这个最小周长.【考点】轴对称-最短路线问题.【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,△PCD 的周长=P1P2,然后证明△OP1P2是等边三角形,即可求解.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于C,交OB于D,则OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,CP=P1C,PD=P2D,则△PCD的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=60°,∴△OP1P2是等边三角形,△PCD的周长=P1P2,∴P1P2=OP1=OP2=OP=24cm.【点评】本题考查了轴对称最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.17.(1)如图1,计划在三个住宅小区A、B、C之间修建一个购物中心,使得它到三个小区的距离相等,请作图找到购物中心的位置.(2)如图2,有a、b、c三条公路,先要建一个货物中转站到三条公路的距离相等,请作图找到货物中转站的位置.【考点】作图—应用与设计作图.【分析】(1)利用线段垂直平分线的性质得出P点即可;(2)利用角平分线的性质分别得出符合题意的答案.【解答】解:(1)如图所示:P点即为所求;(2)如图所示:D,E,F,G点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质以及线段垂直平分线的性质是解题关键.。
2019—2020年最新北师大版八年级数学上册《勾股定理》综合测试题及答案解析(试卷).docx

《第1章勾股定理》一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为,斜边上的高为.2.已知直角三角形的两边的长分别是3和4,则第三边长为.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为cm2.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行米.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= ;若a=12,b=5,则C= ;若c=15,b=13,则a= .9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= .10.若一个直角三角形的三边长分别是6、8、a,则a2= .11.等腰三角形的腰长为10,底边上的高为6,则底边长为.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是m.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行千米.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=1715.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=1516.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.16918.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.619.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.4823.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.31.已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为;(3)本题正确的解题过程:《第1章勾股定理》(山东省济南市兴济中学)参考答案与试题解析一、填空题1.直角三角形两条直角边的长分别为5、12,则斜边长为13 ,斜边上的高为.【考点】勾股定理.【分析】可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:AB2=52+122,则AB=13,直角三角形面积S=×5×12=×13×CD,可得:斜边的高CD=.故答案为:13,.【点评】本题考查勾股定理及直角三角形面积公式的综合运用,解答本题的关键是熟练掌握勾股定理,此题难度不大.2.已知直角三角形的两边的长分别是3和4,则第三边长为5或.【考点】勾股定理.【专题】分类讨论.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.【点评】此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.3.已知等腰三角形的腰长为5cm,底边长为6cm,则这个三角形的面积为12 cm2.【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,根据等腰三角形三线合一和勾股定理求出高,再代入面积公式求解即可.【解答】解:如图,作底边BC上的高AD,则AB=5cm,BD=×6=3cm,∴AD===4,∴三角形的面积为:×6×4=12cm2.【点评】本题利用等腰三角形“三线合一”作出底边上的高,再根据勾股定理求出高的长度,作高构造直角三角形是解题的关键.4.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A的面积是11,B的面积是10,C的面积是13,则D的面积为30 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积64,由此即可解决问题.【解答】解:如图记图中三个正方形分别为P、Q、M.根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P,Q的面积的和是M的面积.即A、B、C、D的面积之和为M的面积.∵M的面积是82=64,∴A、B、C、D的面积之和为64,设正方形D的面积为x,∴11+10+13+x=64,∴x=30.故答案为:30.【点评】此题考查了勾股定理,正方形的面积,得出正方形A,B,C,D的面积和即是最大正方形M的面积是解题的关键.5.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行10 米.【考点】勾股定理的应用.【分析】从题目中找出直角三角形并利用勾股定理解答.【解答】解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8﹣2=6米.根据勾股定理得BD=10米.【点评】注意作辅助线构造直角三角形,熟练运用勾股定理.6.如图,直线l过正方形ABCD的顶点B,点A,C到直线l的距离分别是1和2,则正方形ABCD 的面积是 5 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】根据正方形性质得出AB=CB,∠ABC=90°,求出∠EAB=∠FBC,证△AEB≌△BFC,求出BE=CF=2,在Rt△AEB中,由勾股定理求出AB,即可求出正方形的面积.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠ABE+∠CBF=180°﹣90°=90°,∠ABE+∠EAB=90°,∴∠EAB=∠CBF,在△AEB和△BFC中,,∴△AEB≌△BFC(AAS),∴BE=CF=2,在Rt△AED中,由勾股定理得:AB==,即正方形ABCD的面积是5,故答案为:5.【点评】本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出BE=CF,主要考查学生分析问题和解决问题的能力,题型较好,难度适中.7.如图,是一个长方体,长4、宽3、高12,则图中阴影部分的三角形的周长为30 .【考点】勾股定理.【分析】在底面上,阴影三角形的边长是直角三角形的斜边,根据勾股定理即可求得,阴影部分是一个直角三角形,利用两直角边求出即可.【解答】解:如图所示,在直角△BCD中,根据勾股定理,得到BC===5.在直角△ABC中,根据勾股定理,得到AC===13.所以,图中阴影部分的三角形的周长为:AB+BC+AC=12+5+13=30.故答案是:30.【点评】本题考查了勾股定理.正确认识到阴影部分的形状是直角三角形是解题的关键;主要考查空间想象能力.8.在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.若a=6,c=10,则b= 8 ;若a=12,b=5,则C= 13 ;若c=15,b=13,则a= 2.【考点】勾股定理.【专题】计算题.【分析】画出图形,根据勾股定理直接解答.【解答】解:如图:在Rt△ABC中,a=6,c=10,则b===8;在Rt△ABC中,a=12,b=5,则c===13;在Rt△ABC中,c=15,b=13,则a===2.故答案为8,13,2.【点评】本题考查了勾股定理,要注意分清直角边和斜边,另外,解答时要注意画出图形,找到相应的边和角,再代入公式计算.9.在△ABC中,AB=AC,AD⊥BC,若AB=13,BC=10,则AD= 12 .【考点】勾股定理;等腰三角形的性质.【专题】几何图形问题.【分析】先根据等腰三角形的性质得出AD是BC边的中线,再根据勾股定理求出AD的长即可.【解答】解:∵在△ABC中,AB=AC,AD⊥BC,AB=13,BC=10,∴BD=BC=×10=5,∴AD===12.故答案为:12.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质及勾股定理是解答此题的关键.10.若一个直角三角形的三边长分别是6、8、a,则a2= 100或28 .【考点】勾股定理.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边8既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:(1)若8是直角边,则第三边x是斜边,由勾股定理得:62+82=a2,所以a2=100;(2)若8是斜边,则第三边a为直角边,由勾股定理得:62+x2=82,所以a2=28.故答案为:100或28.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.11.等腰三角形的腰长为10,底边上的高为6,则底边长为16 .【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,利用勾股定理求解即可.【解答】解:如图,∵AB=AC=6,AD⊥BC,AD=6,∴BD===8,∴BC=2BD=16.故答案为:16.【点评】本题考查的是勾股定理,熟知等腰三角形三线合一的性质是解答此题的关键.12.小颖从学校出发向南走了150m,接着向东走了80m到达书店,则学校与书店的距离是170 m.【考点】勾股定理的应用.【专题】计算题.【分析】根据正南方向和正东方向成九十度,利用勾股定理进行计算即可.【解答】解:∵正南方向和正东方向成90°,∴根据勾股定理得学校与书店之间的距离为=170(米).故答案为:170.【点评】此题考查的是勾股定理在实际生活中的运用,解答此题的关键是根据题意画出图形,再根据勾股定理进行计算.13.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行540 千米.【考点】勾股定理的应用.【分析】先画出图形,构造出直角三角形,利用勾股定理解答.【解答】解:设A点为小刚头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2﹣AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),故答案为:540.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.解题时注意运用数形结合的思想方法使问题直观化.二、选择题14.下列几组数中不能作为直角三角形三边长度的是()A.a=7,b=24,c=25 B.a=1.5,b=2,c=2.5C.D.a=15,b=8,c=17【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理对各个选项进行分析,从而得到答案.【解答】解:A、满足勾股定理:72+242=252,故A选项不符合题意;B、满足勾股定理:1.52+22=2.52,故B选项不符合题意;C、不满足勾股定理,不是勾股数,故C选项符合题意;D、满足勾股定理:152+82=172,故D选项不符合题意.故选:C.【点评】本题考查了用勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.15.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是()A.a=9,b=41,c=40 B.a=5,b=12,c=13C.a:b:c=3:4:5 D.a=11,b=12,c=15【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.【解答】解:A、因为92+402=412,能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项错误;C、因为32+42=52,故能构成直角三角形,此选项错误.D、因为112+122≠152,不能构成直角三角形,此选项正确.故选D.【点评】本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.16.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14 B.4 C.14或4 D.以上都不对【考点】勾股定理.【专题】分类讨论.【分析】分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD﹣BD.【解答】解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.【点评】本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答.17.“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为13,直角三角形中短直角边a,较长直角边为了b,那么(a+b)2的值为()A.13 B.14 C.25 D.169【考点】勾股定理.【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方13,也就是两条直角边的平方和是13,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12.根据完全平方公式即可求解.【解答】解:根据题意,结合勾股定理a2+b2=13,四个三角形的面积=4×ab=13﹣1,∴2ab=12,联立解得:(a+b)2=13+12=25.故选C.【点评】本题考查了勾股定理和完全平方公式的运用,解题的关键是注意观察图形:发现各个图形的面积和a,b的关系.18.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C处,BC交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.6【考点】翻折变换(折叠问题).【分析】先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8﹣x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x 的值,进而得出DE的长.【解答】解:∵Rt△DC′B由Rt△DBC翻折而成,∴CD=C′D=AB=8,∠C=∠C′=90°,设DE=x,则AE=8﹣x,∵∠A=∠C′=90°,∠AEB=∠DEC′,∴∠ABE=∠C′DE,在Rt△ABE与Rt△C′DE中,,∴Rt△ABE≌Rt△C′DE(ASA),∴BE=DE=x,在Rt△ABE中,AB2+AE2=BE2,∴42+(8﹣x)2=x2,解得:x=5,∴DE的长为5.故选C.【点评】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.19.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟后,两只小鼹鼠相距()A.50cm B.100cm C.140cm D.80cm【考点】勾股定理的应用.【专题】应用题.【分析】首先根据题意知:它们挖的方向构成了直角.再根据路程=速度×时间,根据勾股定理即可求解.【解答】解:由图可知,AC=8×10=80cm,BC=6×10=60cm,由勾股定理得,AB===100cm.故选B.【点评】本题考查了勾股定理的应用,首先要正确理解题意,画出正确的图形,再熟练运用勾股定理进行计算.20.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.21.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm .【考点】勾股定理的应用.【分析】先根据题意画出图形,再根据勾股定理解答即可.【解答】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.【点评】此题将勾股定理与实际问题相结合,考查了同学们的观察力和由具体到抽象的推理能力,解答此题的关键是根据题意画出图形求出h的最大及最小值,有一定难度.22.直角三角形的周长为24,斜边长为10,则其面积为()A.96 B.49 C.24 D.48【考点】勾股定理.【专题】方程思想.【分析】利用勾股定理求出两直角边,再代入三角形面积公式即可求解.【解答】解:直角三角形的周长为24,斜边长为10,则两直角边的和为24﹣10=14,设一直角边为x,则另一边14﹣x,根据勾股定理可知:x2+(14﹣x)2=100,解得x=6或8,所以面积为6×8÷2=24.故选C.【点评】本题考查了利用勾股定理解直角三角形的能力,即:直角三角形两直角边的平方和等于斜边的平方;本题的关键是先求出两直角边,再计算面积.23.有下面的判断:①△ABC中,a2+b2≠c2,则△ABC不是直角三角形.②△ABC是直角三角形,∠C=90°,则a2+b2=c2.③若△ABC中,a2﹣b2=c2,则△ABC是直角三角形.④若△ABC是直角三角形,则(a+b)(a﹣b)=c2.以上判断正确的有()A.4个B.3个C.2个D.1个【考点】勾股定理的逆定理;勾股定理.【分析】欲求证是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【解答】解:①c不一定是斜边,故错误;②正确;③正确;④若△ABC是直角三角形,c不是斜边,则(a+b)(a﹣b)≠c2,故错误.共2个正确.故选C.【点评】本题考查勾股定理的逆定理的应用.三、解答题:24.在Rt△ABC中,∠C=90°,已知c=25,b=15,求a.【考点】勾股定理.【分析】直接利用勾股定理得出a的值.【解答】解:∵∠C=90°,c=25,b=15,∴a==20.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.25.甲、乙两同学在操场上,从同一旗杆处出发,甲向北走18米,乙向东走16米以后,又向北走6米,此时甲、乙两同学相距多远?【考点】勾股定理的应用.【分析】根据题意画出示意图,然后根据勾股定理计算出CB的长.【解答】解:过C作CA⊥BA,由题意得:=20(米),答:此时甲、乙两同学相距20米.【点评】此题主要考查了勾股定理的应用,关键是画出示意图,掌握勾股定理.26.一梯子斜靠在某建筑物上,当梯子的底端离建筑物9m时,梯子可以达到的高度是12m,你能算出梯子的长度吗?【考点】勾股定理的应用.【专题】数形结合.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长9m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】:解:如图:∵AC=9m,BC=12m,∠C=90°∴AB==15m∴梯子的长度为15米.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用,关键是从实际问题中整理出数学问题.27.如图是一块地,已知AD=8cm,CD=6cm,∠D=90°,AB=26cm,BC=24cm,求这块地的面积.【考点】勾股定理;勾股定理的逆定理.【分析】根据勾股定理可求出AC的长,根据勾股定理的逆定理可求出∠ACB=90°,可求出△ACB的面积,减去△ACD的面积,可求出四边形ABCD的面积.【解答】解:如图,连接AC.∵CD=6cm,AD=8cm,∠ADC=90°,∴AC==10(cm).∵AB=26cm,BC=24cm,102+242=262.即AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°.∴四边形ABCD的面积=S△ABC﹣S△ACD=×10×24﹣×6×8=96(cm2).【点评】本题考查了勾股定理和勾股定理的逆定理,关键判断出直角三角形从而可求出面积.28.如图,滑杆在机械槽内运动,∠ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?【考点】勾股定理的应用.【专题】应用题.【分析】由题意可知滑杆AB与AC、CB正好构成直角三角形,故可用勾股定理进行计算.【解答】解:设AE的长为x米,依题意得CE=AC﹣x.∵AB=DE=2.5,BC=1.5,∠C=90°,∴AC===2∵BD=0.5,∴在Rt△ECD中,CE====1.5.∴2﹣x=1.5,x=0.5.即AE=0.5.答:滑杆顶端A下滑0.5米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.29.如图,折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,若AB=4,BC=3,求AG的长.【考点】翻折变换(折叠问题);勾股定理.【分析】首先由折叠长方形纸片ABCD,先折出折痕(对角线)BD,再折叠使AD边与BD重合,得折痕DG,即可得:∠GDA=∠GDB,AD=ED,然后过点G作GE⊥BD于E,即可得AG=EG,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中利用勾股定理,即可求得AG的长.【解答】解:过点G作GE⊥BD于E,根据题意可得:∠GDA=∠GDB,AD=ED,∵四边形ABCD是矩形,∴∠A=90°,AD=BC=3,∴AG=EG,ED=3,∵AB=4,BC=3,∠A=90°,∴BD=5,设AG=x,则GE=x,BE=BD﹣DE=5﹣3=2,BG=AB﹣AG=4﹣x,在Rt△BEG中,EG2+BE2=BG2,即:x2+4=(4﹣x)2,解得:x=,故AG=.【点评】此题考查了折叠的性质、矩形的性质以及勾股定理等知识.此题综合性很强,难度适中,解题的关键是方程思想与数形结合思想的应用.30.如图,长方形ABCD中,AB=4,BC=5,将长方形沿折痕AF折叠,点D恰好落在BC边上的点E处.(1)求BE的长;(2)求CF的长.【考点】翻折变换(折叠问题).【分析】(1)根据矩形的性质得到AD=BC=5,∠D=∠B=∠C=90°,由折叠的性质得到AE=AD=BC=5,根据勾股定理即可得到结果;(2)由(1)知BE=3,于是得到CE=BC﹣BE=2,根据折叠的性质得到EF=DF=4﹣CF,根据勾股定理即可得到结论.【解答】解:(1)长方形ABCD中,∵AD=BC=5,∠D=∠B=∠C=90°,∵△AEF是△ADF沿折痕AF折叠得到的,∴AE=AD=BC=5,∴BE===3;(2)由(1)知BE=3,∴CE=BC﹣BE=2,∵△AEF是△ADF沿折痕AF折叠得到的,∴EF=DF=4﹣CF,∵EF2=CE2+CF2,∴(4﹣CF)2=22+CF2,解得:CF=.【点评】本题主要考查了图形的翻折变换,以及勾股定理、全等三角形、方程思想等知识,关键是熟练掌握勾股定理,找准对应边.31.(2011•大田县校级模拟)已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:③;(2)错误的原因为除式可能为0 ;(3)本题正确的解题过程:【考点】勾股定理的逆定理.【专题】推理填空题.【分析】(1)(2)两边都除以a2﹣b2,而a2﹣b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.【解答】解:(1)③(2)除式可能为零;(3)∵a2c2﹣b2c2=a4﹣b4,∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),∴a2﹣b2=0或c2=a2+b2,当a2﹣b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.故答案是③,除式可能为零.【点评】本题考查勾股定理的逆定理的应用、分类讨论.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.。
2019—2020年最新华东师大版八年级数学上册《数的开方》综合测试题及答案解析.docx

《第11章数的开方》一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±44.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+15.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣320076.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤17.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.58.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在二、填空题11.若x2=8,则x= .12.的平方根是.13.如果有意义,那么x的值是.14.a是4的一个平方根,且a<0,则a的值是.15.当x= 时,式子+有意义.16.若一正数的平方根是2a﹣1与﹣a+2,则a= .17.计算:+= .18.如果=4,那么a= .19.﹣8的立方根与的算术平方根的和为.20.当a2=64时,= .21.若|a|=,=2,且ab<0,则a+b= .22.若a、b都是无理数,且a+b=2,则a,b的值可以是(填上一组满足条件的值即可).23.绝对值不大于的非负整数是.24.请你写出一个比大,但比小的无理数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= .三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.27.计算:(1)+;(2)++.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.30.著名的海伦公式S=告诉我们一种求三角形面积的方法,其中p表示三角形周长的一半,a、b、c分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm,b=4cm,c=5cm,能帮助小明求出该三角形的面积吗?31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.《第11章数的开方》参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.一个正数的正的平方根是m,那么比这个正数大1的数的平方根是()A.m2+1 B.±C.D.±【考点】平方根.【分析】这个正数可用m表示出来,比这个正数大1的数也能表示出来,开方可得出答案.【解答】解:由题意得:这个正数为:m2,比这个正数大1的数为m2+1,故比这个正数大1的数的平方根为:±,故选D.【点评】本题考查算术平方根及平方根的知识,难度不大,关键是根据题意表示出这个正数及比这个正数大1的数.2.一个数的算术平方根是,这个数是()A.9 B.3 C.23 D.【考点】算术平方根.【分析】根据算术平方根的定义解答即可.【解答】解:3的算术平方根是,所以,这个数是3.故选B.【点评】本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.3.已知a的平方根是±8,则a的立方根是()A.2 B.4 C.±2 D.±4【考点】立方根;平方根.【分析】根据乘方运算,可得a的值,根据开方运算,可得立方根.【解答】解;已知a的平方根是±8,a=64,=4,故选:B.【点评】本题考查了立方根,先算乘方,再算开方.4.下列各数,立方根一定是负数的是()A.﹣a B.﹣a2C.﹣a2﹣1 D.﹣a2+1【考点】立方根.【分析】根据正数的立方根是正数,0的立方根是0,负数的立方根是负数,结合四个选项即可得出结论.【解答】解:∵﹣a2﹣1≤﹣1,∴﹣a2﹣1的立方根一定是负数.故选C.【点评】本题考查了立方根,牢记“正数的立方根是正数,0的立方根是0,负数的立方根是负数”是解题的关键.5.已知+|b﹣1|=0,那么(a+b)2007的值为()A.﹣1 B.1 C.32007D.﹣32007【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】本题首先根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0.”得到关于a、b的方程组,然后解出a、b的值,再代入所求代数式中计算即可.【解答】解:依题意得:a+2=0,b﹣1=0∴a=﹣2且b=1,∴(a+b)2007=(﹣2+1)2007=(﹣1)2007=﹣1.故选A.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.6.若=1﹣x,则x的取值范围是()A.x>1 B.x≥1 C.x<1 D.x≤1【考点】二次根式的性质与化简.【分析】等式左边为算术平方根,结果为非负数,即1﹣x≥0.【解答】解:由于二次根式的结果为非负数可知,1﹣x≥0,解得x≤1,故选D.【点评】本题利用了二次根式的结果为非负数求x的取值范围.7.在﹣,,,﹣,2.121121112中,无理数的个数为()A.2 B.3 C.4 D.5【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣,,﹣是无理数,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.若a<0,则化简||的结果是()A.0 B.﹣2a C.2a D.以上都不对【考点】二次根式的性质与化简.【分析】根据=|a|,再根据绝对值的性质去绝对值合并同类项即可.【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a,故选:B.【点评】此题主要考查了二次根式的性质和化简,关键是掌握=|a|.9.实数a,b在数轴上的位置如图,则有()A.b>a B.|a|>|b| C.﹣a<b D.﹣b>a【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质,可得答案.【解答】解:A、数轴上的点表示的数右边的总比左边的大,b>a,故A正确;B绝对值是数轴上的点到原点的距离,|a|>|b|,故B正确;C、|﹣a|>|b,|得﹣a>b,故C错误;D、由相反数的定义,得﹣b>a,故D正确;故选:C.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,绝对值的定义,不等式的性质是解题关键.10.下列命题中正确的个数是()A.带根号的数是无理数B.无理数是开方开不尽的数C.无理数就是无限小数D.绝对值最小的数不存在【考点】命题与定理.【分析】根据各个选项中的说法正确的说明理由,错误的说明理由或举出反例即可解答本题.【解答】解:∵,故选项A错误;无理数是开放开不尽的数,故选项B正确;无限不循环小数是无理数,故选项C错误;绝对值最小的数是0,故选项D错误;故选B.【点评】本题考查命题与定理,解题的关键是明确题意,正确的命题说明理由,错误的命题说明理由或举出反例.二、填空题11.若x2=8,则x= ±2.【考点】平方根.【分析】利用平方根的性质即可求出x的值.【解答】解:∵x2=8,∴x=±=±2,故答案为±2.【点评】本题考查平方根的性质,利用平方根的性质可求解这类型的方程:(x+a)2=b.12.的平方根是±2 .【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.13.如果有意义,那么x的值是±.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得:﹣(x2﹣2)2≥0,再解即可.【解答】解:由题意得:﹣(x2﹣2)2≥0,解得:x=±,故答案为:.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.14.a是4的一个平方根,且a<0,则a的值是﹣2 .【考点】平方根.【分析】4的平方根为±2,且a<0,所以a=﹣2.【解答】解:∵4的平方根为±2,a<0,∴a=﹣2,故答案为﹣2.【点评】本题考查平方根的定义,注意一个正数的平方根有两个,且互为相反数.15.当x= ﹣2 时,式子+有意义.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,x+2≥0,﹣x﹣2≥0,解得,x=﹣2,故答案为:﹣2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.16.若一正数的平方根是2a﹣1与﹣a+2,则a= 1或﹣1 .【考点】平方根;解一元一次方程.【专题】计算题.【分析】根据一个正数的两个平方根互为相反数,分2a﹣1与﹣a+2是同一个平方根与两个平方根列式求解.【解答】解:①2a﹣1与﹣a+2是同一个平方根,则2a﹣1=﹣a+2,解得a=1,②2a﹣1与﹣a+2是两个平方根,则(2a﹣1)+(﹣a+2)=0,∴2a﹣1﹣a+2=0,解得a=﹣1.综上所述,a的值为1或﹣1.故答案为:1或﹣1.【点评】本题考查了平方根与解一元一次方程,注意平方根是同一个平方根的情况,容易忽视而导致出错.17.计算:+= 1 .【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简求出即可.【解答】解:+=π﹣3+4﹣π=1.故答案为:1.【点评】此题主要考查了二次根式的化简,正确化简二次根式是解题关键.18.如果=4,那么a= ±4 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质得出a的值即可.【解答】解:∵=4,∴a=±4,故答案为±4.【点评】本题考查了二次根式的性质与化简,掌握a2=16,得出a=±4是解题的关键.19.﹣8的立方根与的算术平方根的和为 1 .【考点】立方根;算术平方根.【分析】﹣8的立方根为﹣2,的算术平方根为3,两数相加即可.【解答】解:由题意可知:﹣8的立方根为﹣2,的算术平方根为3,∴﹣2+3=1,故答案为1.【点评】本题考查立方根与算术平方根的性质,属于基础题型.20.当a2=64时,= ±2 .【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.21.若|a|=,=2,且ab<0,则a+b= 4﹣.【考点】实数的运算.【分析】根据题意,因为ab<0,确定a、b的取值,再求得a+b的值.【解答】解:∵=2,∴b=4,∵ab<0,∴a<0,又∵|a|=,则a=﹣,∴a+b=﹣+4=4﹣.故答案为:4﹣.【点评】本题考查了实数的运算,属于基础题,解答本题的关键是熟练掌握绝对值的性质和二次根式的非负性.22.若a、b都是无理数,且a+b=2,则a,b的值可以是π;2﹣π(填上一组满足条件的值即可).【考点】无理数.【专题】开放型.【分析】由于初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…的数,而本题中a与b的关系为a+b=2,故确定a后,只要b=2﹣a即可.【解答】解:本题答案不唯一.∵a+b=2,∴b=2﹣a.例如a=π,则b=2﹣π.故答案为:π;2﹣π.【点评】本题主要考查了无理数的定义和性质,答案不唯一,解题关键是正确理解无理数的概念和性质.23.绝对值不大于的非负整数是0,1,2 .【考点】估算无理数的大小.【分析】先估算出的值,再根据绝对值的性质找出符合条件的所有整数即可.【解答】解:∵4<5<9,∴2<<3,∴符合条件的非负整数有:0,1,2.故答案为:0,1,2.【点评】本题考查的是估算无理数的大小及绝对值的性质,根据题意判断出的取值范围是解答此题的关键.24.请你写出一个比大,但比小的无理数+.【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:写出一个比大,但比小的无理数+,故答案为:+.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.25.已知+|y﹣1|+(z+2)2=0,则(x+z)2008y= 1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y、z的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣3=0,y﹣1=0,z+2=0,解得x=3,y=1,z=﹣2,所以,(3﹣2)2008×1=12008=1.故答案为:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.三、解答题(共40分)26.若5x+19的算术平方根是8,求3x﹣2的平方根.【考点】算术平方根;平方根.【分析】先依据算术平方根的定义得到5x+19=64,从而可术的x的值,然后可求得3x﹣2的值,最后依据平方根的定义求解即可.【解答】解:∵5x+19的算术平方根是8,∴5x+19=64.∴x=9.∴3x﹣2=3×9﹣2=25.∴3x﹣2的平方根是±5.【点评】本题主要考查的是算术平方根和平方根的定义,掌握算术平方根和平方根的定义是解题的关键.27.计算:(1)+;(2)++.【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=5﹣2=3;(2)原式=﹣3+5+2=4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.解方程.(1)(x﹣1)2=16;(2)8(x+1)3﹣27=0.【考点】立方根;平方根.【分析】(1)两边直接开平方即可;(2)首先将方程变形为(x+1)3=,然后把方程两边同时开立方即可求解.【解答】解:(1)由原方程直接开平方,得x﹣1=±4,∴x=1±4,∴x1=5,x2=﹣3;(2)∵8(x+1)3﹣27=0,∴(x+1)3=,∴x+1=,∴x=.【点评】本题考查了平方根、立方根的性质与运用,是基础知识,需熟练掌握.29.将下列各数按从小到大的顺序重新排成一列.2,,﹣,0,﹣.【考点】实数大小比较.【分析】把2,,﹣,0,﹣分别在数轴上表示出来,然后根据数轴右边的数大于左边的数即可解决问题.【解答】解:如图,根据数轴的特点:数轴右边的数字比左边的大,所以以上数字的排列顺序如下:2>>0>﹣>﹣.【点评】此题主要考查了利用数轴比较实数的大小,解答本题时,采用的是数形结合的数学思想,采用这种方法解题,可以使知识变得更直观.30.著名的海伦公式S= 告诉我们一种求三角形面积的方法,其中p 表示三角形周长的一半,a 、b 、c 分别三角形的三边长,小明考试时,知道了三角形三边长分别是a=3cm ,b=4cm ,c=5cm ,能帮助小明求出该三角形的面积吗?【考点】二次根式的应用.【分析】先根据BC 、AC 、AB 的长求出P ,再代入到公式S=,即可求得该三角形的面积.【解答】解:∵a=3cm ,b=4cm ,c=5cm ,∴p===6,∴S===6(cm 2), ∴△ABC 的面积6cm 2.【点评】此题考查了二次根式的应用,熟练掌握三角形的面积和海伦公式是本题的关键.31.已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是2,求的平方根.【考点】实数的运算.【分析】根据相反数,倒数,以及绝对值的意义求出a+b,cd及m的值,代入计算即可求出平方根.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=±2时,原式=5,5的平方根为±.【点评】此题考查了实数的运算,平方根,绝对值,以及倒数,熟练掌握运算法则是解本题的关键.32.已知实数a,b满足条件+(ab﹣2)2=0,试求+++…+的值.【考点】分式的化简求值;非负数的性质:偶次方;非负数的性质:算术平方根.【分析】根据+(ab﹣2)2=0,可以求得a、b的值,从而可以求得+++…+的值,本题得以解决.【解答】解:∵+(ab﹣2)2=0,∴a﹣1=0,ab﹣1=0,解得,a=1,b=2,∴+++…+=…+=+…+==.【点评】本题考查分式的化简求值、偶次方、算术平方根,解题的关键是明确分式化简求值的方法.。
2019-2020学年安徽省庐江县度八年级上册期末考试数学试题有答案【标准版】

庐江县2019-2020学年度第一学期期末考试八年级数学试题一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.) 1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()2.函数=y 1-x 的自变量x 的取值范围是()A .0≥xB .0>xC .1≥xD .1>x 3.将一副三角板按图中方式叠放,则∠α等于() A .75° B .60° C .45° D .30°4.工人师傅常用角尺平分一个任意角.作法如图:∠AOB 是一个任意角,在边OA 、OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合.由此可得△MOC ≌△NOC .过角尺顶点C 的射线OC 便是∠AOB 的平分线,在这种作法中,判断△MOC ≌△NOC 的依据是() A .AAS B .SAS C .ASA D .SSS 5.已知一次函数b kx y +=,当2<x 时,0>y ,则下列判断正确的是() A .图象经过第一、二、四象限 B .图象经过第一、二、三象限 C .图象经过第一、三、四象限D .图象经过第二、三、四象限6.若点P (a ,a -2)在第四象限,则a 的取值范围是() A .-2<a <0B .0<a <2C .a >2D .a <0 7.各边长均为整数、周长为10的三角形有() A .1个B .2个 C .3个 D .4个8.在平面直角坐标系中,把直线x y =向左平移一个单位长度后,其解析式为() A .1+=x y B .x y = C .1-=x y D .2-=x y9.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()第4题图 第3题图 45°30°αA .1 个B .2 个C .3 个D .4个10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1) →(1,1) →(1,0)→(2,0)→(2,1)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是() A .(4,0) B . (5,5) C .(0,5) D .(5,0)二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.)11.点P 关于x 轴对称的点是(2,-1),则P 点的坐标是 . 12.命题“如果0>ab ,那么a 、b 都是正数”是 .(填“真命题”或“假命题”) 13.如图所示,请用不等号“<”或“>”表示∠1、∠2、∠3的大小关系: .14.如图,△ABC 的周长为30cm ,DE 垂直平分边AC ,交BC 于点D ,交AC 于点E ,连接AD ,若AE=4cm ,则△ABD 的周长是= . 15.某机械油箱中装有油60升,工作时平均每小时耗油5升,则工作时,油箱中剩余油量Q (升)与工作时间t (时)之间的函数关系式是 . 16.若△ABC 的一个外角等于140°,且∠B=∠C ,则∠A= .17.如图,一次函数y kx b =+的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程0kx b +=的解为2x =;第9题图 第10题图 O x y 1 2 3 3 2 1 第17题图 第18题图12 3 第13题图 E AB CD 第14题图④0<+b kx 的解集是2<x .其中说法正确的有 .(把你认为说法正确的序号都填上). 18.如图,在平面直角坐标系中,已知A (3,4)、B (0,2),在x 轴上有一动点C ,当 △ABC 的周长最小时,C 点的坐标为 .三、解答题(本大题共6小题,共46分.)19.(本题满分6分)如图,点A 、C 、B 、D 在同一条直线上,BE ∥DF ,∠A=∠F ,AB=FD .求证:AE=FC .【证明】20.(本题满分8分)正比例函数x y 2=的图象与一次函数k x y +-=3的图象交于点P (1,m ). (1)求k 的值;(2)求两直线与y 轴围成的三角形面积. 【解】21.(本题满分8分)如图,已知CD AB ⊥于点D ,BE ⊥AC 于点E ,BE ,CD 交于点O ,且OB =OC .E A BDFC求证:AO 平分∠BAC . 【证明】22.(本题满分8分)如图,一艘船从A 处出发,以每小时10海里的速度向正北航行,从A 处测得礁石C 在北偏西30°方向上,如果这艘船上午8:00从A 处出发,10:00到达B 处,从B 处测得礁石C 在北偏西60°方向上,问:(1)12:00时这艘船距离礁石多远?(2)这艘船在什么时刻距离礁石最近? 【解】23.(本题满分8分)如图,在△ABC 中,AB=AC ,N 是AB 上任一点(不与A 、B 重合),过N 作NM ⊥AB 交BC 所在直线于M , (1)若∠A=30°.求∠NMB 的度数; (2)如果将(1)中∠A 的度数改为68°,其余条件不变,求∠NMB 的度数; (3)综合(1)(2),你发现有什么样的规律性,试证明之;(4)若将(1)中的∠A 改为直角或钝角,你发现的规律是否仍然成立? 【解】ABC DE OCA BD A B MC N24.(本题满分8分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大? 【解】庐江县2019-2020学年度第一学期期末考试八年级数学试题参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.D 2.C 3.A 4.D 5.A 6.B 7.B 8.A 9.C 10.D二、填空题(本大题共8小题,每小题3分,共24分.)11.(2,1); 12.假命题; 13.∠3<∠2<∠1;14.22cm ; 15.t Q 560-=;16.40°或100°;17.①②③;18.(1,0);三、解答题(本大题共6小题,共46分)19.证明:∵BE ∥DF ,∴∠ABE =∠D , ……………2分 在△ABC 和△FDC 中,∠ABE =∠D ,AB =FD ,∠A=∠F ∴△A BE ≌△FDC (ASA ), ……………5分 ∴AE =FC .……………6分20.解:(1)当1=x 时,2=m ,所以P (1,2), ……………2分 将2,1==y x 代入k x y +-=3,得k +-=32,得:k =5, ……………4分(2)该一次函数解析式为53+-=x y ,与y 轴交点坐标为(0,5) 所以两直线与y 轴围成的三角形面积是5.25121=⨯⨯ ……………8分 21.(8分)证明:∵OD ⊥AB ,OE ⊥AC ,∴∠ODB =∠OEC=90°,在△BDO 和△CEO 中∵∠DOB =∠EOC , OB =OC ,∴△BDO ≌△CEO (AAS ).…………4分 ∴OD=OE ,∴AO 平分∠BAC .(在一个角的内部,到角的两边距离相等的点在这个角的平分线上)…………8分22.解:(1) 根据题意,得:∠CAD=30°,∠CBD=60°,∴∠C=∠CBD -∠CAD=30° ∴∠C=∠CAD ,∴BC=AB=10×2=20(海里)设12:00时这艘船所在位置为F ,连接FC , 则BF=10×(12-10)=20(海里) ∴BF=BC∴△CBF 是等边三角形(有一个角是60°的等腰三角形是等边三角形)∴FC=BF=20 …………4分 (2) 作CG ⊥AB 于G ,则这艘船行至G 处距离礁石最近,∵△BCF 为等边三角形,∴G 为BF 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年八年级 数学 参考答案
一、选择题
1.A ;
2. B ;
3.B ;
4. D ;
5. A ;
6. C .
二、填空题
7.4; 8. 合格; 9. (2,1); 10. 矩形、等腰梯形等; 11. ()4,4-;
12. 5,1x y x y +=⎧⎨-=-⎩ 等;13.36°; 14. ; 15.a .
三、解答题
16.3种表示方式:图象、列表、解析式法;……………3分
可以.
相互表示方式:略. ……………5分
(答案不唯一.只要学生说的合理都可得分.)
17. 对两组数据进行运算; ……………4分
对每组数据进行分析; ……………6分
理由充分. ……………8分
(答案不唯一.学生可以从平均数、众数、中位数方面分析,说出甲、乙各组游客的年龄特征.只要说的有理有据都可得分.)
18.第(1)问,画图正确(略); ……………4分
(2)能. ……………5分
可以参见课本. ……………8分
答案不唯一.两个图形只要是不同的两种作旋转的方法,都可得满分.
……………4分
如上面图形,图一周长为4+8+8分 (也可以由其他的拼法,根据拼出的图形分别计算出图形的周长.)
20.(1)根据题意,得244000,334200,
a b a b +=⎧⎨+=⎩……………………………………3分
解得800,600,a b =⎧⎨=⎩
所以a =800(元),=b 600(元). ………………………………………5分
(2)九年级学生捐助贫困中学生人数为4名;………………………………7分 捐助贫困小学生人数为7名. ………………………………………9分
21.解:,AB =CD ,AE=CF ,BG=AD 等等只要写的正确均可给分. ………2分
如AD =CB ;
理由如下:平行四边形的对边相等.………………………………………4分
(2)当四边形BEDF 是菱形时,四边形 AGBD 是矩形.…………5分
因为四边形ABCD 是平行四边形,
所以AD ∥BC .
因为AG ∥BD ,
则四边形 AGBD 是平行四边形.………………………………………………6分
因为四边形 BEDF 是菱形,
所以DE =BE .
因为AE =BE ,
则AE =BE =DE .
所以∠1=∠2,∠3=∠4.
由于∠1+∠2+∠3+∠4=180°,
所以2∠2+2∠3=180°.
则∠2+∠3=90°.
即∠ADB =90°.
故四边形AGBD 是矩形.…………………………………………9分
22.解:(1)根据题意,当销售利润为4万元,销售量为4(76)4÷-=(万升).
答:销售量x 为4万升时销售利润为4万元. ………………………2分
(2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元)
, 所以销售量为1.5(7.56)1÷-=(万升),所以点B 的坐标为(55.5),. ………3分 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩
,解得 1.52.k b =⎧⎨=-⎩, 所以线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤.……………5分 从15日到31日销售5万升,利润为1 1.54(7.5 6.5) 5.5⨯+⨯-=(万元).
所以本月销售该油品的利润为5.5 5.511+=(万元)
, 所以点C 的坐标为(1011),.…………………………………………………………7分 设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.
m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩, 所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤.………………………9分
(3)线段AB . ………………………………………………………………………10分。